open.Michigan

Python Lists

Chapter 8

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

Python for Informatics: Exploring Information

www.pythonlearn.com UNIVERSITY OF MICHIGAN {5 $0cl
o it o

A List is a kind of Collection What is not a “Collection”

® Most of our variables have one value in them - when we put a new

® A collection allows us to put many values in a single “variable” ) . ) ]
value in the variable - the old value is over written

® A collection is nice because we can carry all many values around in
one convenient package. $ python
Python 2.5.2 (r252:6091 1, Feb 22 2008, 07:57:53)

friends = [ 'Joseph', 'Glenn', 'Sally' ] [:igi 102I (Apple Computer, Inc. build 5363)] on darwin
>>>x =4

. >>> print
carryon = [ 'socks', 'shirt', 'perfume' ] A




List Constants

>>> print [1,24,76]

[1,24,76]

>>> print ['red', 'yellow', 'blue']
[red’, 'yellow', 'blue']

>>> print ['red', 24, 98.6]

['red', 24, 98.599999999999994]
>>> print [ |, [5, 6],7]
[1,[5,6],7]

>>> print []

a

® List constants are surrounded by
square brakets and the elements
in the list are separated by
commas.

® A list element can be any Python
object - even another list

® A list can be empty

We already use lists!

5

foriin[5,4,3,2,1]: 4

print i 3

2

print 'Blastoff!' I
Blastoff!

Lists and definite loops - best pals

friends = [Joseph', 'Glenn', 'Sally']

for friend in friends :
Happy New Year: Joseph
print 'Happy New Year:', friend — PPY Josep

\ Happy New Year: Glenn
Happy New Year: Sally

. L} 'l
print 'Done! Done!

[z

V@

m Looking Inside Lists

®\)

® Just like strings, we can get at any single element in a list using an index
specified in square brackets

>>> friends = [ 'Joseph', 'Glenn', 'Sally' ]
>>> print friends[|]

Glenn
>>>

|Joseph | Glenn | Sally |
0 I 2




Lists are Mutable

e Strings are "immutable” - we
cannot change the contents of
a string - we must make a
new string to make any
change

® Lists are "mutable" - we can
change an element of a list
using the index operator

>>> fruit = 'Banana’

>>> fruit[0] = 'b’

Traceback

TypeError: 'str' object does not
support item assignment
>>> x = fruit.lower()

>>> print X

bannna

>>> |otto = [2, 14, 26,41, 63]
>>> print lotto

[2, 14,26,41,63]

>>> |otto[2] = 28

>>> print lotto

[2, 14,28,41,63]

How Long is a List?

® The len() function takes a list as a
parameter and returns the
number of elements in the list

® Actually len() tells us the number
of elements of any set or sequence
(i.e. such as a string...)

>>> greet = 'Hello Bob'
>>> print len(greet)

9

>>>x=11,2,"joe', 99]
>>> print len(x)

4

>>>

Using the range function

® The range function returns a list
of numbers that range from zero
to one less than the parameter

® We can construct an index loop
using for and an integer iterator

>>> print range(4)

[0, 1,2,3]

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print len(friends)

3

>>> print range(len(friends))

[0, 1,2]

>>>

A tale of two loops...

friends = [Joseph', 'Glenn', 'Sally']

for friend in friends :
print 'Happy New Year:', friend

for i in range(len(friends)) :
friend = friends[i]
print 'Happy New Year:', friend

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print len(friends)

3

>>> print range(len(friends))

[0, 1,2]

>>>

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally




Concatenating lists using +

>>>3 = [|,2,3]
>>> b = [4,5, 6]
® We can create a new list by adding zz: C:n:: b
two exsiting lists together 2 P3 4.5.6]
>>> printa
[1,2,3]

Lists can be

>>>t=[9,41, 12,3,74, 15]
>>> ¢[1:3]

[41,12]

>>> t[:4]

[9,41,12,3]

>>> t[3:]

[3,74, 15]

>>> t[]

[9,41,12,3,74,15]

sliced using :

Remember: Just like in
strings, the second number
is "up to but not
including"

List Methods

>>> x = list()

>>> type(x)

<type 'list'>

>>> dir(x)

['append', 'count’, 'extend', 'index’, 'insert’, 'pop’, 'remove’, 'reverse', 'sort']
>>>

http://docs.python.org/tutorial/datastructures.html

Building a list from scratch

We can create an empty
list and then add elements
using the append method

The list stays in order and
new elements are added at
the end of the list

>>> stuff = list()

>>> stuff.append('book’)
>>> stuff.append(99)

>>> print stuff

['book’, 99]

>>> stuff.append('cookie’)
>>> print stuff

['book’, 99, 'cookie']




Is Something in a List?

® Python provides two
operators that let you
check if an item is in a list

® These are logical
operators that return True
or False

® They do not modify the
list

>>>some = [1,9,21, 10, 16]
>>> 9 jn some

True

>>> |5 in some

False

>>> 20 not in some

True

>>>

A List is an Ordered Sequence

® A list can hold many items
and keeps those items in the
order until we do something
to change the order

® A list can be sorted (i.e.
change its order)

® The sort method (unlike in
strings) means "sort yourself"

>>> friends = [ 'Joseph', 'Glenn', 'Sally' ]

>>> friends.sort()

>>> print friends
['Glenn', 'Joseph’, 'Sally']
>>> print friends[ ]
Joseph

>>>

Built in Functions and Lists

® There are a number of
functions built into Python
that take lists as
parameters

® Remember the loops we
built? These are much
simpler

http://docs.python.org/lib/built-in-funcs.html

>>> nums = [3,41,12,9,74, 15]
>>> print len(nums)

6

>>> print max(nums)

74

>>> print min(nums)

3

>>> print sum(nums)

154

>>> print sum(nums)/len(nums)
25

total =0
count =0
while True :
inp = raw_input('Enter a number:")
if inp == 'done’ : break
value = float(inp)
total = total + value
count = count + |

average = total / count
print 'Average:', average

Averaging
with a list

Enter a number: 3

Enter a number: 9

Enter a number: 5

Enter a number: done
Average: 5.66666666667

numlist = list()
while True :

if inp == 'done’ : break
value = float(inp)
numlist.append(value)

print 'Average:', average

inp = raw_input('Enter a number:")

average = sum(numlist) / len(numlist)




Best Friends: Strings and Lists >>> line = 'A lot of spaces’

>>> etc = line.split()
>>> print etc

A , >>> print stuff ['A', 'lot', 'of', 'spaces']
>>> abc = 'With three words [’Witll:' 'three’, 'words'] >>>
>>> stuff = abc.spllt() >>> for w in stuff : >>> line = 'first;second;third' When you do not specify a

>>> print stuff print w 222 thing = line.split() delimiter, multiple spaces are
" ) 1 v >>> Print thlng ’

['With . three', 'words’] ['first;second;third'] treated like “one” delimiter.
>>> P”ntlen@tUﬁ) With >>> print len (thing)

. three 1 . . . You can specify what delimiter
>>> print stuff[0] d >>> thing = line.split(';') h t in the splitti
With words >>> print thing character to use in the splitting.

>>> ['first', 'second',6 'third']
>>> print len(thing)
3
Split breaks a string into parts produces a list of strings. We think of these as >>>
words. We can access a particular word or loop through all the words.
From stephen.marquard@uct.ac.za Sat Jan 5 ©09:14:16 2008 The Double Spllt Pattern

:hanl.d =.0F;En('$box-short.txt') Sat ® Sometimes we split a line one way and then grab one of the pieces of

or'lne |n’ and: . Fri the line and split that piece again

line = line.rstrip() Fri

if not line.startswith('F ) : conti .

if not line-startswith(From ‘) : continue Fri From stephen.marquard@uct.ac.za Sat Jan 5 ©9:14:16 2008
words = line.split()

print words[2]

words = line.split()

>>> line = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008' email = words[1] . . .
>>> words = line.split() pieces = email.split(@'") ['stephen.marquard', 'uct.ac.za']

>>> print words print pieces[1]
[>I;r>om , 'stephen.marquard@uct.ac.za', 'Sat', 'Jan’, '5', '09:14:1 6', '2008"] 'uct.ac.za'




The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac.za
email = words[ 1]
pieces = email.split(@')
print pieces[1]

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac.za
email = words[ 1]
pieces = email.split(@')
print pieces[1]

['stephen.marquard', 'uct.ac.za']

The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac.za
email = words[ 1]
pieces = email.split(@")
print pieces[1]

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

List Summary

® Concept of a collection ® List methods: append, remove
® Lists and definite loops ® Sorting lists
® Indexing and lookup ® Splitting strings into lists of
words
® List mutability
® Using split to parse strings
® Functions: len, min, max, sum
e Slicing lists




