
Python Lists
Chapter 8

Python for Informatics: Exploring Information
www.pythonlearn.com

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

A List is a kind of Collection

• A collection allows us to put many values in a single “variable”

• A collection is nice because we can carry all many values around in
one convenient package.

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

What is not a “Collection”

• Most of our variables have one value in them - when we put a new
value in the variable - the old value is over written

$ python
Python 2.5.2 (r252:60911, Feb 22 2008, 07:57:53)
[GCC 4.0.1 (Apple Computer, Inc. build 5363)] on darwin
>>> x = 2
>>> x = 4
>>> print x
4

List Constants

• List constants are surrounded by
square brakets and the elements
in the list are separated by
commas.

• A list element can be any Python
object - even another list

• A list can be empty

>>> print [1, 24, 76]
[1, 24, 76]
>>> print ['red', 'yellow', 'blue']
['red', 'yellow', 'blue']
>>> print ['red', 24, 98.6]
['red', 24, 98.599999999999994]
>>> print [1, [5, 6], 7]
[1, [5, 6], 7]
>>> print []
[]

We already use lists!

for i in [5, 4, 3, 2, 1] :
 print i

print 'Blastoff!'

5
4
3
2
1
Blastoff!

Lists and definite loops - best pals

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :
 print 'Happy New Year:', friend

print 'Done!'

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

Looking Inside Lists

• Just like strings, we can get at any single element in a list using an index
specified in square brackets

0
Joseph

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print friends[1]
Glenn
>>> 1

Glenn
2

Sally

Lists are Mutable

• Strings are "immutable" - we
cannot change the contents of
a string - we must make a
new string to make any
change

• Lists are "mutable" - we can
change an element of a list
using the index operator

>>> fruit = 'Banana'
>>> fruit[0] = 'b'
Traceback
TypeError: 'str' object does not
support item assignment
>>> x = fruit.lower()
>>> print x
bannna
>>> lotto = [2, 14, 26, 41, 63]
>>> print lotto
[2, 14, 26, 41, 63]
>>> lotto[2] = 28
>>> print lotto
[2, 14, 28, 41, 63]

How Long is a List?

• The len() function takes a list as a
parameter and returns the
number of elements in the list

• Actually len() tells us the number
of elements of any set or sequence
(i.e. such as a string...)

>>> greet = 'Hello Bob'
>>> print len(greet)
9
>>> x = [1, 2, 'joe', 99]
>>> print len(x)
4
>>>

Using the range function

• The range function returns a list
of numbers that range from zero
to one less than the parameter

• We can construct an index loop
using for and an integer iterator

>>> print range(4)
[0, 1, 2, 3]
>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print len(friends)
3
>>> print range(len(friends))
[0, 1, 2]
>>>

A tale of two loops...

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :
 print 'Happy New Year:', friend

for i in range(len(friends)) :
 friend = friends[i]
 print 'Happy New Year:', friend

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print len(friends)
3
>>> print range(len(friends))
[0, 1, 2]
>>>

Concatenating lists using +

• We can create a new list by adding
two exsiting lists together

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]
>>> print a
[1, 2, 3]

Lists can be sliced using :

>>> t = [9, 41, 12, 3, 74, 15]
>>> t[1:3]
[41,12]
>>> t[:4]
[9, 41, 12, 3]
>>> t[3:]
[3, 74, 15]
>>> t[:]
[9, 41, 12, 3, 74, 15]

Remember: Just like in
strings, the second number

is "up to but not
including"

List Methods

>>> x = list()
>>> type(x)
<type 'list'>
>>> dir(x)
['append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
>>>

http://docs.python.org/tutorial/datastructures.html

Building a list from scratch

• We can create an empty
list and then add elements
using the append method

• The list stays in order and
new elements are added at
the end of the list

>>> stuff = list()
>>> stuff.append('book')
>>> stuff.append(99)
>>> print stuff
['book', 99]
>>> stuff.append('cookie')
>>> print stuff
['book', 99, 'cookie']

Is Something in a List?

• Python provides two
operators that let you
check if an item is in a list

• These are logical
operators that return True
or False

• They do not modify the
list

>>> some = [1, 9, 21, 10, 16]
>>> 9 in some
True
>>> 15 in some
False
>>> 20 not in some
True
>>>

A List is an Ordered Sequence

• A list can hold many items
and keeps those items in the
order until we do something
to change the order

• A list can be sorted (i.e.
change its order)

• The sort method (unlike in
strings) means "sort yourself"

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> friends.sort()
>>> print friends
['Glenn', 'Joseph', 'Sally']
>>> print friends[1]
Joseph
>>>

Built in Functions and Lists

• There are a number of
functions built into Python
that take lists as
parameters

• Remember the loops we
built? These are much
simpler

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print len(nums)
6
>>> print max(nums)
74
>>> print min(nums)
3
>>> print sum(nums)
154
>>> print sum(nums)/len(nums)
25

http://docs.python.org/lib/built-in-funcs.html

Averaging
with a list

numlist = list()
while True :
 inp = raw_input('Enter a number: ')
 if inp == 'done' : break
 value = float(inp)
 numlist.append(value)

average = sum(numlist) / len(numlist)
print 'Average:', average

total = 0
count = 0
while True :
 inp = raw_input('Enter a number: ')
 if inp == 'done' : break
 value = float(inp)
 total = total + value
 count = count + 1

average = total / count
print 'Average:', average

Enter a number: 3
Enter a number: 9
Enter a number: 5
Enter a number: done
Average: 5.66666666667

Best Friends: Strings and Lists

>>> abc = 'With three words'
>>> stuff = abc.split()
>>> print stuff
['With', 'three', 'words']
>>> print len(stuff)
3
>>> print stuff[0]
With

>>> print stuff
['With', 'three', 'words']
>>> for w in stuff :
... print w
...
With
three
words
>>>

Split breaks a string into parts produces a list of strings. We think of these as
words. We can access a particular word or loop through all the words.

>>> line = 'A lot of spaces'
>>> etc = line.split()
>>> print etc
['A', 'lot', 'of', 'spaces']
>>>
>>> line = 'first;second;third'
>>> thing = line.split()
>>> print thing
['first;second;third']
>>> print len(thing)
1
>>> thing = line.split(';')
>>> print thing
['first', 'second', 'third']
>>> print len(thing)
3
>>>

When you do not specify a
delimiter, multiple spaces are
treated like “one” delimiter.

You can specify what delimiter
character to use in the splitting.

fhand = open('mbox-short.txt')
for line in fhand:
 line = line.rstrip()
 if not line.startswith('From ') : continue
 words = line.split()
 print words[2]

Sat
Fri
Fri
Fri
 ...

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> line = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
>>> words = line.split()
>>> print words
['From', 'stephen.marquard@uct.ac.za', 'Sat', 'Jan', '5', '09:14:16', '2008']
>>>

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

The Double Split Pattern

• Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]

stephen.marquard@uct.ac.za

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

The Double Split Pattern

• Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]

stephen.marquard@uct.ac.za

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

stephen.marquard uct.ac.za

The Double Split Pattern

• Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]

stephen.marquard@uct.ac.za

['stephen.marquard', 'uct.ac.za']'uct.ac.za'

The Double Split Pattern

• Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]

stephen.marquard@uct.ac.za

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

List Summary

• Concept of a collection

• Lists and definite loops

• Indexing and lookup

• List mutability

• Functions: len, min, max, sum

• Slicing lists

• List methods: append, remove

• Sorting lists

• Splitting strings into lists of
words

• Using split to parse strings

