
Functions
Chapter 4

Python for Informatics: Exploring Information
www.pythonlearn.com

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles R. Severance

Stored (and reused) Steps

Output:

Hello
Fun
Zip
Hello
Fun

Program:

def hello():
 print 'Hello'
 print 'Fun'

hello()
print 'Zip'
hello()

def

 print 'Hello'
print 'Fun'

hello()

print “Zip”

We call these reusable pieces of code “functions”.

hello():

hello()

Python Functions

• There are two kinds of functions in Python.

• Built-in functions that are provided as part of Python - raw_input(),
type(), float(), int() ...

• Functions that we define ourselves and then use

• We treat the of the built-in function names as "new" reserved words
(i.e. we avoid them as variable names)

Function Definition

• In Python a function is some reusable code that takes arguments(s) as
input does some computation and then returns a result or results

• We define a function using the def reserved word

• We call/invoke the function by using the function name, parenthesis
and arguments in an expression

>>> big = max('Hello world')
>>> print big
w
>>> tiny = min('Hello world')
>>> print tiny

>>>

big = max('Hello world')

Argument

'w'

Result

Assignment

Max Function
>>> big = max('Hello world')
>>> print big
'w'

max()
function

“Hello world”
(a string)

‘w’
(a string)

A function is some stored
code that we use. A

function takes some input
and produces an output.

Guido wrote this code

Max Function
>>> big = max('Hello world')
>>> print big
'w'

def max(inp):
 blah
 blah
 for x in y:
 blah
 blah

“Hello world”
(a string)

‘w’
(a string)

A function is some stored
code that we use. A

function takes some input
and produces an output.

Guido wrote this code

Type Conversions

• When you put an integer and
floating point in an expression
the integer is implicitly
converted to a float

• You can control this with the
built in functions int() and float()

>>> print float(99) / 100
0.99
>>> i = 42
>>> type(i)
<type 'int'>
>>> f = float(i)
>>> print f
42.0
>>> type(f)
<type 'float'>
>>> print 1 + 2 * float(3) / 4 - 5
-2.5
>>>

String
Conversions

• You can also use int() and
float() to convert between
strings and integers

• You will get an error if the
string does not contain
numeric characters

>>> sval = '123'
>>> type(sval)
<type 'str'>
>>> print sval + 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int'
>>> ival = int(sval)
>>> type(ival)
<type 'int'>
>>> print ival + 1
124
>>> nsv = 'hello bob'
>>> niv = int(nsv)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int()

Building our Own Functions

• We create a new function using the def keyword followed by optional
parameters in parenthesis.

• We indent the body of the function

• This defines the function but does not execute the body of the function

def print_lyrics():
 print "I'm a lumberjack, and I'm okay."
 print 'I sleep all night and I work all day.'

x = 5
print 'Hello'

def print_lyrics():
 print "I'm a lumberjack, and I'm okay."
 print 'I sleep all night and I work all day.'

print 'Yo'
x = x + 2
print x

Hello
Yo
7

 print "I'm a lumberjack, and I'm okay."
 print 'I sleep all night and I work all day.'print_lyrics():

Definitions and Uses

• Once we have defined a function, we can call (or invoke) it as many
times as we like

• This is the store and reuse pattern

x = 5
print 'Hello'

def print_lyrics():
 print "I'm a lumberjack, and I'm okay."
 print 'I sleep all night and I work all day.'

print 'Yo'
print_lyrics()
x = x + 2
print x

Hello
Yo
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
7

Arguments

• An argument is a value we pass into the function as its input when we
call the function

• We use arguments so we can direct the function to do different kinds
of work when we call it at different times

• We put the arguments in parenthesis after the name of the function

big = max('Hello world')

Argument

Parameters

• A parameter is a variable
which we use in the
function definition that is a
“handle” that allows the
code in the function to
access the arguments for a
particular function
invocation.

>>> def greet(lang):
... if lang == 'es':
... print 'Hola'
... elif lang == 'fr':
... print 'Bonjour'
... else:
... print 'Hello'
...
>>> greet('en')
Hello
>>> greet('es')
Hola
>>> greet('fr')
Bonjour
>>>

Return Values

• Often a function will take its arguments, do some computation and
return a value to be used as the value of the function call in the calling
expression. The return keyword is used for this.

def greet():
 return "Hello"

print greet(), "Glenn"
print greet(), "Sally"

Hello Glenn
Hello Sally

Return Value

• A “fruitful” function is one
that produces a result (or
return value)

• The return statement ends
the function execution and
“sends back” the result of
the function

>>> def greet(lang):
... if lang == 'es':
... return 'Hola'
... elif lang == 'fr':
... return 'Bonjour'
... else:
... return 'Hello'
...
>>> print greet('en'),'Glenn'
Hello Glenn
>>> print greet('es'),'Sally'
Hola Sally
>>> print greet('fr'),'Michael'
Bonjour Michael
>>>

Arguments, Parameters, and Results

>>> big = max('Hello world')
>>> print big
'w'

def max(inp):
 blah
 blah
 for x in y:
 blah
 blah
 return ‘w’

“Hello world” ‘w’

Argument

Parameter

Result

Multiple Parameters / Arguments

• We can define more than
one parameter in the
function definition

• We simply add more
arguments when we call the
function

• We match the number and
order of arguments and
parameters

def addtwo(a, b):
 added = a + b
 return added

x = addtwo(3, 5)
print x

Void (non-fruitful) Functions

• When a function does not return a value, we call it a "void" function

• Functions that return values are "fruitful" functions

• Void functions are "not fruitful"

To function or not to function...

• Organize your code into “paragraphs” - capture a complete thought
and “name it”

• Don’t repeat yourself - make it work once and then reuse it

• If something gets too long or complex, break up logical chunks and put
those chunks in functions

• Make a library of common stuff that you do over and over - perhaps
share this with your friends...

Summary

• Functions

• Built-In Functions

• Type conversion (int, float)

• Math functions (sin, sqrt)

• Try / except (again)

• Arguments

• Parameters

• Results (Fruitful functions)

• Void (non-fruitful) functions

• Why use functions?

Exercise

Rewrite your pay computation with time-and-a-half
for overtime and create a function called computepay
which takes two parameters (hours and rate).

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

475 = 40 * 10 + 5 * 15

