
Regular Expressions
Chapter 11

Python for Informatics: Exploring Information
www.pythonlearn.com

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2011- Charles Severance

Regular Expressions

http://en.wikipedia.org/wiki/Regular_expression

In computing, a regular expression, also referred to as
"regex" or "regexp", provides a concise and flexible

means for matching strings of text, such as particular
characters, words, or patterns of characters. A regular
expression is written in a formal language that can be

interpreted by a regular expression processor.

Regular Expressions

http://en.wikipedia.org/wiki/Regular_expression

Really clever "wild card" expressions for matching
and parsing strings.

Really smart "Find" or "Search"

Understanding Regular
Expressions

• Very powerful and quite cryptic

• Fun once you understand them

• Regular expressions are a language unto themselves

• A language of "marker characters" - programming with
characters

• It is kind of an "old school" language - compact

http://xkcd.com/208/

Regular Expression Quick Guide
^ Matches the beginning of a line
$ Matches the end of the line
. Matches any character
\s Matches whitespace
\S Matches any non-whitespace character
* Repeats a character zero or more times
*? Repeats a character zero or more times (non-greedy)
+ Repeats a chracter one or more times
+? Repeats a character one or more times (non-greedy)
[aeiou] Matches a single character in the listed set
[^XYZ] Matches a single character not in the listed set
[a-z0-9] The set of characters can include a range
(Indicates where string extraction is to start
) Indicates where string extraction is to end

The Regular Expression Module

• Before you can use regular expressions in your program, you must
import the library using "import re"

• You can use re.search() to see if a string matches a regular expression
similar to using the find() method for strings

• You can use re.findall() extract portions of a string that match your
regular expression similar to a combination of find() and slicing:
var[5:10]

Using re.search() like find()

import re
hand = open('mbox-short.txt')
for line in hand:
 line = line.rstrip()
 if re.search('From:', line) :
 print line

hand = open('mbox-short.txt')
for line in hand:
 line = line.rstrip()
 if line.find('From:') >= 0:
 print line

Using re.search() like startswith()

import re
hand = open('mbox-short.txt')
for line in hand:
 line = line.rstrip()
 if re.search('^From:', line) :
 print line

hand = open('mbox-short.txt')
for line in hand:
 line = line.rstrip()
 if line.startswith('From:') :
 print line

We fine-tune what is matched by adding special characters to the string

Wild-Card Characters

• The dot character matches any character

• If you add the asterisk character, the character is "any number of
times"

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475
X-Content-Type-Message-Body: text/plain

^X.*:

Wild-Card Characters

• The dot character matches any character

• If you add the asterisk character, the character is "any number of
times"

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475
X-Content-Type-Message-Body: text/plain

^X.*:

Match the start of the line

Match any character

Many times

Wild-Card Characters

• The dot character matches any character

• If you add the asterisk character, the character is "any number of
times"

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475
X-Content-Type-Message-Body: text/plain

^X.*:

Match the start of the line

Match any character

Many times

Fine-Tuning Your Match

• Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent

X Plane is behind schedule: two weeks
^X.*:

Match the start of the line

Match any character

Many times

Fine-Tuning Your Match

• Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent

X Plane is behind schedule: two weeks
^X-\S+:

Match the start of the line

Match any non-whitespace character

One or more
times

Matching and Extracting Data

• The re.search() returns a True/False depending on whether the string
matches the regular expression

• If we actually want the matching strings to be extracted, we use
re.findall()

>>> import re
>>> x = 'My 2 favorite numbers are 19 and 42'
>>> y = re.findall('[0-9]+',x)
>>> print y
['2', '19', '42']

[0-9]+

One or more digits

Matching and Extracting Data

• When we use re.findall() it returns a list of zero or more sub-strings
that match the regular expression

>>> import re
>>> x = 'My 2 favorite numbers are 19 and 42'
>>> y = re.findall('[0-9]+',x)
>>> print y
['2', '19', '42']
>>> y = re.findall('[AEIOU]+',x)
>>> print y
[]

Warning: Greedy Matching

• The repeat characters (* and +) push outward in both directions
(greedy) to match the largest possible string

>>> import re
>>> x = 'From: Using the : character'
>>> y = re.findall('^F.+:', x)
>>> print y
['From: Using the :']

^F.+:

One or more
characters

First character in the
match is an F

Last character in the
match is a :Why not 'From:'?

Non-Greedy Matching

• Not all regular expression repeat codes are greedy! If you add a ?
character - the + and * chill out a bit...

>>> import re
>>> x = 'From: Using the : character'
>>> y = re.findall('^F.+?:', x)
>>> print y
['From:']

^F.+?:

One or more
characters but
not greedily

First character in the
match is an F

Last character in the
match is a :

Fine Tuning String Extraction
• You can refine the match for re.findall() and separately determine

which portion of the match that is to be extracted using parenthesis

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> y = re.findall('\S+@\S+',x)
>>> print y
['stephen.marquard@uct.ac.za']
>>> y = re.findall('^From:.*? (\S+@\S+)',x)
>>> print y
['stephen.marquard@uct.ac.za']

\S+@\S+

At least one
non-whitespace

character

Fine Tuning String Extraction
• Parenthesis are not part of the match - but they tell where to start

and stop what string to extract

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> y = re.findall('\S+@\S+',x)
>>> print y
['stephen.marquard@uct.ac.za']
>>> y = re.findall('^From (\S+@\S+)',x)
>>> print y
['stephen.marquard@uct.ac.za']

^From (\S+@\S+)

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
>>> atpos = data.find('@')
>>> print atpos
21
>>> sppos = data.find(' ',atpos)
>>> print sppos
31
>>> host = data[atpos+1 : sppos]
>>> print host
uct.ac.za

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

21 31

Extracting a host
name - using find
and string slicing.

The Double Split Version

• Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

The Double Split Version

• Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]

stephen.marquard@uct.ac.za

['stephen.marquard', 'uct.ac.za']

'uct.ac.za'

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('@([^]*)',lin)
print y
['uct.ac.za']

'@([^]*)'

Look through the string until you find an at-sign

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('@([^]*)',lin)
print y
['uct.ac.za']

'@([^]*)'

Match non-blank character Match many of them

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('@([^]*)',lin)
print y
['uct.ac.za']

'@([^]*)'

Extract the non-blank characters

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y
['uct.ac.za']

'^From .*@([^]*)'

Starting at the beginning of the line, look for the string 'From '

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y
['uct.ac.za']

'^From .*@([^]*)'

Skip a bunch of characters, looking for an at-sign

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y
['uct.ac.za']

'^From .*@([^]*)'

Start 'extracting'

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y
['uct.ac.za']

'^From .*@([^]*)'

Match non-blank character Match many of them

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y
['uct.ac.za']

'^From .*@([^]*)'

Stop 'extracting'

Spam
Confidenceimport re

hand = open('mbox-short.txt')
numlist = list()
for line in hand:
 line = line.rstrip()
 stuff = re.findall('^X-DSPAM-Confidence: ([0-9.]+)', line)
 if len(stuff) != 1 : continue
 num = float(stuff[0])
 numlist.append(num)

print 'Maximum:', max(numlist)

python ds.py
Maximum: 0.9907

Regular Expression Quick Guide
^ Matches the beginning of a line
$ Matches the end of the line
. Matches any character
\s Matches whitespace
\S Matches any non-whitespace character
* Repeats a character zero or more times
*? Repeats a character zero or more times (non-greedy)
+ Repeats a chracter one or more times
+? Repeats a character one or more times (non-greedy)
[aeiou] Matches a single character in the listed set
[^XYZ] Matches a single character not in the listed set
[a-z0-9] The set of characters can include a range
(Indicates where string extraction is to start
) Indicates where string extraction is to end

Escape Character

• If you want a special regular expression character to just
behave normally (most of the time) you prefix it with '\'

>>> import re
>>> x = 'We just received $10.00 for cookies.'
>>> y = re.findall('\$[0-9.]+',x)
>>> print y
['$10.00'] \$[0-9.]+

A digit or periodA real dollar sign

At least one
or more

Summary

• Regular expressions are a cryptic but powerful language for
matching strings and extracting elements from those strings

• Regular expressions have special characters that indicate
intent

