Tuples

Chapter 10

Python for Informatics: Exploring Information

www.pythonlearn.com

QPpeN.Mmichigan

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

UNIVERSITY OF MICHIGAN L\ information
M BY

Tuples are like lists

® Tuples are another kind of sequence that function much like
a list - they have elements which are indexed starting at 0

>>> x = ('Glenn', 'Sally', 'Joseph')
>>> print x[2]

Joseph >>> for iter in y:
>>y=1(1,9, 2) A print iter
>>> print y

(r, 9, 2)

>>> print max(y)
9

NP

>>>

..but.. Tuples are "immutable"

® Unlike a list, once you create a tuple, you cannot alter its
contents - similar to a string

>>> x = [9, 8, 7] >>> Yy = 'ABC' >>> z = (5, 4, 3)
>>> x[2] = 6 >>> yl[2] = 'D' >>> z[2] = 0
>>> print x Tracebacl.c: Traceback:
[9, 8, 6] 'str! object.does 'tuple' object does
>>> not_support item not support item
assignment assignment
>>> >>>

Things not to do with tuples

>>> x = (3, 2, 1)

>>> x.sort()

Traceback:

AttributeError: 'tuple' object has no attribute 'sort'
>>> x.append (5)

Traceback:

AttributeError: 'tuple' object has no attribute 'append'
>>> x.reverse()

Traceback:

AttributeError: 'tuple' object has no attribute 'reverse'
>>>

A Tale of Two Sequences

>>> 1 = list()

>>> dir (1)

['append', 'count', 'extend', 'index', 'insert',
PP

'pop', 'remove', 'reverse', 'sort']

>>> t = tuple()
>>> dir(t)
['count', 'index']

Tuples are more efficient

® Since Python does not have to build tuple structures to be
modifiable, they are simpler and more efficient in terms of
memory use and performance than lists

® Soin our program when we are making "temporary
variables" we prefer tuples over lists.

Tuples and Assignment

® We can also put a tuple on the left hand side of an
assignment statement

® We can even omit the parenthesis

>>> (x, y) = (4, 'fred')
>>> print y

fred

>>> a, b = (99, 98)
>>> print a

99

Tuples and

o _ s> 4 = dict() Tuples are Comparable
Dictionaries >>> d['csev'] = 2
>>> d['cwen'] = 4 ® The comparison operators work with tuples and other
>>> for (k,v) in d.items(): sequences If the first item is equal, Python goes on to the
print k, v next element, and so on, until it finds elements that differ.
® The items() method in csev 2 >>> (0, 1, 2) < (5, 1, 2)
dictionaries returns a cwen 4 True
list of (key, value) tuples >>> tups = d.items () ;>> (0, 1, 2000000) < (0, 3, 4)
. rue
>>> print tups >>> ('Jones', 'Sally') < ('Jones', 'Fred')
[(‘csev', 2), ('cwen', 4)] False
>>> ('Jones', 'Sally') > ('Adams', 'Sam')
True

>> d = {'a':10, 'b':1, 'c':22}

Sorting Lists of Tuples Using
sorted() T?a?;ligr)nf()(-c', 22), ('b', 1)]

® We can take advantage of the ability to sort a list of tuples to >>> t = sorted(d.items())
get a sorted version of a dictionary Wi do thi >>> t
. - : . e can do this even [("a', 10), ('b', 1), ('c', 22)]
® First we sort the dictionary by the key using the items() more directly using the
method built-in function sorted >>> for k, v in sorted(d.items()):
>>>d = {'a':10, 'b':1, 'c':22} that takes a sequence as print k, v
>>> t = d.items() a parameter and returns e
>>> t ted a 10
[(‘a', 10), ('e', 22), ('b', 1)] a sorted sequence b1
>>> t.sort()
>>> t c 22

[(‘a', 10), ('b', 1), ('ec', 22)]

Sort by values instead of key

>>> c¢c = {'a':10, 'b':1, 'c':22}

>>> tmp = list()

>>> for k, v in c.items()
tmp.append((v, k))

® |f we could
construct a list of
tuples of the form
(value, key) we

could sort by value >>> print tmp
[(10, 'a'), (22, 'e'), (1, 'b")]
® We do this with a >>> tmp.sort (reverse=True)
for loop that >>> print tmp

creates a list of [(22, 'e'), (10, 'a'), (1, 'BY]

tuples

fhand = open('romeo.txt')
counts = dict()
for line in fhand:
words = line.split()
for word in words:
counts[word] = counts.get(word, 0) + 1

1st = 1list()
for key, val in counts.items():
lst.append((val, key))

lst.sort (reverse=True)

for val, key in 1st[:10]

print key, val The top 10 most

common words.

Even Shorter Version (adv)

>>> c = {'a':10, 'b':1, 'c':22}
>>> print sorted([(v,k) for k,v in c.items()])

[(1, 'v"), (10, 'a'), (22, 'c")]

List comprehension creates a dynamic list. In this case, we make
a list of reversed tuples and then sort it.

http://wiki.python.org/moin/HowTo/Sorting

Summary
® Tuple syntax ® Using sorted()
® Mutability (not) ® Sorting dictionaries by either
key or value
® Comparability
® Sortable

® Tuples in assignment statements

Tuples in functions (adv)

