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INTRODUCTION

Motivated by the study of maximal rationally connected fibrations, introduced by Kollar,
Miyaoka, and Mori in [12] and Campana in [4, 5], we study different notions of fibrations
where instead of requiring that the general fibers be rationally connected, we require different
types of birational simplicity. The birational invariants we consider are the Chow groups
of O-cycles and the groups of holomorphic p-forms. The main result of this paper is the
construction of maximal Chow constant and cohomologically constant fibrations.

Consider a fibration (Def. 1.1) of smooth complex projective varieties
[ X->Y.

We say f is a Chow constant fibration if f.: CHy(X)—CH(Y) is an isomorphism. We say
a fibration is cohomologically constant if f*: H?'(Y) = H?°(X) is an isomorphism for all
p. These definitions extend to the case when f is a rational map.

Theorem A. Any smooth complex projective variety X admits a maximal Chow constant (resp.
cohomologically constant) fibration:

n: X--»Y.
Y is defined up to birational isomorphism and satisfies the following universal property: another
Sfibration ¢: X-->Z is Chow constant (resp. cohomologically constant) <= n factors through ¢.
Moreover, 1 is almost holomorphic (i.e. there is a nonempty open set U C Y over which n is proper).

Chow groups of O-cycles have played an important role in algebraic geometry. Already in
the 60s, Mumford [13] observed that even in dimension two, CHy(X) can be quite exotic, and
proved that if X is a complex K3 surface, then CHy(X) is infinite dimensional in a precise
sense. Roitman proved [15] the torsion in CHy(X) is isomorphic to the torsion subgroup
of Alb(X). Colliot-Théléne, Voisin, and others (see e.g. [6]) have made major progress in
understanding rationality questions by considering specializations of “universally CHy-trivial
varieties”, or equivalently varieties which admit integral decompositions of their diagonals.
Beauville and Voisin [1] showed that given a K3 surface, there is a distinguished degree 1 cycle
¢x € CHy(X) such that many geometrically defined O-cycles are a multiple of cx. There has
been some work in understanding a similar picture for higher dimensional hyperKéhler man-
ifolds. Huybrechts [8] has initiated a study of “Chow constant subvarieties", i.e. subvarieties
V' C X such that the image of CHy(V') in CHy(X) is isomorphic to Z. Vial [17] has studied
fibrations similar to the ones considered here, especially from the motivic perspective.



On the other hand, the vector spaces H”?(X) of holomorphic p-forms are some of a vari-
ety’s most useful birational invariants. From the perspective of this paper, the motivation for
considering p-forms along with O-cycles is Bloch’s conjecture.

Conjecture B (Bloch’s Conjecture). If X is a smooth projective complex variety, then CHo(X) =
7 — H!X)=0 forall p > 0.

The forward implication is known, but the opposite is known in very few examples (for
surfaces with x(X) < 2 and a few classes of general type surfaces). There are several gener-
alizations of Bloch’s conjecture. For this paper the most relevant generalization is

Conjecture C (see [18, Conj. 1.11]). If H?*(X) = 0 for all p > m then CHo(X) is supported on
an m-dimensional algebraic subset V. C X, i.e. CHo(V') surjects onto CHy(X).

The following proposition explains the relationship between Chow constant and cohomolog-
ically constant fibrations and the significance of Conjecture C to our setting.

Proposition D. Let X be a smooth complex projective variety and let Y be the base of its maximal
Chow constant fibration.

(1) Every Chow constant fibration of X is cohomologically constant.

(2) The dimension of Y equals the minimum dimension of an algebraic subset V. C X such that
CH(X) is supported on V.

(3) If Conjecture C is true then

dim(Y) = max{p|H**(X) # 0},

and Y coincides with the maximal cohomologically constant fibration. Thus, conjecturally, a
Sfibration is Chow constant <= it is cohomologically constant.

We give some examples and applications which arise in the study of these fibrations. First,
we show that being a Chow constant fibration has consequences on the Chow group of the
generic fibers.

Proposition E. Let X be a smooth projective threefold with a Chow constant fibration over a curve

B, and let & = C(B) be the function field of B. Then, there is a divisor D C X such that CHy(X¢)®Q
is supported on D¢. Thus, CHy(X¢) ® Q is finite dimensional in the sense of Mumford.

We give several examples of K3 surfaces X; over the function field £ of a complex curve such
that CHo(X¢) is finite dimensional.

We consider two other classes of fibrations, which are defined only by the properties of
their fibers. Let
[ X->Y
be a fibration of smooth projective varieties. We say f is a Chow trivial fibration if, for
a general fiber X,, CHy(X,) = Z. Likewise, we say that f is a cohomologically trivial
fibration if H/”O(Xy) = 0 for all p > 0. (We also define these fibrations when f is a rational

map.) They also give rise to maximal fibrations.
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Theorem F. Any smooth complex projective variety X admits a maximal Chow trivial (resp. coho-
mologically trivial) fibration:

n: X-->Y.
Y is defined up to birational isomorphism, and satisfies the following universal property: if a fibration
¢: X-->Z is Chow trivial (resp. cohomologically trivial) then n factors through ¢. As in Theorem A,
n is almost holomorphic.

For a rational fibration f: X-->Y (see Def. 1.1), we have the following chain of implications:

f is a rationally ) ( f is a Chow ) Prop. 29, ( f is a cohom. )

conn. fibration trivial fibration Conj. B _ \ trivial fibration

ﬂCor. 2.7 ﬂCor. 1.15

f is a Chow Prop- 29 ( f is a cohom.
constant fibration éoznfé constant fibration

As another application, we note that the study of cohomologically trivial fibrations is
relevant to the study of rational singularities. Let X be a variety and X™' c X the locus where
X has rational singularities. Kollar has asked the following question: does there exist a partial
resolution p: X’—X of X such that X’ has rational singularities and y is an isomorphism on
the preimage of X™'? Motivated by this question, we consider a refinement of the problem
in the case of cones. When X is smooth and projective and L an ample line bundle on X,
then the projective cone C(X, L) has a canonical resolution

u:P(Oo L)—»C(X,L)

by blowing up the cone point. Say a birational model R of C(X,L) is an intermediate
rationalization of singularities of C(X, L) if R has rational singularities and u factors as

PO®L) —s R — C(X, L).

~_ .

We have the following characterization of intermediate rationalizations of singularities of
C(X, L) (generalizing the criterion for cones to have rational singularities in [11, Prop. 3.13]).

Theorem G. If L is sufficiently positive, there is a bijective correspondence

intermediate rationalizations of regular cohom. trivial fibrations f: X —>Y
singularities of C(X, L) such that Y has rational singularities

One can remove the assumption about the positivity of L by modifying the right hand side.

In §1 we prove some basic facts about cohomologically constant and cohomologically
trivial fibrations. We give a criterion for a fibration to be cohomologically constant in terms
of a natural distribution/foliation on X (see Def. 1.6) which was suggested to us by Claire

Voisin. In §2 we prove analogous facts about Chow constant and Chow trivial fibrations. We
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show that a fibration is Chow constant if the fibers are Chow constant subvarieties in the sense
of Huybrechts (see Theorem 2.5). We also recall some examples of Chow constant fibrations
and prove Proposition E. In §3 we prove Theorem G. In §4 and §5 we prove Theorem A
and Theorem F. In §4 we recall the quotient of a variety by an algebraic equivalence relation
(which we attribute to Roitman). In §5 we prove that one can produce maximal quotients
with fibers in an arbitrary foliation, as suggested to us by Claire Voisin. Lastly, in Appendix
A we prove an elementary result: when CHy(X) of a variety X over an arbitrary field £ is
supported on a curve, then it is finite dimensional in the sense of Mumford.

Unless explicitly stated, we work over C. All our varieties are by assumption irreducible.
By a regular fibration we mean a fibration which is everywhere defined. By abuse of notation
if k¥ C ¢ is a field extension and X is a variety over £ then we use X; to denote the base
change X; := X Xgpec(k) Spec(§).

We would like to thank Ed Dewey, Lawrence Ein, Laure Flapan, Charles Godfrey, Elham
Izadi, Robert Lazarsfeld, Stefan Kebekus, Daniel Litt, James M°Kernan, Mircea Mustata,
John Ottem, Alex Perry, Ari Shnidman, Fumiaki Suzuki, Burt Totaro, and Claire Voisin for
interesting discussions and helpful comments.

1. CoHOMOLOGICALLY CONSTANT AND TRIVIAL FIBRATIONS

In this section, we define cohomologically constant and cohomologically trivial fibrations.
We are grateful to Claire Voisin who suggested we define a natural integrable distribution on
a variety Vx which controls when a fibration is cohomologically constant. The existence of
this distribution is what allows us in §5 to define the maximal cohomologically constant and
cohomologically trivial fibrations.

Let X and Y be projective varieties. Let f: X-->Y be a rational map.
Definition 1.1. We say f is a fibration if f is dominant and the closure of a general fiber
of f is irreducible.

Recall the following fact about global p-forms.
Lemma 1.2 ([19, Lem. 2.2]). For any p > 0, the group H?(X) is a birational invariant among

smooth projective varieties.

Thus for any rational map f as above we can define a pull-back on p-forms by first resolving
the rational map f

and defining f* to be the composition:

£ ) L 5O = HPO(X).
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Definition 1.3. We say a fibration f: X-->Y between smooth projective varieties is a coho-
mologically constant fibration if f*: H?%(Y)—H??(X) is an isomorphism for all p.

Example 1.4. As pullback on p-forms is injective, a simple class of examples of cohomolog-
ically constant fibrations are those where the domain satisfies H#°(X) = 0 for all p > 0. For
instance, if f: P3-->P! is a pencil of quartics, then f is a cohomologically constant fibration.

Remark 1.5. If X is smooth, projective of dimension 7z, and H™(X) # 0, then every coho-
mologically constant fibration is birational.

The property of being a cohomologically constant fibration is controlled by a natural
distribution on X.

Definition 1.6. Let Vx C Tx be the subsheaf of 7y defined as follows:

Vp > 0, Yo € HPO(X), the }

V U = T U )
x(U) {v e Tx(U) contraction w(v|y) = 0 € Q{;{ Yo

We call Vx Voisin’s distribution. It is straightforward to show that Vy is integrable (e.g.
by applying the invariant formula for the exterior derivative and using that for any form
w € HP(X), we have dw = 0). Thus Vyx generically defines a foliation on X, which we call
Voisin’s foliation.

Remark 1.7. For each p > 0 there is a contraction map
conty: Tx — HMY(X)* ®c Q/;l.
We could equivalently define Vx := Nysoker(cont,).
Remark 1.8. If f: X—JS is a regular fibration of smooth projective varieties with relative
dimension 7, we can also define a relative version of Voisin’s distribution (resp. Voisin’s

foliation) Vy C Tx. Let U C S be the open set where f is smooth and Xy := ).
Consider the kernel of the relative contraction map:

r
Ty 0= D 7 (AN Quxy0)" © M7 Q0.
p=1
As a subsheaf of Ty, the kernel can be extended to some subsheaf of 7x and Vy is defined as
the saturation of any such extension. Then Vy is an integrable distribution and for a general
fiber X; of f, the restriction to X; is Voisin’s distribution on the fiber, i.e. V¢|x, = Vx,.

Consider the following diagram of smooth projective varieties

ZLX’
I
Y

such that both 7 and ¢ are surjective and a general fiber of x is irreducible. Voisin’s distri-

bution is useful for determining when p-forms on X descend to Y.
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Proposition 1.9. The following are equivalent:

(1) Global p-forms on X descend to Y ; i.e. for each p > 0 and every p-form w € HPO(X) there
is a formn € HPO(Y) such that y*(w) = n*(n).

(2) The fibers of the family Z — Y map into Voisin’s foliation; i.e. there is a nonempty open set
U c Z and a factorization:

Tz)vlu > v (ITx)ly-

S~ 3 /
st

v (Vx)lu

Remark 1.10. This implies that if f: X-->Y is a fibration, then f is cohomologically constant
if and only if a general fiber of f is generically contained in a leaf of Voisin’s foliation.

Proof of Proposition. (1) = (2): This direction is straightforward. Let U c Z be the
nonempty open set where 7 and ¢ are both smooth. If v € 77,y (U), then

U)o = 7" ()lyav = 0 € (A 71Qy)..

It follows that locally ¥*(w)|y2v = 0 for every global p-form w and thus dy.v € Y*(Vyx).

(2) = (1): Let z € U C Z be a general point. Then 7 is smooth in a neighborhood of
n(z). There are coordinates

x17 LR} xr’}’l, . -’)’s € OZ,Z

in the local ring at z such that the {y;} cuts out the fiber of 7 at z and the {x;} gives coordinates
on the fiber. Likewise there is a basis for (Q‘Z)z locally at z given by p-wedges of dx;s and
dy;s. The assumption in (2) implies that for any dual basis vector v; = % € (Tz,B). we have

U (w);20; = ¥ (w),ady.(v;) = 0.

Thus in the local coordinates:

Yr(w)=fidn A+ ..
and all the terms with dx S vanish.

Let W c n(U) C Y be a nonempty open set over which 7 is smooth and let Zy = 7~ }(W).
It follows that

v (W)lz, € H'(Zw, 7" (h)|z,),

and thus y*(w) descends to a meromorphic p-form 1 on B. Showing it extends to a global
pform is straightforward. Let Y’ C Z be a multisection of 7 and let 7’ = n|y-. Then we have

] trr (Y (w)y”)

" deg(n)

as meromorphic forms on Y. But the form on the right is a regular p-form, so we are done. O
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Definition 1.11. Let f: X-->Y be a fibration, let I be the closure of a general fiber, and let
V be a resolution of singularities of V. We say f is a cohomologically trivial fibration if
HP(V) = 0 for all p > 0.

Example 1.12. Let X be smooth and projective. Then f: X—Spec(C) is a cohomologically
constant fibration &= f is a cohomologically trivial fibration & A**(X) =0 VYp > 0.

Example 1.13. Continuing with Example 1.4, we see that not all cohomologically constant
fibrations are cohomologically trivial. If smooth, the closure of a fiber of f : P3-»P! is a
quartic K3 surface V c P3, thus H%%(V) # 0 for the general fiber V.

To relate cohomologically constant and trivial fibrations, we recall a theorem of Kollar:

Theorem 1.14 ([10, Thm. 7.1]). Let n: X —Z be a surjective map between projective varieties,
X smooth, Z normal. Let F be the geometric generic fiber of 1 and assume that F is connected. The
Jollowing two statements are equivalent:

(1) R?n.Ox =0 forall p > 0;
(2) Z has rational singularities and h?(F, Op) = 0 for all p > 0.

The following corollary is a straightforward application of Kollar’s theorem using that
H?(F,Op) = HP(F) = 0 for all p > 0.

Corollary 1.15. If f: X-->Y is a cohomologically trivial fibration of smooth projective varieties,
then f is cohomologically constant.

Moreover we have:

Corollary 1.16. Let f: X-->Y and g: Y -->Z be fibrations. If f and g are cohomologically constant
(resp. trivial) fibrations, then g o f is a cohomologically constant (resp. trivial) fibration.

Proof- If f and g are cohomologically constant, certainly g o f is cohomologically constant.
Now assume f and g are cohomologically trivial and let X, (resp. Y;) denote the closure of
the fiber of g o f (resp. g) over a general point z € Z. Let X, (resp. Y,) denote a resolution
of singularities of X, (resp. Y,). Note that generality of the point z € Z implies that the
induced rational map X,-->Y, is a cohomologically trivial fibration. Thus by Corollary 1.15
we have H?O(Y ,) = H?*(X,) = 0 for all p > 0. i

Finally we prove an auxiliary result, which will eventually show that all of our maximal
fibrations are “generically proper” over their codomain. Let X and Y be smooth projective
varieties and

[f:X-»Y

be a dominant rational map and I’y C X X Y the closure of the graph of f. Then f can be

extended across the locus where the projection p: I'r—X is finite.
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Definition 1.17. With the setup above, we say the exceptional locus of f is the locus in
X over which p is not finite. We say f is almost holomorphic if the exceptional locus of f
does not intersect the closure of a general fiber.

Lemma 1.18. With the setup above, if f is not almost holomorphic, then Y is uniruled.

Proof. As X is smooth, the fibers of p are rationally chain connected subvarieties of Y. There-
fore, if the closure of a general fiber meets the exceptional locus of f, then there is a rational
curve through a general point in Y. m]

2. CHOW CONSTANT AND CHOW TRIVIAL FIBRATIONS

In this section we define Chow constant and Chow trivial fibrations. We show that the
property of being a Chow constant fibration is equivalent to having fibers which are Chow
constant cycles in the sense of Huybrechts [8, Def. 3.1]. We give some examples of Chow
constant fibrations, focusing for the sake of exposition on Chow constant fibrations where
the fibers are K3 surfaces. We also prove Proposition E relating Chow constant fibrations
and the Chow groups of their generic fibers. To start, recall the following fact about CHy(X).

Lemma 2.1 ([7, Ex. 16.1.11]). The group CHy(X) is a birational invariant among smooth projec-

tive varieties.

Therefore, for a fibration f we may define a pushforward at the level of O-cycles in analogy
with our definition of pull-back of pforms. Let

be a resolution of the map f. Then we define f; to be the composition:

£+ CHy(X) = CHy(X) L5 CHy(Y).
This is independent of the resolution of f.

Definition 2.2. We say that a fibration f: X--»Y between smooth projective varieties is a
Chow constant fibration if £, is an isomorphism.

It will be useful to consider Chow-theoretic properties of subvarieties. Let IV C X be a
subvariety and let V' be a resolution of singularities of V.

Definition 2.3. We say V' is a Chow constant subvariety (see [8, Def. 3.1]) if for any two
points x1, x9 € V we have x1 = xg € CHo(X). We say that V' is a Chow trivial subvariety if
CHy(V) = Z.

Definition 2.4. We say a fibration is a Chow trivial fibration if the closure of a general

fiber is a Chow trivial subvariety.
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Now we show that Chow constant fibrations are exactly the fibrations where the general
fibers are Chow constant subvarieties.

Theorem 2.5. Let f: X-->Y be a fibration of smooth projective varieties. Then f is a Chow constant
Sfibration <= a general fiber of f is a Chow constant subvariety.

Proof. If f. is a Chow constant fibration, then a general fiber is clearly a Chow constant
subvariety. For the other direction, we first show that f; is an isomorphism modulo torsion,
i.e. after tensoring with Q. Then, we use Roitman’s theorem to complete the proof.

By definition of f. we are free to resolve f, i.e. assume that f is everywhere defined. It
is clear that f.: CHo(X)—CHy(Y) is a surjection. We must show it is also injective. Let
i : Z — X be a smooth multisection of f of degree d, i.e. a smooth and closed subvariety
which maps generically finitely onto Y. Let g = f|z. There is an open set U C Y over which
g is étale such that for any point y € U the fiber X) is a Chow-constant subvariety.

Both of the following compositions
(i, 0 g") o fi: CHyo(X)—>CHy(X) and f; o (i, o g*): CHo(Y)—CHy(Y),

are equal to multiplication by d. For the second map f. o (i, o g¥) this is straightforward. To
prove it for (i, o g*) o f., we use the following: any & € CHy(X) can be moved so that it is
supported on f~1(U), and for any point x € f~1(U) we have (i, o g*) o f.(x) is a union of d-
points in Xz(y). As Xy(,) is a Chow constant subvariety, we have (i,og*)o f.(x) = d-x € CHy(X).
Thus (i, o g*) o f; is equal to multiplication by &, which implies

f* ®Q: CHy(X)® Q—CHy(Y) ® Q
is an isomorphism. Therefore the kernel of f. is d-torsion.

The previous paragraph shows that if x1,xy € X, are two points in a fiber of f then the
difference x; — x9 is torsion in CHy(X). Let

alby: X—Alb(X)

be the Albanese map of X. For any two points x1, xo € X), the difference albx(x1)—albx(x2) €
Alb(X) is torsion. But as X, is connected and the torsion points are countable, this implies
that the map alby is constant on the fibers of f. So there is a factorization:

Y

Y

Wx L Alb(X).

X

Now Roitman’s theorem [15] implies the composition

CHO(X)tOrs i CHO(Y)tOrsHAlb(X)tors = CHO(Alb(X))tors

is an isomorphism. This proves that f; is injective, so it is an isomorphism. m|
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Remark 2.6. In the previous theorem one can weaken the smoothness hypotheses quite a
bit. To show that the kernel of f. is a torsion group requires no smoothness. To conclude
that the kernel of f, is trivial, it would suffice to assume that X and Y are normal, and that
a resolution of singularities X of X induces an isomorphism CHy(X) = CHy(X).

The following corollary is immediate.

Corollary 2.7. Let f: X-->Y be a fibration of smooth projective varieties. If [ is a Chow trivial
Sfibration, then it is a Chow constant fibration.

Moreover, one may compose these fibrations:

Corollary 2.8. Let f: X-->Y and g: Y -->Z be two fibrations of projective varieties. If f and g are
both Chow constant (resp. trivial) fibrations then g o f is a Chow constant (resp. trivial) fibration.

Proof. If f and g are Chow constant, it is straightforward to see g o f is Chow constant.
Proving triviality follows an similar argument to the proof of Corollary 1.16. We just note
that by the previous theorem, if

[ XY
is a Chow trivial fibration over a Chow trivial variety Y, then CHy(X) = Z. |

Proposition 2.9. Let f: X-->Y be a fibration.

(1) If f is a Chow constant fibration, then f is a cohomologically constant fibration.
(2) If f is a Chow trivial fibration, then f is a cohomologically trivial fibration.

Proof- Part (1) holds by the following lemma. Part (2) can be seen as a special case of the

following lemma or follows from Mumford’s original paper [13]. m|
Suppose
z s x
17
B

is a diagram of smooth projective varieties such that = is surjective and a general fiber of «
is irreducible.

Lemma 2.10. Let Z; := n71(b) be a fiber of 7 over a general point b € B. If the image y(Zy) is
a Chow constant subvariety, then for any w € H?Y(X) there is an n € HPO(B) such that y*(w) =
m*(17). As a special case, this implies that if CHy(X) = Z, then H?*(X) = 0 for all p > 0.

Proof. This is well known but we include a proof for the convenience of the reader. We follow

the outline of the proof [18, Thm. 3.13] which is a very similar situation. First we reduce to
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the case that 7 has a section. Taking a generically finite cover B’—B we can assume there is

a diagram:
/N
YA > Z ; > X
b, L
’ ¢

B — B
satisfying (1) 7’ has a section o : B'—Z’, (2) Z’ and B’ are smooth, projective varieties, and
(3) there is a nonempty open set U C B over which n’ is the base change of x.

Note that ' and n’ satisfy the hypotheses in the lemma. Furthermore, if there exists
n’ € H?Y(B’) such that 7”*(n’) = ¢"*(w) then setting

1
n= @t%(ﬂl) € HM(B)

we have 7*(n) = y*(w).

Thus it suffices to prove the lemma in the case that 7 has a section o: B—Z, which we
now assume. Consider the following two cycles in Z x X:

Iy ={(2,¢(2)) € Zx X} and lyogor = {(z,¥(0(7(2)))) € Z x X}.

The assumption that ¥/(Z;) is a Chow constant subvariety implies that the fibers (I'y), and
(T'yogor), are rationally equivalent. By Bloch and Srinivas’s result [3, Prop. 1], we can write

Iy =Tyogor + W € CH(Z X X)® Q
where W is supported on D X X for some divisor D C X. As a consequence the map
(Ty). =" s HY(X)—H(Z)
is a sum of the following maps:

mr9x) L7 grogy Ty go(x)
and
W,: HPY(X)—H!(Z).
The second map must vanish as it factors through the Gysin pushforward of the group
H?L"Y(D) = 0 (see [18, Thm. 3.13] for an elaboration on this point). It follows that the
pullback y*(w) of any pform on X can be written as the 7*(17) for some 1 € H?(B). O

Now, we present several examples of Chow constant fibrations. There are two main sources
of examples: fibrations where the domain has CHo(X) = Z and examples which arise as
quotients by finite group actions. We think the following is a natural problem:

Problem 2.11. Find new techniques for constructing Chow constant fibrations.

Example 2.12. If X is a rationally connected variety (or any variety with CHy(X) = Z) then

any fibration f: X-->Y is a Chow constant fibration.
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Now we recall an example of Bloch, Kas, and Lieberman [2]. Those authors were interested
specifically in the case of surfaces fibered over a curve. We rephrase their construction in the
higher dimensional setting.

Example 2.13. Let G = Z/dZ and let Y be a smooth projective variety with a G-action such
that the quotient

T:Y>Z:=Y/G
is smooth and satisfies CHo(Z) = Z. Bloch, Kas, and Lieberman consider the case when Y
is a cyclic cover of Z = P1. Another example of interest is when Y is a K3 surface which is
either a double cover of P? or the double cover of an Enriques surface.

Let E’ be an elliptic curve with a choice of d-torsion point € € E’ so that G acts freely on
E’ by translation by €. Thus G X G acts on Y X E’ and we can consider the quotient

c:YXE—->X:=(YXE)/G
by the diagonal action of G on Y X E’. Define E := E’/G. There is a map
n: X—>F.

Note that 7 is an isotrivial family with all fibers being isomorphic to Y.

Proposition 2.14. The map n: X —E is a Chow constant fibration.
Proof- This argument is due to Bloch, Kas, and Lieberman ([2]). First we show that 7 = alby.
One can compute:

HY(X) = H(Y x E'® = HY(Y)® @ HY(E)® = HY(Z) ® H™(E).

Now H(Z) = 0 as CHy(Z) = Z (by Lemma 2.10). It follows that Alb(X) is isogenous to E.
But as 7 has connected fibers we get albxy = x. Thus, as in the proof of Theorem 2.5 (i.e. by
applying Roitman’s theorem) it suffices to show that

1. ® Q: CHy(X) ® Q—CHy(E) ® Q
is an isomorphism.

Note that there is a G = (G X G/G) action on X. Taking the quotient by G we get the
following commuting diagram

X z > E,

N A

ZXE

where ¢ is the quotient map and p is the projection onto £. Then we have CHy(Z X E) =
CHy(E) (as Z is a Chow trivial variety), and by averaging: CHo(Z x E)®Q = (CHy(X)®Q)°.

So it suffices to show that CHyp(X)® Q = (CHy(X)® Q)Y i.e. we want to show that for any
x € X and any g € G we have

x=g-x€CHy(X)® Q.
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As X = (Y X E')/G there a G-equivariant map E'—X whose image contains x € X. As the
action of G on E’ is translation by a d-torsion point, the Abel-Jacobi theorem implies that
x = g-x € CHy(£") ® Q. Pushing forward to X proves the result. O

Example 2.15. In the above construction we can replace E’ with P! and replace translation
by a d-torsion point with multiplication by a d-th root of unity. If we further assume that the
quotient X = (Y x P1)/G is smooth then the same proof as above implies that the map

n: X—Pl = (P/G)
is a Chow-constant fibration over P!, hence we have CHy(X) = Z. For example, when Y is

a K3 surface which double covers an Enriques surface then the quotient (Y x P1)/(Z/27) is
smooth so has this property.

Now we prove Proposition E. Suppose that X is a smooth projective threefold, B is a smooth
projective curve, and m: X—B is a Chow constant fibration. Let ¢ = C(B) be the function
field of B. We show that the property of being a Chow constant fibration has consequences
on the group CHy(X;). Recall that given a smooth surface X with 42%(X) # 0 over an
uncountable algebraically closedy field of characteristic 0, Mumford showed that CHy(X) is
not finite dimensional in the following sense:

Definition 2.16. Let ¢ be an arbitrary field, let X be a variety over ¢ and let CHy(X)o be
the O-cycles of degree 0. We say CH((X) is finite dimensional in the sense of Mumford if
there exists a 4 such that every O-cycle of degree 0 is rationally equivalent to a difference of
effective O-cycle of degree d (i.e. the map of sets:

Sym(X)(£) x Sym”(X)(£)—CHo(X )o
(Zx) % (Zy)) = (Zxi = Zyy)

is surjective). Taking some personal liberties, we say CHy(X) ® Q is finite dimensional in
the sense of Mumford if there exists d > 0 such that the map

Sym?(X)(¢) x Sym?(X)(&) x @Q—CHy(X)y ® Q@
(Tx) X (Ty)xa - (S -2y

is surjective.

Proof of Proposition E. As m: X—B is a Chow constant fibration over a curve, if
i:C—>X

is any multisection of 7 (i.e. a curve so that 7 o i: C—B is surjective) then we have CHy(X)
is supported on C. That is, the map

CHy(C)—CHy(X)

is surjective. So we can apply Bloch and Srinivas’s result [3, Prop. 1] to give a decomposition
of the diagonal

Ax =Z1+7Zy e CHy( X X X)®Q,
13



where Z; is supported on C X X and Zj is supported on X X D for some divisor D C X.

Now suppose that @ C X is any irreducible curve, and let p1, p2 denote projections of X x X
onto each factor. Then we can use the decomposition of diagonal to write

la] = po.(pi([a]) - Ax)
= pa.(p1([a]) - (Z1 + Zy)) € CH1(X) ® Q

By assumption, Z; is supported on C X X. The pullback of [a] to CH.(C x X) under the
composition

CxX—C5 X

vanishes as the intersection [C] - [@] = 0 for dimension reasons (they are both curves in a
threefold). Thus we have the intersection pj([a]) - Z1 = 0. Therefore [a] = po, (p][a] - Zo) is
supported on D, which implies CH1(X) ® Q is supported on the divisor D.

So we have shown that the map
CH:1(D)® Q—CH1(X)® Q

is surjective. The localization sequence for Chow groups implies that for any open set U ¢ X
we have a commutative diagram:

CHi(D)Q —— CH1(DNU)®Q

| l

CHHX)®Q — CH1(X NnU)®Q

and moreover, all the maps in the diagrams are surjections.

Finally we use the following expression for CHy(X¢) ® Q:
ENRY -1
CHy(Xe) ® @ = colim (CHl(X i) ® @) :

and likewise
_ . -1
CHy(Ds) ® Q = q?;?r%% (CHl(D Nan (V) ® @) .

(The colimit is taken over nonempty open subsets V' C B.) Thus the map
CHo(Df) ® @%CHO(XU) ®0Q

is surjective, i.e. CHy(X¢) ® Q is supported on the curve D;. By Corollary A.4, CHy(X¢) ® Q
is finite dimensional. o

Example 2.17. This gives examples of K3 surfaces X¢ over function fields of curves such
that CHo(X¢) is finite dimensional. For example, if Y is a K3 surface which double covers P?
or an Enriques surface, and we apply the construction of Bloch, Kas, and Lieberman (see
Prop. 2.14) then we get a Chow constant fibration 7: X—B = E. (To see other examples
where CH(X) is finite dimensional for K3 surfaces over function fields, and related discussion

see [9, §12.22].)
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3. RATIONALIZATIONS OF SINGULARITIES OF CONES

Motivated by Kollar’s question, we consider rationalizations of singularities of cones and
prove a more general version of Theorem G.

Definition 3.1. Over an algebraically closed field of characteristic zero, a variety X has
rational singularities if, for any proper birational morphism yu: X’ — X, R4, Oy, = 0 for
all p > 0.

Let X™' c X denote the open set where X has rational singularities.

Definition 3.2. We say a proper birational morphism u: X’ — X is a rationalization of
singularities of X if X’ has rational singularities. We say that u is a strict rationalization of
singularities if X’ has rational singularities and u gives an isomorphism between p~1(X™2!)

and X"
Thus Kollar asks whether or not strict rationalizations of singularities exist.

We will study certain rationalizations of singularities of cones. Let X be a smooth variety
and let C(X, L) denote the projective cone over L (see [11, pg. 97]). Then C(X,L) has a
natural resolution:

u: PO L)-»C(X,L)
given by blowing up the cone point. Thus Kollar’s question is trivial for cones (either C(X, L)
or P(O @ L) solves the problem), however following refinement remains interesting:

Problem 3.3. To what extent do there exist minimal rationalizations of singularities?

We give a partial answer to this question in the case of cones.

Definition 3.4. We say a birational model R of C(X, L) is an intermediate rationalization
of singularities of a cone C(X, L) if R has rational singularities and fits into a diagram

P(O® L) > R > C(X,L)
w

We recall the criterion for cones to have rational singularities.

Theorem 3.5. [11, Prop. 3.13] Let X be a complex projective variety with rational singularities.
Let L be an ample line bundle on X. The cone C(X, L) has rational singularities if and only if
HY(X,L™) =0 forall p > 0 and m > 0.

The following generalization classifies intermediate rationalizations of singularities.

Theorem 3.6. Let X be a smooth projective variety with an ample line bundle L. There is a bijective
correspondence

int. rationalizations regular and cohom. trivial fibrations f: X =Y, such that
of sings. of C(X, L) Y has rational sings. and R? f,(L™) = 0 for p,m > 0
16



Remark 3.7. If L is sufficiently positive (e.g. if ™! ® L is also ample) then the vanishing of
R? f.(L™) for p,m > 0 is automatic. Thus Theorem 3.6 implies Theorem G. Note that L is
always “sufficiently positive" if —Kx is nef.

Remark 3.8. If H7°(X) = 0 for all p > 0, then Theorem 3.6 implies Theorem 3.5 (at least
in the case X is smooth).

Proof- By [10, Thm. 7.1] (or see Theorem 1.14 and Corollary 1.15), given a smooth projective
variety X and a regular fibration f : X — Y with Y normal, the following are equivalent:

(1) R?f.Ox =0for p >0
(2) Y has rational singularities and f is a cohomologically trivial fibration.

Thus the conditions on the right hand side of the theorem can be rephrased as regular
fibrations f: X—Y such that R? f,L™ =0 for all p > 0 and all m > 0.

Start with an intermediate rationalization of singularities:

h

P(OaL) s R —5 C(X, L)
w

Note that the exceptional divisor E of u is isomorphic to X. Define ¥ := A(E) to be the
image of £ in R. We call the induced map f: X—Y. We want to show that R?f,.L™ = 0
for all p > 0 and m > 0. Note that the thickening mE admits a map to X (the projection

mE c P(O & L) 5 X) which makes O,z into a graded Ox-algebra, and we may write
OnE = OX@LEB"'@Lm_l,

as a graded Oy-module. By the theorem on formal functions,

Rt by (Op(0or))y = @mxoR! £i(L™).

The assumption that R has rational singularities implies the left hand side vanishes. There-
fore R? f,.L™ = 0 for all p > 0 and all m > 0.

In the other direction, start with a cohomologically trivial fibration such that R? f,L™ =
0 for all p > 0 and m > 0. We need to construct an intermediate rationalization. Let
n: P(O® L)— X denote the projection onto X. Define R = Ry, to be the normalization of
the image of the map

p=(uforn): P(O®L)—-C(X,L)xY.

Let i: P(O®L)—R and g: R—C(X, L) denote the induced maps. Clearly, the sheaf R?4.(Op(0or))
is supported on a thickening of £(E) C R. By applying the theorem on formal functions in the
same way as above, we get that R has rational singularities and thus defines an intermediate
rationalization of singularities of C(X, L). Showing that these constructions are compatible

is straightforward. m]
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Example 3.9. We give an example of a cone with infinitely many intermediate rationaliza-
tions. Consider a K3 surface X with infinitely many (-2)-curves. Each curve C is contractible
and the contraction defines a map f; : X — Y, where Y has a single canonical (and thus
rational) singularity. As Ky = 0 is nef, Remark 3.7 implies that any ample line bundle L
on X is “sufficiently positive” in the sense of Theorem G. Thus by Theorem G, there are in-
finitely many (non Q-factorial) intermediate rationalizations of singularities of C(X, L). And
in fact, there cannot exist a “minimal” one. (It is maybe worth noting that although there
are infinitely many (-2)-curves, by [16, Thm. 0.1(b)] these (-2)-curves have only finitely many
orbits under the automorphism group Aut(X).)

4. MAXIMAL CHOW CONSTANT AND CHOW TRIVIAL FIBRATIONS

In this section we show that maximal Chow constant fibrations and maximal Chow trivial
fibrations exist. One of the key points is that Chow constant fibrations are the fibrations
whose fibers are Chow constant subvarieties (see Theorem 2.5). The existence of maximal
Chow constant fibrations is in some sense due to Roitman [14, Lemma 2]. The construction
is quite general and seemingly well known to experts and it is possible there is a more original
reference. We start by recalling Roitman’s construction. Moreover, we give criteria for the
nontriviality of these maximal fibrations.

Let X be a smooth complex projective variety. Let Chow(X) denote the Chow variety
which parameterizes cycles in X. Let W C X X X be an equivalence relation which is a
countable union of closed irreducible subsets W = U;cnyW; (assume no factors are repeated).
Roitman constructs a maximal quotient r7: X-->X /W with W-equivalent fibers.

Proposition 4.1 ([14, Lem. 2]). Let X and W be as above.

(1) There is a unique maximal and irreducible component Wy C W which contains the diagonal
Ay c X xX.
(2) Wy induces a rational map:

n: X-->Chow(X),

to the Chow variety of X, and a general fiber of 1 is irreducible. (Thus if we define Y to be a
resolution of singularities of the closure of the image of 1 then

n: X--»Y

is a fibration.)
(3) The fibration n is uniquely maximal in the following sense, if ¢p: X -->Z is another fibration
then the fibers of ¢ are equivalent under the relation W <= n factors through ¢.

Definition 4.2. We call the map 7: X--»Y in the previous proposition the maximal W-
constant fibration. When W C X X X is the equivalence relation defined by equivalence of
points in CHo(X) we say Y is the maximal Chow constant fibration. Thus Proposition 4.1

implies Theorem A for Chow constant fibrations.
18



Sketch of Proof. Throughout, for a subvariety W’ c X X X we use
W, =W'n(zxX)cX

to denote the fiber of W’ over z € X under the first projection. First, we remark that if z € X
is general and W’ C X X X is irreducible and contains the diagonal then every component
of W, contains the diagonal point (z,z) € Ax.

To prove (1), assume that there are two maximal components Wy, W1 C W which contain
the diagonal. The idea is to use the transitivity of W. We make the following assertion, which
is a standard application of the Baire category theorem:

(x) Maximality of Wj along with the uncountability of C guarantees
that a very general point (x1, x9) € Wy satisfies (x1,x2) ¢ U W;.
ieNi#0

Let z € X be very general and let (z, x) € W be a very general point in (W)),. By transitivity,
z X (W1), € W and contains the very general point (z,x) € z X W,. It follows from (x) that
(M1)x € (Wh),. Taking the limit as x approaches z shows (W1), € (Wp),. (This uses that z is
very general, so the projection of W onto the first factor is flat in a neighborhood of z.) As
z is very general and W, and W; are maximal, we have Wy = Wj.

So let Wy C W be the unique, maximal irreducible component which contains Ax. Clearly
Wo € X X X is a reflexive subset. A similar argument to the previous paragraph implies
that for z general (W)), is irreducible, and it also shows that if (2, x) € (W), is general, then
(Wo)x = (Wp), € X. Thus we have shown (2) and define the maximal W-constant fibration
to be the map

n: X-->Chow(X)
sending x — 1(x) := [(Wo).].

By reflexivity, for a general point x € X, the closure of the fibers of 1 at x is (W))y.

The universal property (3) follows from the fact that pairs of points in a general fiber of ¢
gives rise to an irreducible component of W which contains Ay. Unique maximality of W}
then implies that n factors through ¢. m|

Theorem 4.3. Letn: X-->Y be the maximal Chow constant fibration of a smooth n-dimensional
projective variety X. The following are equivalent.

(1) dim(Y) < d.
(2) CHy(X) is supported on a variety of dimension d.
(3) CH(X) is supported on a smooth irreducible variety of dimension d.

(4) For every point x € X there is a dimension n — d subvariety V. C X such that every point
x' €V satisfies x = x’ € CHo(X).

Proof. For (1) = (4) let I, ¢ X XY be the closure of the graph of 5. Let y be a point in

the image of (I')),. Then (I';), C X consists of points rationally equivalent to x € X and
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has dimension at least n — d. For (4) = (3), take a general complete intersection of ample
divisors on X. (3) = (2) is clear.

What remains is (2) = (1). Suppose that CHy(X) is supported on a union of subvarieties
V' c X such that dim(V) = d. Let W Cc X X X correspond to equivalence in CHy(X). Take
the preimage of Wy in V' X X, i.e. define

Wy :={(v,x) e VXX |v=xe CHyX)}.

Wy is a countable union of subvarieties, and as CHy(X) is supported on V, we have that
there is a component of W C Wy such that the projection

P VxX—>X

maps W surjectively onto X. For a point v € V, po((W1),) consists of points which are
rationally equivalent. Surjectivity of po|p; implies that through a general point x € X thereis a
Chow constant subvariety Z, C X containing x and satisfying dim(Z,) > n—d. Therefore, the
maximal component W, C W containing the diagonal has fiber dimension dim((W}),) > n—d.
Thus by construction of ¥, dim(Y) < d. O

To obtain the maximal Chow trivial fibration is not much more difficult. It will be necessary
to construct a relative Chow constant fibration. Let 7: X—Z be a regular fibration of pro-
jective varieties. Assume that X is smooth. Consider the equivalence relation W(r) ¢ X x X

defined by:
W(r) := {(x1, x9) € X|n(x1) = n(x9) = z and x1 = x9 € CHy(X,)}.
Then we have W(r) = |J W(r); is a countable union of closed subsets. Let W (xr), be the
ieN

unique maximal component containing Ax.

Lemma 4.4. (1) Let Y = (X /W (n)) be the maximal W (r)-constant fibration. There is a
commutative diagram:

(2) If z € Z is very general, then (W (n1)o), = (W (n),)o, i.e. for very general z € Z the map
777r|Xz: XY,

is equivalent to the maximal Chow constant fibration of X,.

Proof. (1) holds because the closure of the fibers of 77, are contained in fibers of 7. (2) follows

from the assertion (x) in the sketch of the proof of Proposition 4.1. m]
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To construct the maximal Chow-trivial fibration of X we consider the following sequence:

X =X, <& Jm
:710/ Hh/ / |77n/
0] <+ T+l
Spec(C) ¢——— Y 4----- Yi € e Yy Lo

Each X; is a resolution of the map 7;_1, the map ¢, is birational, and 7; is defined to be the
maximal relative Chow constant fibration of ;. The following proposition implies Theorem F
for Chow trivial fibrations.

Proposition 4.5. Forn > 0, we have Y, ~p;; Y1 i -+ -. Set Yoo := Y.

(1) The composition
UES

- —
- ~
—

-7 A
X -7 Xur1 777 Yo

is a Chow-trivial fibration.

) If p: X-->Z is another Chow-trivial fibration, then n« factors through .

(3) We have dim(Ys,) < m if and only if through a very general point x € X, there is a Chow
trivial subvariety x € V of codimension > m.

Proof. (1) follows from Lemma 4.4(2) and the fact that the map from a fiber X, to a point is a
Chow constant fibration &= CHy(X,) = Z. (2) and (3) can be checked for N, " »Nu- O

Definition 4.6. Let 1., and Y, be as in the previous proposition. The maximal Chow
trivial fibration is the rational map

Noo: X Y.

Remark 4.7. It follows from Lemma 1.18 and Corollary 2.8 that the maximal Chow constant
fibration and the maximal Chow trivial are almost holomorphic (see Def. 1.17). As a conse-
quence if x € X is very general, any Chow constant (resp. trivial) subvariety is contained in
a smooth Chow constant (resp. trivial) subvariety.

5. MAXIMAL COHOMOLOGICALLY CONSTANT AND TRIVIAL FIBRATIONS

The aim of this section is to prove the existence of maximal cohomologically constant
and trivial fibrations. In fact, we show that given any integrable distribution D on a smooth
complex projective variety (e.g. Voisin’s distribution, Def. 1.6) there is a maximal fibration
whose generic fibers are contained in the leaves of the associated foliation. The idea of using
a foliation to prove the existence of maximal fibrations was suggested to us by Claire Voisin.

Definition 5.1. Let D C Tx be an integrable distribution on a smooth variety X. We say

that a subvariety V' C X is contained in D if at a general point x € V,
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(1) D is locally a vector subbundle of Ty at x (i.e. the quotient 7x /D is locally free at
x), and
(2) the subspace Ty |, C Tx|, is contained in D|y.

Remark 5.2. Assume that V intersects the open set U C X where D C Ty is a sub-vector
bundle. Consider the composition

Ty — Txly —— (Ixly)/(Dly)

a
Then V is contained in D < a|yny = 0.

Remark 5.3. If U is the open set where D C Ty is a subbundle, then D gives rise to a
foliation on U. Assuming x € V' N U, then V is contained in D <= analytically locally
around x, V' is contained in a leaf of the foliation.

Definition 5.4. Let X be a smooth projective variety. A fibration f : X --» Y is a D-constant
fibration if the general fiber is contained in D.

Remark 5.5. By Proposition 1.9 we have that for a smooth projective variety X, a fibration
f:X--»Y is Chow constant <= it is Vy-constant <= a general fiber is contained in
Voisin’s distribution.

To construct maximal D-constant fibrations, we want to show that there is a maximal
family of D-constant subvarieties. We proceed as follows. Let Hilb(X) be the Hilbert scheme
of X and consider the locally closed subset

V is a variety, and

DVar = { [V] € Hilb(X) V is contained in D

} c Hilb(X),

with the reduced scheme structure. Then DVar is a countable union of quasiprojective vari-
eties. Write
DVar = U Si
ieN
where each §; is a subvariety and §; ¢ §; <= i = j. Let g, denote the closure of

S; ¢ Hilb(X). Write F, for the universal family over §,. F; comes equipped with projections:

F, Iy x

s

Si
It is natural to restrict ourselves to the varieties contained in D which sweep out X. Define
I :={i e N| ¢; is dominant} c N, and DDom := {Ei}iel

Remark 5.6. Let x € X be a very general point, and let V' C X be a subvariety contained in

D. If x € V then there exists §; € DDom such that [V] € ;.
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We make DDom into a partially ordered set by
S; < Ej e for[V]eS; general, 3 [W] e §j such that V' c W.
For any i, j € N we define
Ss;:={SkS; > S;} ¢ DDom, and S; VEI =8 OEZJ-.

Construction 5.7. We show that for any E,-,Ej € DDom, the set E, ng # (. We may choose
very general points x € X, [/4] € S}, and [V5] € Ej subject to the following conditions:

(i) x is very general in the sense of Remark 5.6,
(ii) for any S% and [V3] € S such that 14, Vo C V3 we have S € §; V S,
(iii) x € V1 and x € V.

Let Q C qul(Vl) be an irreducible component such that [V3] € p;(Q) and define:
Vs = g;(61(;(Q)))-

Then, V3 C X is a subvariety containing both
V7 and Vy. If we can show that I3 is con-
tained in D, then by condition (iv) above we
are done. As x is very general, D is a subbundle
of Tx in a neighborhood of x. Therefore, V3 is
(the closure of) a union of D-constant subvari-
eties which are deformations of V5, all of which
meet V7. As 17 is also D-constant, in an ana-

i ) . F1GURE 2. The deformations of V5 considered are lo-
lytlc nelghborhOOd of x every deformation of V5 cally contained in a leaf. As they meet V3, which is

must be contained in the leaf which contains x. also contained in a leaf, they are all contained in the
Therefore, V3 is analytically locally contained same leaf.

in the leaf at x, hence by Remark 5.3 we see

that V3 is contained in D.

Remark 5.8. Note that the construction of V3 involves choices and is asymmetric in i and
j- The following properties hold:

(1) if V1 = V3 then p7'(p;(Q)) = Q, and B
(2) if V5 = V3 then p;(Q) is a single point and the map ¢,: F;—X is generically finite.

As the dimension of subvarieties of X are bounded from above, there is a unique maximal
family S € DDom. Thus Sy vV So = {So}.

Theorem 5.9. With the above setup.
(1) The map qo: Fo—X is birational, and the composition

— b . =
X -y F LS,
AN 1
~._n __-
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is a D-constant fibration.

(2) If V. C X is a D-constant subvariety which contains a very general point x € X, then V is
contracted by n.

3) If p: X-->Y is any D-constant fibration, then n factors through ¢.

Proof. 1t follows from Remark 5.8 that ¢ is birational. By construction, the map 7 is a D-
constant fibration, which proves (1). To prove (2), by Remark 5.6 there exists an S; € DDom
such that [V'] € S;. But Sy is uniquely maximal, so V' must be contained in a fiber of 7.
Finally, to prove (3), let V, = ¢71(y) be the closure of a very general fiber of ¢. By (2), this
must be contracted by 7. As a consequence, the closure of the image of X-->Y x Sy is the
graph of the appropriate rational map ¥ --5. m|

Definition 5.10. After resolving the singularities of Sy, we call the map 7 the maximal D-
constant fibration. When D = Vy, 1 is the maximal cohomologically constant fibration.

This proves Theorem A for cohomologically constant fibrations. Furthermore, we have

Corollary 5.11. Given a regular fibration n: X —Z of smooth projective varieties, there is a maxi-
mal relative cohomologically constant fibration

Proof. Apply the construction of the maximal D-constant fibration when D =V, the relative
Voisin distribution (Remark 1.8). Then, if necessary, resolve the map Y —Z. This defines a
maximal relative cohomologically constant fibration 17,: X-->Y over Z, as desired. m]

Lemma 5.12. Given a regular fibration n: X —Z of smooth projective varieties, for a very general
point z € Z, the maximal relative cohomologically constant fibration n, induces the maximal coho-
mologically constant fibration on the fibers over z (i.e., for general z € Z, the map n.|x,: X,-->Y, is
the maximal cohomologically constant fibration of X,).

Proof. As stated in Remark 1.8, for a general point x € X, the distribution V, is equal to Vy,.
The statement follows. i

To obtain the maximal cohomologically trivial fibration of a smooth variety X, we proceed
as in the end of §4. Consider the sequence

X XO ¢ \ n L//n+1

Spec(C) <

where the birational map ¢;: X;—X;_; is a resolution of the map 7,_1 and 7, is defined to be

the maximal relative cohomologically constant fibration of ;.
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For n > 0, Y, ~pir Yus1 =bir ... (as the fiber dimension is bounded). For zn sufficiently
large define Y, := Y. Define 17.,: X-->Y, to be the composition 1. : X ~p;; Xp1—Y, = Y.
This is the maximal cohomologically trivial fibration of X.

Proposition 5.13. (1) The rational map ne: X -->Yo is a cohomologically trivial fibration.
) If p: X-->Z is another cohomologically trivial fibration, then 1o factors through ¢.

Proof. To show (1), as Y, ~pir Yn+1 ~pir - - - it follows by Lemma 5.12 that for a very general
fiber X, of n,, the map from X, to a point is a cohomologically constant fibration. Thus X,
is cohomologically trivial. (2) can be checked for each map 7; using Theorem 5.9(2). m]

This proves Theorem F for cohomologically trivial fibrations.

Definition 5.14. For a smooth projective variety X, the rational map 7.: X-->Y, defined
above is the maximal cohomologically trivial fibration.

Remark 5.15. As in Remark 4.7, it follows from Lemma 1.18 and Corollary 1.16 that the
maximal cohomologically constant fibration and the maximal cohomologically trivial fibra-
tion are almost holomorphic.

APPENDIX A.

Throughout this appendix, by a curve we mean a reduced, 1-dimensional scheme of finite
type over an arbitrary field £. The point of this appendix is to prove that if X is a projective
variety over an arbitrary field £ and CHy(X) (resp. CHo(X)®Q) is supported on a curve, then
CHy(X) (resp. CHo(X) ® Q) is finite dimensional in the sense of Mumford (see Def. 2.16).
The main technical problems arise in considering reducible and singular curves. If

C=CuUGC
is a disjoint union of two projective curves then CHy(C) is not finite dimensional, as

CHy(C)o = |_J (CHo(C1)x x CHo(Co) 1)
kez

contains divisors with unbounded degree on (7. This issue can be overcome in two parts.

(1) If C is a connected curve, then CHy(C) (resp. CHy(C) ® Q) is finite dimensional.
(2) If CHy(X) is supported on a curve, then it is also supported on a connected curve.

Proposition A.1. IfC = C1U- - -UCy, is a projective connected curve, then CHy(C) (resp. CHy(C)®
Q) is finite dimensional.
Proof- First note that the map of sets:

CHy(C) x Q—CHy(C)® Q

is surjective. Thus, if CHy(C) is finite dimensional, then so is CHy(C) ® Q.
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Let
v: D—C

be the normalization of C, i.e. D = D, U --- U D,, where D; is the normalization of C;. Let
U c C be the regular locus. Then U is nonempty in each component (;, and the map D—C
is an isomorphism over U. Let a (resp. b) be the number of closed points in D \ U (resp.
C \ U). Consider the localization sequences:

7* —» CHo(D) —> CHo(U) ——> 0
l«» \Lv* lg
7> —— CHy(C) —— CHy(U) — 0.
The rows of the above diagram are exact. Moreover, the image of ¢ is full rank in Z° (every

singularity point in C has a nonempty preimage in D). As a consequence, the cokernel
CHy(C)/Im(v.) is finite, thus the cokernel doesn’t affect the finite dimensionality of CH(C).

So, to prove CH(C) is finite dimensional is suffices to show there exists an integer d > 0
such that the difference map:

Sym?(D)(k) x Sym?(D)(k)—CHy(C)

contains Im(v.) N CHy(C)g. Consider the following commutative diagram of degrees:

0 — ker(vy) —— CHy(D) —=3 CHy(C)

! Jaes Jaee

0 — zm1l s zm Z s 7 5 0

where deg = (deg;,---,deg, ) and deg; is the degree map on D;. It is easy to see that the
image of deg has full rank, and it follows that the image of ker(v.) in Z™! has full rank. Let

Ay :={B € CHo(D)o | |deg;(B)| < N Vi} c CHo(D)o,

i.e. Ay is the subset of total degree 0 cycles such that each |deg,| is bounded by N. As ker(v.)
has full rank in Z™71, it follows that there exists N > 0 such that any

Im(v.) N CHy(C)p C v.(Ay) € CHp(C).

The proposition now follows from the following lemma. m]

Let D =Dy uU---uUD, and Ay be as in the proof of the proposition.
Lemma A.2. There exists d > O such that the image of the difference map
Sym?(D)(k) x Sym?(D)(k)—CHy(D)o

contains Ay .
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Proof. Let § € Ay be a degree 0 divisor such that |deg,(8)] < N for each i. The point
is to show that any such g is the difference of effective divisors of bounded degree. Let
4 € CHy(D) be an ample divisor. By applying Riemann-Roch for each component D;, there
exists an £ > 0 such that Op(¢4 + B) is effective for any § € Ay. As a consequence, we can
take d = ¢ - deg(4) in the statement. O

Lastly we need the following easy lemma.

Lemma A.3. Let X be any projective variety over k. Any curve C C X is contained in a connected
curve C' C X.

Proof.: Any two closed points in X can be connected via a connected curve (take a complete
intersection of sufficiently ample divisors through both points). The lemma follows. m]

Thus we have shown:

Corollary A .4. If X is a variety over an arbitrary field k and CHo(X) (resp. CHo(X) ® Q) is
supported on a curve C C X, then CHo(X) (resp. CHo(X) ® Q) is finite dimensional.
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