
Conditional Execution
Chapter 3

Python for Informatics: Exploring Information
www.py4inf.com

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles R. Severance

Conditional Steps

Output:

Smaller
Finis

Program:

x = 5
if x < 10:
 print 'Smaller'

if x > 20:
 print 'Bigger'

print 'Finis'

x = 5

X < 10 ?

print 'Smaller'

X > 20 ?

print 'Bigger'

print 'Finis'

Yes

Yes

Comparison Operators
• Boolean expressions ask a

question and produce a Yes or
No result which we use to
control program flow

• Boolean expressions using
comparison operators evaluate
to - True / False - Yes / No

• Comparison operators look at
variables but do not change the
variables

http://en.wikipedia.org/wiki/George_Boole

Remember: “=” is used for assignment.

Python Meaning
< Less than

<= Less than or Equal
 == Equal to
>= Greater than or Equal
> Greater than
!= Not equal

Comparison
Operators

x = 5
if x == 5 :
 print 'Equals 5'

if x > 4 :
 print 'Greater than 4'
if x >= 5 :
 print 'Greater than or Equal 5'

if x < 6 : print 'Less than 6'

if x <= 5 :
 print 'Less than or Equal 5'
if x != 6 :
 print 'Not equal 6'

Equals 5
Greater than 4
Greater than or Equal 5
Less than 6
Less than or Equal 5
Not equal 6

One-Way Decisions

x = 5
print 'Before 5'
if x == 5 :
 print 'Is 5'
 print 'Is Still 5'
 print 'Third 5'

print 'Afterwards 5'

print 'Before 6'
if x == 6 :
 print 'Is 6'
 print 'Is Still 6'
 print 'Third 6'

print 'Afterwards 6'

Before 5
Is 5
Is Still 5
Third 5
Afterwards 5
Before 6
Afterwards 6

X == 5 ?

print 'Is 5'

Yes

print 'Still 5'

print 'Third 5'

No

Indentation

• Increase indent indent after an if statement or for statement (after :)

• Maintain indent to indicate the scope of the block (which lines are
affected by the if/for)

• Reduce indent to back to the level of the if statement or for statement
to indicate the end of the block

• Blank lines are ignored - they do not affect indentation

• Comments on a line by themselves are ignored w.r.t. indentation

Warning: Turn Off Tabs

• Most text editors can turn tabs into spaces - make sure to enable this
feature

• NotePad++: Settings -> Preferences -> Language Menu/Tab Settings

• TextWrangler: TextWrangler -> Preferences -> Editor Defaults

• Python cares a *lot* about how far line is indented. If you mix tabs
and spaces, you may get “indentation errors” even if everything looks
fine

Please do this now while you are thinking about it so we can all stay sane...

This will save you
much unnecessary

pain.
x = 5
if x > 2 :
 print 'Bigger than 2'
 print 'Still bigger'
print 'Done with 2'

for i in range(5) :
 print i
 if i > 2 :
 print 'Bigger than 2'
 print 'Done with i', i

x = 5
if x > 2 :
comments

 print 'Bigger than 2'
 # don’t matter
 print 'Still bigger'
but can confuse you

print 'Done with 2'
 # if you don’t line
 # them up

increase / maintain after if or for
decrease to indicate end of block

blank lines and comment lines ignored

Mental begin/end squares
x = 5
if x > 2 :
 print 'Bigger than 2'
 print 'Still bigger'
print 'Done with 2'

for i in range(5) :
 print i
 if i > 2 :
 print 'Bigger than 2'
 print 'Done with i', i

x = 5
if x > 2 :
comments

 print 'Bigger than 2'
 # don’t matter
 print 'Still bigger'
but can confuse you

print 'Done with 2'
 # if you don’t line
 # them up

x > 1

print 'More than one'

x < 100

print 'Less than 100'

print 'All Done'

yes

yes

no

no

x = 42

if x > 1 :
 print 'More than one'
 if x < 100 :
 print 'Less than 100'

print 'All done'

Nested
Decisions

x > 1

print 'More than one'

x < 100

print 'Less than 100'

print 'All Done'

yes

yes

no

no

x = 42

if x > 1 :
 print 'More than one'
 if x < 100 :
 print 'Less than 100'

print 'All done'

Nested
Decisions

x > 1

print 'More than one'

x < 100

print 'Less than 100'

print 'All Done'

yes

yes

no

no

x = 42

if x > 1 :
 print 'More than one'
 if x < 100 :
 print 'Less than 100'

print 'All done'

Nested
Decisions

Two Way
Decisions

• Sometimes we want to
do one thing if a logical
expression is true and
something else if the
expression is false

• It is like a fork in the
road - we must choose
one or the other path
but not both

x > 2

print 'Bigger'

yesno

X = 4

print 'Not bigger'

print 'All Done'

Two-way
using else :
x = 4

if x > 2 :
 print 'Bigger'
else :
 print 'Smaller'

print 'All done'

x > 2

print 'Bigger'

yesno

X = 4

print 'Smaller'

print 'All Done'

Two-way
using else :
x = 4

if x > 2 :
 print 'Bigger'
else :
 print 'Smaller'

print 'All done'

x > 2

print 'Bigger'

yesno

X = 4

print 'Smaller'

print 'All Done'

Multi-way

if x < 2 :
 print 'Small'
elif x < 10 :
 print 'Medium'
else :
 print 'LARGE'
print 'All done'

x < 2 print 'Small'
yes

no

print 'All Done'

x<10 print 'Medium'
yes

print 'LARGE'

no

Multi-way

x = 0
if x < 2 :
 print 'Small'
elif x < 10 :
 print 'Medium'
else :
 print 'LARGE'
print 'All done'

x < 2 print 'Small'
yes

no

X = 0

print 'All Done'

x<10 print 'Medium'
yes

print 'LARGE'

no

Multi-way

x = 5
if x < 2 :
 print 'Small'
elif x < 10 :
 print 'Medium'
else :
 print 'LARGE'
print 'All done'

x < 2 print 'Small'
yes

no

X = 5

print 'All Done'

x<10 print 'Medium'
yes

print 'LARGE'

no

Multi-way

x = 20
if x < 2 :
 print 'Small'
elif x < 10 :
 print 'Medium'
else :
 print 'LARGE'
print 'All done'

x < 2 print 'Small'
yes

no

X = 20

print 'All Done'

x<10 print 'Medium'
yes

print 'LARGE'

no

Multi-way

No Else
x = 5
if x < 2 :
 print 'Small'
elif x < 10 :
 print 'Medium'

print 'All done'

if x < 2 :
 print 'Small'
elif x < 10 :
 print 'Medium'
elif x < 20 :
 print 'Big'
elif x< 40 :
 print 'Large'
elif x < 100:
 print 'Huge'
else :
 print 'Ginormous'

Multi-way Puzzles

if x < 2 :
 print 'Below 2'
elif x < 20 :
 print 'Below 20'
elif x < 10 :
 print 'Below 10'
else :
 print 'Something else'

if x < 2 :
 print 'Below 2'
elif x >= 2 :
 print 'Two or more'
else :
 print 'Something else'

Which will never print?

The try / except Structure

• You surround a dangerous section of code with try and except.

• If the code in the try works - the except is skipped

• If the code in the try fails - it jumps to the except section

$ cat notry.py
astr = 'Hello Bob'
istr = int(astr)
print 'First', istr

astr = '123'
istr = int(astr)
print 'Second', istr

$ python notry.py
Traceback (most recent call last):
 File "notry.py", line 2, in <module>
 istr = int(astr)
ValueError: invalid literal for int() with
base 10: 'Hello Bob'

The
program

stops
here

All
Done

 Software

Input
Devices Central

Processing
Unit

Main
Memory

Output
Devices

Secondary
Memory

Generic
Computer

$ cat tryexcept.py
astr = 'Hello Bob'
try:
 istr = int(astr)
except:
 istr = -1

print 'First', istr

astr = '123'
try:
 istr = int(astr)
except:
 istr = -1

print 'Second', istr

$ python tryexcept.py
First -1
Second 123

When the first conversion fails - it
just drops into the except: clause and

the program continues.

When the second conversion
succeeds - it just skips the except:
clause and the program continues.

try / except astr = 'Bob'

astr = 'Bob'
try:
 print 'Hello'
 istr = int(astr)
 print 'There'
except:
 istr = -1

print 'Done', istr

print 'Hello'

print 'There'

istr = int(astr)

print 'Done', istr

istr = -1

Safety net

Sample try / except

$ python trynum.py
Enter a number:42
Nice work
$ python trynum.py
Enter a number:fourtytwo
Not a number
$

rawstr = raw_input('Enter a number:')

try:
 ival = int(rawstr)
except:
 ival = -1

if ival > 0 :
 print 'Nice work'
else:
 print 'Not a number'

Exercise

Rewrite your pay computation to give the employee
1.5 times the hourly rate for hours worked above 40
hours.

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

475 = 40 * 10 + 5 * 15

Exercise

Rewrite your pay program using try and except so
that your program handles non-numeric input
gracefully.

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Summary

• Comparison operators == <=
>= > < !=

• Logical operators: and or not

• Indentation

• One Way Decisions

• Two way Decisions if : and else :

• Nested Decisions

• Multiway decisions using elif

• Try / Except to compensate for
errors

• Short circuit evaluations

