Conditional Execution

Chapter 3

Python for Informatics: Exploring Information

www.py4inf.com

QpPEN.MIchigan

Unless otherwise noted, the content of this course material is licensed under a Creative

Commons Attribution 3.0 License.

http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles R. Severance

UNIVERSITY OF MICHIGAN

b

8 sk

b~ INTOrmation
]

(MO

Conditional Steps

Program:

print ‘Smaller x =15 Output:
if x < 10:
print ‘Smaller’ > Smaller
Finis

if x > 20:
1y 1 M ! M]
print ‘Bigger print Bigger

print 'Finis’

print ‘Finis’

Comparison Operators

® Boolean expressions ask a .
question and produce a Yes or Python Meaning
No result which we use to < Less than
control program flow <= Less than or Equal
Se[IETRVe)

Boolean. expressions using Greater than or Equal
comparison operators evaluate

to - True / False - Yes / No

Greater than

Not equal

Comparison operators

variables but the
variables Remember: “=" is used for assignment.

http://en.wikipedia.org/wiki/George Boole

x=15

S Comparison
Operators

print 'Equals 5'

if x> 4:

print 'Greater than 4'
£ >= 5 - Equals 5
Greater than 4

print 'Greater than or Equal 5'
Greater than or Equal 5

Less than or Equal 5
ify <= - Not equal 6

print 'Less than or Equal 5'
if x!=6:
print 'Not equal 6’

x=5
print 'Before 5'
if x==

print 'Is 5'

print 'Is Still 5° Before 5 print 'ls 5
print 'Third 5' \ Is 5
Is Seill 5 print ‘Still 5°
print 'Afterwards 5' Third 5

Afterwards 5
print 'Before 6' Before 6

if x ==6: /Afterwards 6
print 'Is 6'

print 'Is Still 6'
print 'Third 6'

print "Third 5'

One-Way Decisions

print 'Afterwards 6'

Indentation

Increase indent indent after an if statement or for statement (after :)

Maintain indent to indicate the scope of the block (which lines are
affected by the if/for)

Reduce indent to back to the level of the if statement or for statement
to indicate the end of the block

Blank lines are ignored - they do not affect indentation

Comments on a line by themselves are ignored w.r.t. indentation

® Most text editors can turn into spaces - make sure to enable this
feature

® NotePad++: Settings -> Preferences -> Language Menu/ [ab Settings

® TextWrangler:TextWrangler -> Preferences -> Editor Defaults

® Python cares a *lot™ about how far line is . If you mix
and spaces, you may get " even if everything looks
fine

Please do this now while you are thinking about it so we can all stay sane...

e N TextWrangler Preferences

These settings are used for new documents, and for documents without saved state.

Application
Documents & Drawer
Editing: General
Editing: Keyboard

Auto-indent
__| Balance while typing

__ Smart quotes

| Soft wrap text
Wrap to:
() Page guide

This will save you

Editor Defaul*- Wi i
™ Auto-expand tabs QWindow width much unnecessary
File Search __ Show invisibles - o
FTP Settings Width: 80
Languages Show spaces Pal n .
Menus __| Check spelling as you type
Text Colors X
Text Encodings @ Syntax coloring
Text Files
Text Printing Default font: Monaco-12, 4 spaces per tab s Set...
Text Search
Text Status Display
Windows
Print Backup/Auto-Completion MISC.
General Editing New Document/Default Directory File Association Language Menu/Tab Settings
Language Menu Tab Settings
Make language menu compact Defal] PN
Available items Disabled items normal
actionscript
Normal Text -~ ada
PHP asm
C asp
C++ autoit
C# bash
Objective-C batch
Java ¢
Resource file caml
HTML cmake v
XML
Makefile
;:ig}fl Tabsize: 4
MS INI file Replace by space
MS-NOS Shile b

increase / maintain after if or for
decrease to indicate end of block
blank lines and comment lines ignored

x=5
if x>2:
H# comments

x=5

if x >2:
print '‘Bigger than 2'
print 'Still bigger'

print 'Done with 2’ print ‘Bigger than 2

don’t matter
print 'Still bigger'

for i in range(5) : # but can confuse you

print i
ifi>2:

print 'Bigger than 2'
print 'Done with i, i

print 'Done with 2’
if you don’t line
them up

—
—
—
—>
-
—
—
—
—
<

*th ot |] e

Mental begin/end squares

ifx>2:
H# comments

print '‘Bigger than 2'
don’t matter
print 'Still bigger'

but can confuse you

print 'Done with 2

If you don't line
them up

Nested
Decisions
X =42
if x> 1:
print 'More than one'

if x < 100 :
print 'Less than 100’

print 'All done'

print 'More than one'

print 'Less than 100’

<

A 4

print 'All Done'

Nested
Decisions
X =42

if x> 1:
print 'More than one'

if x < 100 :
print 'Less than 100’

print 'All done'

print 'More than one'

print 'Less than 100’

<

A 4

print 'All Done'

Nested
Decisions
X =42

ifx>1:
print 'More than one'
if x < 100 :
print 'Less than 100’

print 'All done'

print 'More than one'

print 'Less than 100’

<

A 7

print 'All Done'

Two Way
Decisions

® Sometimes we want to
do one thing if a logical
expression is true and
something else if the
expression is false

It is like a fork in the
road - we must choose
one or the other path
but not both

print 'Not bigger'

print 'Bigger'

>

|

print 'All Done'

Two-way
using else :

if x>2:

print 'Bigger’
else :

print 'Smaller’

print 'All done’

print 'Smaller’

print 'Bigger'

>

|

print 'All Done'

Two-way
using else :

ifx>72:

print 'Bigger’
else :

print 'Smaller’

print 'All done’

print 'Smaller’

print 'Bigger'

> g

|

print 'All Done'

Multi-way

yes
. print 'Small’
ifx<2:

. ' ' no
print ‘Small

elif x < 10: Y v
C . \ print 'Medium
print ‘Medium ~

else :
print LARGE print 'LARGE'

print 'All done’

l«

print 'All Done'

Multi-way

ifx <2:

print 'Small’
elif x < 10:

print 'Medium’
else :

print 'LARGE'
print 'All done'

g yes

no

o
no

print 'LARGE'

print ‘Small’

print 'Medium'

l«

print 'All Done'

Multi-way

if x <2:

print 'Small’
elif x < 10:

print 'Medium’
else :

print 'LARGE'
print 'All done'

e yes

no

o
no

print 'LARGE'

print ‘Small’

print 'Medium'

l«

print 'All Done'

Multi-way

if x <2:

print 'Small’
elif x < 10:

print 'Medium’
else :

print 'LARGE'
print 'All done'

e yes

no

o
no

print 'LARGE'

print ‘Small’

print 'Medium'

l«

print 'All Done'

Multi-way

No Else
X =25
if x <2:
print 'Small’
elif x < 10:

print 'Medium’

print 'All done’

if x <2:

print 'Small’
elif x < 10 :

print 'Medium’
elif x <20 :

print 'Big’
elif x< 40 :

print 'Large’
elif x < 100:

print 'Huge'
else :

print 'Ginormous'

Multi-way Puzzles

Which will never print?

if x <2:

print 'Below 2'
elif x >=2:

print "Two or more'
else :

print 'Something else'

if x <2:
print 'Below 2’
elif x <20 :
print 'Below 20
elif x < 10:
print 'Below |0’
else :
print 'Something else'

The try / except Structure

® You surround a dangerous section of code with try and except.
® [f the code in the try works - the except is skipped

® If the code in the try fails - it jumps to the except section

$ cat notry.py
astr = 'Hello Bob' $ python notry.py
istr = int(astr) Traceback (most recent call last):

Generic

Software Com puter

Input

: Central
Devices

Processing
Unit

Secondary

T % G| Memory

Output
Devices

$ cat tryexcept.py
astr = 'Hello Bob'
try:

except:
istr = -1

$ python tryexcept.py
First -1
Second 123

print 'First’, istr

astr = '123'
try:

istr = int(astr) When the second conversion

except: succeeds - it just skips the except:
istr = -1 clause and the program continues.

print 'Second’, istr <€—

try / except

astr = 'Bob’

try:
print 'Hello'
istr = int(astr)
print 'There'

except:

print 'Done’, istr

astr = 'Bob’

N

print 'Hello'

v

istr = int(astr)

v

print 'There'

print 'Done’, istr

istr = -1

Safety net

Sample try / except

rawstr = raw_input('Enter a number:’)

try:
ival = int(rawstr)
except:

$ python trynum.py

Enter a number:42

Nice work

$ python trynum.py

i£ival > 0 - Enter a number:fourtytwo
Not a number

$

print 'Nice work’
else:
print 'Not a number'

Exercise

Rewrite your pay computation to give the employee
|.5 times the hourly rate for hours worked above 40
hours.

Enter Hours: 45
Enter Rate: |10
Pay: 475.0

475=40* 10+ 5% |5

Exercise

Rewrite your pay program using try and except so
that your program handles non-numeric input
gracefully.

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Summary

Comparison operators == <=
>=>< |=

Logical operators: and or not
Indentation

One Way Decisions

Two way Decisions if : and else :
Nested Decisions
Multiway decisions using elif

Try / Except to compensate for
errors

Short circuit evaluations

