
Tuples
Chapter 10

Python for Informatics: Exploring Information
www.pythonlearn.com

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

Tuples are like lists

• Tuples are another kind of sequence that function much like
a list - they have elements which are indexed starting at 0

>>> x = ('Glenn', 'Sally', 'Joseph')
>>> print x[2]
Joseph
>>> y = (1, 9, 2)
>>> print y
(1, 9, 2)
>>> print max(y)
9

>>> for iter in y:
... print iter
...
1
9
2
>>>

..but.. Tuples are "immutable"

• Unlike a list, once you create a tuple, you cannot alter its
contents - similar to a string

>>> x = [9, 8, 7]
>>> x[2] = 6
>>> print x
[9, 8, 6]
>>>

>>> y = 'ABC'
>>> y[2] = 'D'
Traceback:
'str' object does
not support item
assignment
>>>

>>> z = (5, 4, 3)
>>> z[2] = 0
Traceback:
'tuple' object does
not support item
assignment
>>>

Things not to do with tuples
>>> x = (3, 2, 1)
>>> x.sort()
Traceback:
AttributeError: 'tuple' object has no attribute 'sort'
>>> x.append(5)
Traceback:
AttributeError: 'tuple' object has no attribute 'append'
>>> x.reverse()
Traceback:
AttributeError: 'tuple' object has no attribute 'reverse'
>>>

A Tale of Two Sequences

>>> l = list()
>>> dir(l)
['append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

>>> t = tuple()
>>> dir(t)
['count', 'index']

Tuples are more efficient

• Since Python does not have to build tuple structures to be
modifiable, they are simpler and more efficient in terms of
memory use and performance than lists

• So in our program when we are making "temporary
variables" we prefer tuples over lists.

Tuples and Assignment

• We can also put a tuple on the left hand side of an
assignment statement

• We can even omit the parenthesis

>>> (x, y) = (4, 'fred')
>>> print y
fred
>>> (a, b) = (99, 98)
>>> print a
99

Tuples and
Dictionaries

• The items() method in
dictionaries returns a
list of (key, value) tuples

>>> d = dict()
>>> d['csev'] = 2
>>> d['cwen'] = 4
>>> for (k,v) in d.items():
... print k, v
...
csev 2
cwen 4
>>> tups = d.items()
>>> print tups
[('csev', 2), ('cwen', 4)]

Tuples are Comparable

• The comparison operators work with tuples and other
sequences If the first item is equal, Python goes on to the
next element, and so on, until it finds elements that differ.

>>> (0, 1, 2) < (5, 1, 2)
True
>>> (0, 1, 2000000) < (0, 3, 4)
True
>>> ('Jones', 'Sally') < ('Jones', 'Fred')
False
>>> ('Jones', 'Sally') > ('Adams', 'Sam')
True

Sorting Lists of Tuples

• We can take advantage of the ability to sort a list of tuples to
get a sorted version of a dictionary

• First we sort the dictionary by the key using the items()
method

>>> d = {'a':10, 'b':1, 'c':22}
>>> t = d.items()
>>> t
[('a', 10), ('c', 22), ('b', 1)]
>>> t.sort()
>>> t
[('a', 10), ('b', 1), ('c', 22)]

Using
sorted()

>>> d = {'a':10, 'b':1, 'c':22}
>>> d.items()
[('a', 10), ('c', 22), ('b', 1)]
>>> t = sorted(d.items())
>>> t
[('a', 10), ('b', 1), ('c', 22)]

>>> for k, v in sorted(d.items()):
... print k, v
...
a 10
b 1
c 22

 We can do this even
more directly using the
built-in function sorted
that takes a sequence as
a parameter and returns
a sorted sequence

Sort by values instead of key

• If we could
construct a list of
tuples of the form
(value, key) we
could sort by value

• We do this with a
for loop that
creates a list of
tuples

>>> c = {'a':10, 'b':1, 'c':22}
>>> tmp = list()
>>> for k, v in c.items() :
... tmp.append((v, k))
...
>>> print tmp
[(10, 'a'), (22, 'c'), (1, 'b')]
>>> tmp.sort(reverse=True)
>>> print tmp
[(22, 'c'), (10, 'a'), (1, 'b')]

fhand = open('romeo.txt')
counts = dict()
for line in fhand:
 words = line.split()
 for word in words:
 counts[word] = counts.get(word, 0) + 1

lst = list()
for key, val in counts.items():
 lst.append((val, key))

lst.sort(reverse=True)

for val, key in lst[:10] :
 print key, val The top 10 most

common words.

Even Shorter Version (adv)

http://wiki.python.org/moin/HowTo/Sorting

>>> c = {'a':10, 'b':1, 'c':22}

>>> print sorted([(v,k) for k,v in c.items()])

[(1, 'b'), (10, 'a'), (22, 'c')]

List comprehension creates a dynamic list. In this case, we make
a list of reversed tuples and then sort it.

Summary

• Tuple syntax

• Mutability (not)

• Comparability

• Sortable

• Tuples in assignment statements

• Tuples in functions (adv)

• Using sorted()

• Sorting dictionaries by either
key or value

