
Strings
Chapter 6

Python for Informatics: Exploring Information
www.pythonlearn.com

Unless otherwise noted, the content of this course material is licensed under a Creative 
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

String Data Type
• A string is a sequence of 

characters

• A string literal uses quotes  ‘Hello’ 
or “Hello”

• For strings, + means “concatenate”

• When a string contains numbers, it 
is still a string

• We can convert numbers in a 
string into a number using int()

>>> str1 = "Hello"
>>> str2 = 'there'
>>> bob = str1 + str2
>>> print bob
Hellothere
>>> str3 = '123'
>>> str3 = str3 + 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' 
and 'int' objects
>>> x = int(str3) + 1
>>> print x
124
>>> 

Reading and 
Converting

• We prefer to read data in 
using strings and then parse 
and convert the data as we 
need

• This gives us more control 
over error situations and/
or bad user input

• Raw input numbers must 
be converted from strings

>>> name = raw_input('Enter:')
Enter:Chuck
>>> print name
Chuck
>>> apple = raw_input('Enter:')
Enter:100
>>> x = apple - 10
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand 
type(s) for -: 'str' and 'int'
>>> x = int(apple) - 10
>>> print x
90



Looking Inside Strings

• We can get at any single character in 
a string using an index specified in 
square brackets

• The index value must be an integer 
and starts at zero

• The index value can be an 
expression that is computed

>>> fruit = 'banana'
>>> letter = fruit[1]
>>> print letter
a
>>> n = 3
>>> w = fruit[n - 1]
>>> print w
n

0

b

1

a

2

n

3

a

4

n

5

a

A Character Too Far

• You will get a python error if you 
attempt to index beyond the end 
of a string.

• So be careful when constructing 
index values and slices

>>> zot = 'abc'
>>> print zot[5]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: string index out of 
range
>>> 

Strings Have Length

• There is a built-in function len that 
gives us the length of a string >>> fruit = 'banana'

>>> print len(fruit)
6

0

b

1

a

2

n

3

a

4

n

5

a

Len Function
>>> fruit = 'banana'
>>> x = len(fruit)
>>> print x
6

len()
function

'banana' 
(a string)

6
(a number)

A function is some stored 
code that we use. A 

function takes some input 
and produces an output.

Guido wrote this code



Len Function

def len(inp):
   blah
   blah
   for x in y:
     blah
     blah

A function is some stored 
code that we use. A 

function takes some input 
and produces an output.

>>> fruit = 'banana'
>>> x = len(fruit)
>>> print x
6

'banana' 
(a string)

6
(a number)

Looping Through Strings

• Using a while statement and 
an iteration variable, and the 
len function, we can construct 
a loop to look at each of the 
letters in a string individually

fruit = 'banana'
index = 0
while index < len(fruit) :
    letter = fruit[index]
    print index, letter
    index = index + 1

0 b
1 a
2 n
3 a
4 n
5 a

Looping Through Strings

• A definite loop using a for 
statement is much more 
elegant

• The iteration variable is 
completely taken care of by 
the for loop

b
a
n
a
n
a

fruit = 'banana'
for letter in fruit :
    print letter

Looping Through Strings

• A definite loop using a for 
statement is much more 
elegant

• The iteration variable is 
completely taken care of by 
the for loop

index = 0
while index < len(fruit) :
    letter = fruit[index]
    print letter
    index = index + 1

fruit = 'banana'
for letter in fruit :
    print letter

b
a
n
a
n
a



Looping and Counting

• This is a simple loop that 
loops through each letter in a 
string and counts the number 
of times the loop encounters 
the 'a' character.

word = 'banana'
count = 0
for letter in word :
    if letter == 'a' :
        count = count + 1
print count

Looking deeper into in

• The iteration variable 
“iterates” though the 
sequence (ordered set)

• The block (body) of code is 
executed once for each 
value in the sequence

• The iteration variable 
moves through all of the 
values in the sequence

for letter in 'banana' :
      print letter

Iteration variable
Six-character string

Done?
Yes

print letter

Advance letter

for letter in 'banana' :
    print letter

b a n a n a

letter

The iteration variable “iterates” though the string and the block 
(body) of code is executed once for each value in the sequence

• We can also look at any 
continuous section of a string 
using a colon operator

• The second number is one 
beyond the end of the slice - 
“up to but not including”

• If the second number is 
beyond the end of the string, 
it stops at the end Slicing Strings

>>> s = 'Monty Python'
>>> print s[0:4]
Mont
>>> print s[6:7]
P
>>> print s[6:20]
Python

0

M

1

o

2

n

3

t

4

y

5

 

6

P

7

y

8

t

9

h

10

o

11

n



• If we leave off the first 
number or the last number of 
the slice, it is assumed to be 
the beginning or end of the 
string respectively

Slicing Strings

>>> s = 'Monty Python'
>>> print s[:2]
Mo
>>> print s[8:]
thon
>>> print s[:]
Monty Python

0

M

1

o

2

n

3

t

4

y

5

 

6

P

7

y

8

t

9

h

10

o

11

n String Concatenation

• When the + operator is 
applied to strings, it 
means "concatenation"

>>> a = 'Hello'
>>> b = a + 'There'
>>> print b
HelloThere
>>> c = a + ' ' + 'There'
>>> print c
Hello There
>>> 

Using in as an Operator

• The in keyword can also be 
used to check to see if one 
string is "in" another string

• The in expression is a logical 
expression and returns True 
or False and can be used in 
an if statement

>>> fruit = 'banana'
>>> 'n' in fruit
True
>>> 'm' in fruit
False
>>> 'nan' in fruit
True
>>> if 'a' in fruit : 
...     print 'Found it!'
... 
Found it!
>>> 

String Comparison

if word == 'banana':
    print  'All right, bananas.'

if word < 'banana':
    print 'Your word,' + word + ', comes before banana.'
elif word > 'banana':
    print 'Your word,' + word + ', comes after banana.'
else:
    print 'All right, bananas.'



String Library
• Python has a number of string 

functions which are in the string 
library

• These functions are already built into 
every string - we invoke them by 
appending the function to the string 
variable

• These functions do not modify the 
original string, instead they return a 
new string that has been altered

>>> greet = 'Hello Bob'
>>> zap = greet.lower()
>>> print zap
hello bob
>>> print greet
Hello Bob
>>> print 'Hi There'.lower()
hi there
>>>

http://docs.python.org/lib/string-methods.html

>>> stuff = 'Hello world'
>>> type(stuff)
<type 'str'>
>>> dir(stuff)
['capitalize', 'center', 'count', 'decode', 'encode', 
'endswith', 'expandtabs', 'find', 'format', 'index', 
'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 
'partition', 'replace', 'rfind', 'rindex', 'rjust', 
'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 
'startswith', 'strip', 'swapcase', 'title', 'translate', 
'upper', 'zfill']

http://docs.python.org/lib/string-methods.html

str.capitalize()

str.center(width[, fillchar])

str.endswith(suffix[, start[, end]])

str.find(sub[, start[, end]])

str.lstrip([chars])

str.replace(old, new[, count])

str.lower()

str.rstrip([chars])

str.strip([chars])

str.upper()

http://docs.python.org/lib/string-methods.html

String Library



Searching a String

• We use the find() function 
to search for a substring 
within another string

• find() finds the first 
occurance of the substring

• If the substring is not found, 
find() returns -1

• Remember that string 
position starts at zero

>>> fruit = 'banana'
>>> pos = fruit.find('na')
>>> print pos
2
>>> aa = fruit.find('z')
>>> print aa
-1

0

b

1

a

2

n

3

a

4

n

5

a

Making everything UPPER CASE

• You can make a copy of a string in 
lower case or upper case

• Often when we are searching for a 
string using find() - we first convert 
the string to lower case so we can 
search a string regardless of case

>>> greet = 'Hello Bob'
>>> nnn = greet.upper()
>>> print nnn
HELLO BOB
>>> www = greet.lower()
>>> print www
hello bob
>>> 

Search and Replace

• The replace() function 
is like a “search and 
replace” operation in 
a word processor

• It replaces all 
occurrences of the 
search string with the 
replacement string

>>> greet = 'Hello Bob'
>>> nstr = greet.replace('Bob','Jane')
>>> print nstr
Hello Jane
>>> greet = 'Hello Bob'
>>> nstr = greet.replace('o','X')
>>> print nstr
HellX BXb
>>> 

Stripping Whitespace

• Sometimes we want to take a 
string and remove whitespace 
at the beginning and/or end

• lstrip() and rstrip() to the left 
and right only

• strip() Removes both begin 
and ending whitespace

>>> greet = '   Hello Bob  '
>>> greet.lstrip()
'Hello Bob  '
>>> greet.rstrip()
'   Hello Bob'
>>> greet.strip()
'Hello Bob'
>>> 



>>> line = 'Please have a nice day'
>>> line.startswith('Please')
True
>>> line.startswith('p')
False

Prefixes

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan  5 09:14:16 2008'
>>> atpos = data.find('@')
>>> print atpos
21
>>> sppos = data.find(' ',atpos)
>>> print sppos
31
>>> host = data[atpos+1 : sppos]
>>> print host
uct.ac.za

From stephen.marquard@uct.ac.za Sat Jan  5 09:14:16 2008

21 31

Summary
• String type

• Read/Convert

• Indexing strings []

• Slicing strings [2:4]

• Looping through strings with for 
and while

• Concatenating strings with +

• in as an operator

• String comparison

• String library

• Searching in strings

• Replacing text

• Stripping white space


