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The goal of this paper is to use specialization to characteristic p techniques to give restric-
tions on the degrees of rational endomorphisms of complex Fano hypersurfaces.

Kollár [11] showed that Fano varieties that are p -fold cyclic covers in characteristic p can
carry holomorphic forms. The positivity of these forms is a powerful tool for studying these
varieties, and by specializing to characteristic p one can prove results about Fano varieties
in characteristic 0. Let X ⊂ ℙn+1

ℂ
be a very general hypersurface of degree d . Kollár used

specialization mod p to prove that if d ≥ 2d(n + 3)/3e then X is not rational (or even ruled).
If d ≥ 2d(n + 2)/3e then Totaro [14] used specialization mod p to show that X is not even
stably rational. In [3], the authors used specialization mod p to prove that the degree of
irrationality for Fano hypersurfaces can be arbitrarily large.

Let RatEnd(X ) denote the set of rational endomorphisms of X with degree at least 1,
and let Bir(X ) ⊂ RatEnd(X ) denote the subset of birational automorphisms. If X is of
general type then it follows from [9] that Bir(X ) = RatEnd(X ) (in other words, there are
no rational endomorphisms of degree ≥ 2). Thus, studying degree ≥ 2 endomorphisms on
smooth hypersurfaces is only interesting in the Fano or Calabi-Yau range. On the other hand,
every rational variety admits rational endomorphisms of every degrees, so one can view our
main result as strengthening the nonrationality of the varieties involved.

Theorem A. Let X ⊂ ℙn+1 be a very general hypersurface over ℂ of degree d and dimension n ≥ 3.
Let p be a prime number such that

d ≥ p
⌈
n + 3
p + 1

⌉
.

If q is any rational endomorphism of X of degree _ then _ ≡ 0 or 1 (mod p).

Very little is known about rational endomorphisms of nonrational varieties. Dedieu ([4]) has
given constraints on degrees of rational endomorphisms of K3 surfaces. These are the first
constraints on rational endomorphisms of nonrational hypersurfaces.

As above, let X ⊂ ℙn+1
ℂ

be very general of degree d and dimension n with a rational
endomorphism of degree _ . In low dimensions, we have the following constraints on _ :

(n,d) (3,5) (4,6) (5,6) (5,7)
type Calabi-Yau Calabi-Yau Fano Calabi-Yau

_ ≡ 0 or 1 (mod 5) (mod 3) (mod 3) (mod 3) and (mod 7)
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Unirational varieties are sources of varieties with many rational endomorphisms. If X
is unirational, precomposing the unirational parametrization with any map Xdℙn gives a
rational endomorphism:

XdℙndX .

For example, any smooth cubic hypersurface of dimension ≥ 2 is unirational, and therefore
admits many rational endomorphisms. Moreover, Beheshti and Riedl [2] proved that if X ⊂
ℙn+1
ℂ

is smooth and n ≥ 2d ! then X is unirational. So for any d > 0 there exist degree smooth
d hypersurfaces of large dimension with many rational endomorphisms. On the other hand,
any rational endomorphism constructed this way will have degree divisible by the degree of
the unirational parametrization. Kollár showed (by specializing mod p) that if X ⊂ ℙn+1

ℂ
is

very general of degree d ≥ p d(n + 3)/(p + 1)e then any unirational parametrization (in fact,
any parametrization by a uniruled variety) has degree divisible by p . Indeed, it is natural
to conjecture there are Fano hypersurfaces with no rational endomorphisms of degree ≥ 2.
Such a variety would provide an answer to a famous open problem in that it would be an
example of a rationally connected variety which is not unirational.

Another source of varieties with rational endomorphisms are varieties that birationally
admit elliptic �brations, i.e. a variety X with a rational map:

XdB

such that X /ℂ(B) is birational to a ℂ(B)-elliptic curve Eℂ(B) (with a ℂ(B)-point). For exam-
ple, any cubic hypersurface is birational to an elliptic fibration. Note that for any integer m,
an elliptic curve Eℂ(B) has a multiplication by n map:

m : Eℂ(B)→Eℂ(B) ,

which has degree n2. If p is a prime and n2 ≡ 0 or 1 (mod p) for all n ≥ 2, then p is equal
to 2 or 3. Thus the degree restrictions in Theorem A are enough to prove the following:

Corollary B. Let X ⊂ ℙn+1
ℂ

be very general of degree d . If d ≥ 5d(n+3)/6e then X is not birational
to an elliptic �bration.

For example, we see that a very general Calabi-Yau quintic threefold is not birational to an
elliptic fibration. For Calabi-Yau hypersurfaces this was already known by work of Grassi
and Wen (see [5, Thm. 1.8] and [6]). Similarly, if X is birational to a genus 1 fibration
without a section but with a line bundle of relative degree X then X admits rational endo-
morphisms of degree (mX + 1)2 for all m ≥ 0. Likewise, if X is birational to a fibration by
g -dimensional abelian varieties then X admits rational endomorphisms of degree m2g for all
m ≥ 0. Theorem A can be applied to give results in these settings as well.

The idea behind this paper is to spread out rational endomorphisms in characteristic p .
The main technical di�culty that we encounter is proving that certain cyclic covers in mixed
characteristic have “mild singularities" after allowing for the possibility of an arbitrary finite
base change. The technical result that we prove is:
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Theorem C. Let ℤshp be a strict Henselization of the p-adic integers with �eld of fractions ℚsh
p and

residue �eld Fp . Let X be a smooth scheme over ℤshp . Let D ⊂ X be a divisor which is smooth over

ℤshp such that O(D) � Lp for some line bundle L on X . Let Y be the p-cyclic cover of X branched at

D. Suppose the natural section s ∈ H 0(XFp
,OX

Fp
(D)) has nondegenerate critical points [10, 17.3].

Then Y has sustained separably uniruled modi�cations (see De�nition 1.1).

Roughly speaking Y /ℤshp has sustained separably uniruled modifications if for every finite
base change ℤshp ⊂ R, every exceptional divisor over XR is separably uniruled. The proof
of Theorem C involves resolving these mixed characteristic cyclic covers by a sequence of
weighted blowups.

Sketch of proof of Theorem A. Consider a schemeY over ℤshp with mild singularities. We
may spread out a rational endomorphism on the generic fiber by considering the (normal-
ization of the closure of the) graph Γ in Y ×ℤshp Y , with projections c1, c2. The central fiber

of Γ possibly breaks up into a union of components

Γ0 ∪ E1 ∪ · · · ∪ En ,
where Γ0 is the unique component birational to Y0 under c1 and the Ei are exceptional
divisors overY . The second projection then gives a rational endomorphism

q0 : Y0 'bir. Γ0 Y0
c2

of the central fiber. The assumption on mild singularities implies that all exceptional divisors
Ei are separably uniruled, butY0 is not separably uniruled. Therefore, we see that each map
c2

��
Ei
: Ei d Y0 must have degree divisible by p . Comparing the degree of the original rational

endomorphism on the generic fiber to the degree of q0 we see they are congruent mod p .
Finally, we use the positivity properties of forms in characteristic p to show that Y0 has no
separable rational endomorphisms of degree ≥ 2.

Acknowledgments. We would like to thank Claire Voisin for raising this question. We thank
Dan Abramovich for explaining weighted blowups in mixed characteristic. We would also
like to thank Kenneth Ascher, Nguyen-Bac Dang, Kristin DeVleming, François Greer, Kiran
Kedlaya, János Kollár, Robert Lazarsfeld, John Lesieutre, Daniel Litt, James McKernan, John
Ottem, and Burt Totaro for helpful conversations.

1. Specializing rational endomorphisms

The purpose of this section is to explain the relationship between uniruling degrees and
specializations of endomorphisms for schemes with mild singularities. Throughout, let R be
a DVR, let T = Spec(R) with closed point 0 ∈ T , let [ = Frac(R) be the field of fractions,
and let ^ be the residue field. Let [ and ^ be their algebraic closures.

Many of the concepts below are discussed in [11, IV.1.1 and VI.1.6].

De�nition 1.1. Let X be a normal scheme. We say that X has ruled modi�cations if every
exceptional divisor of every normal birational modification f : Y→X is ruled. Likewise, we
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say that X has separably uniruled modi�cations if every exceptional divisor of every normal
birational modification f : Y→X is separably uniruled.

Example 1.2. A regular scheme X admits ruled modifications (see [1], or [11, Thm. VI.1.2]).

Remark 1.3. Having ruled modifications can be checked locally. To show a scheme X admits
(separably uni-)ruled modifications it su�ces to find a proper birational map from a regular
scheme:

a : X→X
such that all exceptional divisors are (separably uni-)ruled [11, Thm. VI.1.7].

We believe the following is well known to experts.

Lemma 1.4. If X is a complex variety that admits an étale map to a toric variety:

k : X→T

then X admits ruled modi�cations.

Proof. Take a toric resolution of T; by this, we mean a morphism of toric varieties:

` : T→T

such that T is smooth, ` is proper, and the morphism is defined by a refinement of the fan
of T. Then (1) every exceptional divisor E of ` is a toric variety, and (2) the map

` |E : E→B := `(E)
is a toric map. If ℂ(B) is the fraction field of B then Eℂ(B) is a rational ℂ(B)-variety.
Now consider the following fiber square:

X T

X T

a `

Then X is smooth as it is étale over T. Let D ⊂ X be an irreducible exceptional divisor of a
with image E ⊂ T an exceptional divisor of ` and let B ′ ⊂ X be the image of D and B ⊂ T

the image of E . Then we have D = E ×B B ′ and as a result Dℂ(B ′) = Eℂ(B ′) is rational over
ℂ(B ′). So D is ruled. �

For applications it will be necessary for our families XR to have ruled modifications after
arbitrary finite base change R ⊂ R′. This will allow us to specialize properties from the
geometric generic fiber X[ to the special fiber.

De�nition 1.5. Let XR be a normal R-scheme. We say XR has sustained ruled modi�cations
if for every extension of DVRs R ⊂ R′ such that dim[ (Frac(R′)) is finite, there is a further
extension R′ ⊂ R′′ with dim[ (Frac(R′′)) finite such that XR ′′ is a normal scheme with ruled
modifications. We define sustained separably uniruled modi�cations with appropriate substitu-
tions.
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Example 1.6. If XR is a smooth R-scheme then XR is regular and for every extension R ⊂ R′
of DVRs we have XR ′ is a smooth R′-scheme, and is therefore regular. Thus by Example 1.2,
XR admits sustained ruled modifications.

Example 1.7. Let XC → C be a family of complex varieties over a smooth complex curve
such that the total space XC is smooth. Let R be the local ring at any point 0 ∈ C . Assume
the central fiber X0 ⊂ XR is reduced with simple normal crossing. Then XR has sustained
ruled modifications. Indeed let R ⊂ R′ be an extension of DVRs with uniformizers t and
t ′ respectively. We can assume that t = u (t ′)k for some k and unit u ∈ R′. After possibly
extending R′ ⊂ R′′ to include the k -th root of u we can assume that t = (t ′′)k . By the simple
normal crossing assumption, every point in (XR ′′)0 has a neighborhood of the form

U :=
(
t ′′k = x1 · · · xm

)
⊂ X ×A1

for some subsequence x1, . . . ,xm of a regular sequence on XR . This gives (after possibly
shrinking further) an étale map:

U→T =
(
x1 · · · xm = (t ′′)k

)
⊂ An+1

to a toric variety. By Lemma 1.4, X has sustained ruled modifications.

De�nition 1.8. Let X be a variety. A uniruling degree of X is the degree of a dominant and
generically finite rational map V × ℙ1dX .

Theorem 1.9. Let XR be a normal R-scheme, assume ^ = ^ is algebraically closed, and assume [ is
perfect.

(1) Suppose that X^ is reduced and irreducible. If ℓ divides every uniruling degree of X^ and XR
has ruled modi�cations then for any rational endomorphism q[ of the generic �ber X[ , there
is an endomorphism q^ of X^ such that

deg(q[) ≡ deg(q^) (mod ℓ ).

(2) Let us now assume that
X^ = D1 ∪ · · · ∪Dm ∪ X ′^

is a reduced divisor and all the Di are ruled divisors. If ℓ divides every uniruling degree of
X ′^ and XR admits sustained ruled modi�cations, then for every rational endomorphism q[

of X[ there is a rational endomorphism q^ of X ′^ such that

deg(q[) ≡ deg(q^) (mod ℓ ).

(3) Suppose that char ^ = p and X^ is reduced, irreducible, and not separably uniruled. If XR
admits sustained separably uniruled modi�cations, then for every rational endomorphism q[

of X[ , there is a rational endomorphism q^ of X^ such that

deg(q^) ≡ deg(q^) (mod p).

Proof. For (1), consider the normalization of the closure of the graph of q[ ,

ΓR→XR ×R XR .
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Then ΓR is flat over T and the central fiber Γ^ has 2 projections c1 and c2. By flatness,
the projection map c1 (resp. c2) has degree 1 (resp. deg(q[)). Thus c1 maps a unique
component of Γ^ birationally to X^ . We will show that q^ := c2 ◦ (c1 |−1X ′) has the required
degree.

As XR has ruled modifications, every other component of Γ^ is ruled. Thus we may write

Γ^ = X ′^ ∪ E1 ∪ · · · ∪ Er

where X ′^ is the component mapping birationally to X^ and the reduced exceptional divisors
Ered
i are all ruled. The degrees of the maps

Ei→X^

under the second projection are all either 0 or uniruling degrees. Therefore,

deg(q[) = deg(c2)

= deg(c2 |X ′^ ) +
∑
i

deg(c2 |Ei )

≡ deg(c2 |X ′^ ) (mod ℓ )

To prove (2), let [ ⊂ [′ be a finite extension such that q[ is defined over [′. Moreover,
assume there is a DVR R′ ⊂ [′ such that XR ′ has ruled modifications and Frac(R′) = [′. Note
that the residue field of B is also ^ (as ^ is assumed to be algebraically closed). Consider the
normalization of the closure of the graph of q[ ′:

Γ→XR ′ ×R ′ XR ′ .

The case when deg(q[) ≡ 0 (mod ℓ ) is uninteresting (by considering any constant map
X ′^→X ′^). So we may assume that deg(q[) . 0 (mod ℓ ). As in the proof of (1), we have by
flatness that the map c1 (resp. c2) has degree 1 (resp. deg(q[)). So we may write

Γ^ = X
′
^ ∪D ′1 ∪ · · ·D

′
m ∪ E1 ∪ · · · ∪ Er

where X
′
^ (resp. D

′
i ) is birational to X ^ (resp. Di ) under c1, and the Ei are contracted by c1.

Then all the Ei are ruled. The assumption that deg(q[) . 0 (mod ℓ ) and that ℓ divides any
uniruling degree of X^ implies that X

′
^ maps dominantly and generically finitely onto X ^ .

Thus the composition

q^ : X ^ 'bir X
′
^→X ^

is a rational endomorphism of X
′
^ and a similar computation to part (1) proves

deg(q^) ≡ deg(q[) (mod ℓ ).

The proof for (3) follows the same strategy as (1). The added hypothesis that X^ is not
separably uniruled implies that every component Ei of Γ^ other than the unique one birational
to X^ (via c1) is separably uniruled. Therefore each map Ei→XR has degree divisible by p .
The proof then follows part (1). �
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Corollary 1.10. Working over ℂ, let X → B be a smooth family over a complex variety B. Fix
integers ℓ ≥ 2 and _ ≥ 1. Then the locus

B(ℓ ,_ ) :=
{
b ∈ B

���� ℓ divides every uniruling degree of Xb and � a rational
endomorphism ib : Xb d Xb with degree ≡ _ (mod ℓ )

}
,

is given by the complement of a countable union of closed subvarieties of B.

Lemma 1.11. (1) Suppose that X→B is a map of complex varieties. Let [ be the geometric
generic point of B. If a very general �ber Xt ∈ X admits a rational endomorphism of degree
_ then so does the geometric generic �ber X[ .

(2) Suppose that K ⊂ L is an extension of algebraically closed �elds. If XL admits a rational
endomorphism of degree _ then so does XK .

Proof. For part (1), by [15, Lem. 2.1] there is a field isomorphism [ � ℂ such that the fiber
product X[ ×[ ℂ is isomorphic to Xℂ as varieties over ℂ. Consider the rational endomor-
phism of schemes: X[ � XtdXt � X[ . The first and last isomorphisms are isomorphisms
of schemes, and the composition commutes with the map to [. This gives the required
endomorphism of X[ .

For part (2), there is a finitely generated integral ring A with K ⊂ A ⊂ L which contains
all the coe�cients defining the rational endomorphism. Then the rational map defined over
L spreads out to a rational map XAdXA. Choosing a general K -point of Spec(A) gives the
rational map XKdXK which has the same degree. �

2. Resolving cyclic covers after base change

The purpose of this section is to prove that p -cyclic covers admit sustained separably
uniruled modifications in mixed characteristic p . To do this we need to resolve the typical
singualarities of these covers. Our resolutions involve certain weighted blowups, which at
every step alternate between two types of isolated double point hypersurface singularities
– up to some mild quotient singularities (the equations of the singularities are given by
(2.1) in §2.3). We believe that an alternative approach to these results is through resolution
techniques coming from log geometry (see e.g. [8]). The arguments in this section are mostly
computational in nature.

2.1. Local equations for singularities of p-cyclic covers. To start we recall the definition
of a cyclic cover. Let X be a scheme and L a line bundle on X . Let s ∈ H 0(X ,L⊗m) be a
section. Let

L = SpecOX

(
⊕i≥0L−i · y i

)
(resp. L⊗m) be the total space of the line bundle L (resp. L⊗m). Then s defines a section:

L⊗m X .

s

There is also an mth power map: L
pm−−→ L⊗m which is a `m -quotient.
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De�nition 2.1. The m-cyclic cover of s is Y := p−1m (s (X )). We say that the cyclic cover Y has
branch divisor (s = 0) ⊂ X .

It follows thatY � SpecOX

(
⊕i≥0L−i · y i/(ym − s )

)
.

Fix an odd prime p and let Xℤshp
be an integral scheme that is smooth over ℤshp . Let

f : Yℤshp
→Xℤshp

be a p -cyclic cover with branch divisor D = (s = 0). Assume that

• the branch divisor D is smooth over ℤshp , and
• the section s ∈ H 0(XFp

,OX
Fp
(D)) has nondegenerate critical points [10, §20.3].

Let q ∈Y (Fp) and f(q ) ∈ X (Fp) be points.
Now assume that

p ,x1, . . . ,xn

form a regular sequence for the regular local ring S of X at f(q ). By the cyclic cover
construction,Y has local equation:

0 = y p + u + f1 + f2 + f3 ⊂ S [y]

where y is the fiber coordinate, u , f1, f2 ∈ ℤshp [x1, . . . ,xn] are constant, linear, and quadratic
polynomials in the xi , and

f3 ∈ (x1, . . . ,xn)3 ⊂ S .
Note that YFp

is singular at q ⇐⇒ f1 = 0 ∈ S /p . In addition, if q ∈ YFp
is a singular point,

then u ∈ ℤshp is a unit (as the branch divisor was assumed to be smooth).

If q ∈ Y (Fp) is a singular point, then as s has nondegenerate critical points, we have
f2 ∈ Fp [x1, . . . ,xn] is a non-degenerate quadratic form. Thus, an appropriate (GLn (ℤshp )-
linear) change of the terms of the x -terms of the regular sequence of S will diagonalize f2
modulo p, so we may assume thatY has an equation of the form

y p + u + x21 + · · · + x
2
n + p ( f1 + f2) + f3 ∈ S [y],

where u ∈ ℤshp is a unit, x1, . . . ,xn ∈ S is a regular sequence at f(q ), f1 and f2 ∈ ℤshp [x1, . . . ,xn]
are homogeneous linear and quadratic polynomials in the x1, . . . ,xn and f3 is in the ideal
(x1, . . . ,xn)3 ⊂ S . The following lemma gives a local description of the singularities onY :

Lemma 2.2. There are elements n1, . . . , nn ∈ pℤshp such that if we set x i := xi − n i , then the regular
sequence

p ,x1, . . . ,xn ∈ S
locally gives Y the form

0 = y p + u + x21 + · · · + x
2
n + p f2 + f3 ∈ S [y]

where u ∈ ℤshp is a unit, f2 ∈ ℤshp [x1, . . . ,xn] is quadratic in the x i s, and f3 ∈ (x1, . . . ,xn)3 ⊂ S .
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Proof. We define the elements n i by a convergent series:

n i =

∞∑
m=1

n i ,m ∈ ℤshp

for n i ,m ∈ ℤshp . The idea is to iteratively complete the square for functions of the form:

pm f1 + x21 + · · · + x
2
n .

A technical problem is that ℤshp is not p -adically complete so one should be careful that the
series converges inside ℤshp . There are two solutions to this problem. The first is that every
coe�cient is actually defined over some ring that is a finite étale extension of the p -adics
which is p -adically complete. The second, is to instead work with a p -adic completion of the
strict Henselization of ℤshp .

Consider an element of the form:

F = u + x21 + · · · + x
2
n + pm f1 + p f2 + f3 ∈ S [y] .

Assume that f1 = a1x1 + · · · + anxn , and set n i ,m := −pmai/2. Then the change of coordinates:

x i + n i ,m = xi

gives

y3 + u + (x1 − pma1/2) (x1 + pma1/2) + · · · + (xn − pman/2) (xn + pman/2)+
3f2(x1 − pma1/2, . . . ,xn − pman/2) + f3(x1 − pma1/2, . . . ,xn − pman/2) ∈ S [y] .

Expanding the terms p f2 and f3 into constant, linear, and quadratic terms in the x i gives:

y3 + u′ + x21 + · · · + x
2
n + pm+1 f ′1 + p f

′
2 + f

′
3 ∈ S [y] .

where u′ ∈ ℤshp is a unit, f ′1 (resp. f
′
2 ) ∈ ℤshp [x1, . . . ,xn] is linear (resp. quadratic), and f ′3 is

in the ideal (x1, . . . ,xn)3 ⊂ S . As pm |n i ,m we see that n i :=
∑
n i ,m ∈ ℤshp converges. Moreover,

the p-adic norm of the linear term goes to 0. �

In order to prove Theorem C, we need to show that after any extension of DVRs ℤshp ⊂ R′
(with dimℚshp

(Frac(R′)) finite) there is a further extension R′ ⊂ R (with dimℚshp
(Frac(R))

finite) such that YR admits ruled modifications. Let c be a uniformizer of R. We know that
there are finitely many singular points qi ∈ YFp

, each of which (by Lemma 2.2) has local
equation

y p + ui + x21 + · · · + x
2
n + p f2 + f3 = 0

where ui ∈ ℤshp are units. We may assume that R contains the p -th roots of all the ui and also
assume that k = ordc (p) is divisible by 2(p − 1).
The regular local ring

SR := S ⊗ℤshp R,
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comes with a regular sequence c,x1, . . . ,xn . Given a singularity of YR with local equation
above and unit term u, we may assume that −X ∈ R is a p -th root of u . After changing the
y -coordinate by X, we see thatYR is locally given by the equation

0 = y p + py2(X2y p−3 + · · · + (p − 1)Xp−2/2) + pyXp−1 + x21 + · · · + x
2
n + p f2 + f3 ∈ SR [y] .

We have now reduced to resolving singularities of this form.

2.2. Charts for two types of weighted blowups. To resolve the singularities of YR , we
alternate between two types of weighted blowups. Here we will define and give a�ne charts
for these weighted blowups. First we define these blowups for a�ne space.

The a�ne space An+1R has a regular sequence x1, . . . ,xn ,y , c at the origin. For An+1R we con-
sider the weighted blowups with weights: ((p−1)/2, . . . , (p−1)/2,1,1) and ((p +1)/2, . . . , (p +
1)/2,1,1). We refer to these weighted blowups as

a− : WB−→An+1R , and a+ : WB+→An+1R .

These charts will be very similar, so rather than describing them separately, we will just write

a± : WB±→An+1R .

To define WB±, we first consider the a�ne scheme:

Z± := Spec(R [x′1, . . . ,x
′
n ,y
′,l,T ]/(c = lT )).

There is a map:
Z±→An+1R

induced by (x1, . . . ,xn ,y) ↦→ (x′1T
(p±1)/2, . . . ,x′nT

(p±1)/2,y ′T ). There is a (Gm)R -action on Z±

defined by the following weights: x′i has weight (p ±1)/2, y ′ has weight 1, l has weight 1, and
T has weight −1. The map Z±→An+1R is Gm -equivariant. We define the weighted blowup as

WB± := (Z± \ (x′1 = · · · = x
′
n = y

′ = l = 0))/Gm ,

which comes with a natural projective morphism:

a± : WB±→An+1R .

For each coordinate x′1, . . . ,x
′
n ,y
′,l, there is an a�ne chart of WB± defined by the Gm -quotient

of the complement of the associated divisor in Z±.

The x′1 ≠ 0 chart, denoted WB±x1 (similarly for the x′i charts) is computed by taking the
spectrum of the ring of invariants:

WB±x1 :=
(
R [x′1,1/x

′
1,x
′
2, . . . ,x

′
n ,y
′,l,T ]/(c = lT )

)Gm .
As x′1 ≠ 0, if we let z be a (p ± 1)/2-th root of x′1 this defines an étale cyclic cover:

SpecR [z ,1/z ,x′2, . . . ,x
′
n ,y
′,l,T ]/(c = lT )→WB±x1 .

There is a Gm -action on the new ring where z has weight 1, and this étale cover descends to
a finite (but no longer étale) degree (p ± 1)/2 cyclic cover of the quotients:(
R [x′1,1/x

′
1,x
′
2, . . . ,x

′
n ,y
′,l,T ]/(c = lT )

)Gm ⊂ (
R [z ,1/z ,x′2, . . . ,x

′
n ,y
′,l,T ]/(c = lT )

)Gm .
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The ring of invariants of the finite cover can be computed to be

R [U2, . . . ,Un , V ,W, Z]/(c = WZ)

where

Ui = x′i/z (p±1)/2, V = y ′/z , W = l/z , and Z = zT .

Define ŴB
±
x1 to be the spectrum of this ring of invariants. The ramification locus of

ŴB
±
x1→WB±x1

is the set of points in V = W = Z = 0 ⊂ ŴB
±
x1 . The map:

â± : ŴB
±
x1→An+1R

is given in coordinates by (Z (p±1)/2,U2Z
(p±1)/2, . . . ,UnZ (p±1)/2, V Z). The preimage of the excep-

tional divisor of a± in ŴB
±
x1 is given by Z = 0. The preimage of the strict transform of the

central fiber is given by W = 0.

The y ′ ≠ 0 chart, denoted WB±y , is given by

WB±y := Spec
(
R [U1, . . . ,Un ,y , W]/(c = yW)

)
where Ui = x′i/(y ′(p±1)/2), y = y ′T , W = l/y ′. The map

a±y : WB±y→An+1R

is given in coordinates by (U1y (p±1)/2, . . . ,Uny (p±1)/2,y). The exceptional divisor is (y = 0).
The strict transform of the central fiber is W = 0.

The l ≠ 0 chart, denoted WB±l, is given by

WB±l := Spec (R [U1, . . . ,Un , V ])

The map

a±l : WB±l→An+1R

is given in coordinates by (U1c
(p±1)/2, . . . ,Unc(p±1)/2, Vc). The exceptional divisor of a±l is

given by c = 0 and the strict transform of the central fiber does not meet this chart.

Lastly, we need to define the weighted blowup of a smooth a�ne R-scheme. Assume A is
a finitely generated R-algebra and the map

Spec(A)→Spec(R)

is smooth. Let q ∈ Spec(A) be an Fp -point with maximal ideal defined by a regular sequence:
m = (c,x1, . . . ,xn ,y). Then (after possibly restricting to an open set) the map:

Spec(A)→An+1R

given in coordinates by (x1, . . . ,xn ,y) is étale and there is only one point over 0. The weighted
blowup of Spec(A) with weights ((p ± 1)/2, . . . , (p ± 1)/2,1,1) at the maximal ideal m with
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respect to the regular sequence (c,x1, . . . ,xn ,y) is defined to be the fiber product:

WB±(A) WB±

Spec(A) An+1R .

The map WB±(A)→WB± is étale and the above charts give rise to charts for the weighted
blowup of Spec(A) by base change.

2.3. Resolving in mixed characteristic p. The goal is to show that a hypersurface singu-
larity of the form

0 = y p + py2(X2y p−3 + · · · + (p − 1)Xp−2/2) + pyXp−1 + x21 + · · · + x
2
n + p f2 + f3 ∈ SR [y]

admits separably uniruled modifications. We will alternate between the types of weighted
blowups defined in the previous section. Recall that k = ordc (p), thus p/ci ∈ R for i ≤ k .
Assume that (2p − 2)s < k . We first define two series of equations:

(2.1)
Fs =y p + y2g (y)p/c(2p−4)s + Xp−1yp/c(2p−2)s + x21 + · · · + x

2
n + p f2 + f3.

Gs =cy p + y2g (y)p/c(2p−4)s+p−3 + Xp−1py/c(2p−2)s+p−2 + x21 + · · · + x
2
n + p f2 + f3.

We say that a scheme has a singularity with equation Fs (resp. Gs ) if (a) locally it can be
embedded in a smooth a�ne R-scheme Spec(A); (b) there is an Fp point in Spec(A) and a
regular sequence (c,x1, . . . ,xn ,y) such that the scheme is defined by Fs = 0 (resp. Gs = 0)
where X ∈ R is a unit, g (y) ∈ R [y] is a polynomial in y , f2 is a quadratic homogeneous
polynomial in the xi , and f3 ∈ (x1, . . . ,xn)3 ⊂ A.

Proposition 2.3. Assume that (2p − 2)s < k.

(1) The weighted blowupWB− of a singularity with equation Fs has 2 types of singularities: (a)
a (non-isolated) cyclic quotient singularity with cyclic group of order (p − 1)/2 and (b) an
isolated singularity with equation Gs .

(2) If (2p − 2) (s + 1) < k then the weighted blowup WB+ of a singularity with equation Gs
has 2 types of singularities: (a) a (non-isolated) cyclic quotient singularity with cyclic group of
order (p + 1)/2 and (b) an isolated singularity with equation Fs+1.

(3) If (2p − 2) (s + 1) = k then the weighted blowupWB+ of a singularity with equation Gs has
only cyclic quotient singularities with cyclic group of order (p + 1)/2.

(4) All the exceptional divisors are ruled.

Proof. We check this in our a�ne charts. The isolated singularity will show up in the a�ne
chart WB±l, the cyclic singularities will show up in the WB±xi -charts, and ruledness of excep-
tional divisors will be checked in the charts WB±y .

We start by looking at the WB±l-charts. By definition we are looking at a hypersurface in
the a�ne scheme:

WB±l (A) = Spec(A ⊗R [x1,...,xn ,y] R [U1, . . . ,Un , V ]).
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This is an étale cover of Spec(R [U1, . . . ,Un , V ]) � An+1R . We compute the pullbacks of Fs .

(a−l)∗(Fs ) = (Vc)p+(Vc)2g (cV )p/c(2p−4)s + VcXp−1p/c(2p−2)s

+ cp−1(U2
1 + · · · + U

2
n) + pcp−1 f2 + c3(p−1)/2 f ′3 .

where f ′3 ∈ (U1, . . . ,Un)3. The strict transform of Fs = 0 is given by dividing by 1/cp−1. This
gives the equation:

(a−)∗(Fs )/cp−1 = cV p+V 2g (cV )p/c(2p−4)s+p−3 + VXp−14/c(2p−2)s+p−2

+ U2
1 + · · · + U

2
n + p f2(U1, . . . ,Un) + c(p−1)/2 f ′3 .

which is a singularity with equation Gs . Now we check that (c,U1, . . . ,Un , V ) is the only
singular point in this chart. We start by restricting to the exceptional divisor (c = 0). This
gives the equation:

U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp
.

This is smooth away from points of the form m = (c,U1, . . . ,Un , V +g) (for some g ∈ R). Now
we need to check regularity when g is a unit in R. As g is a unit:

(a−)∗(Fs )/cp−1 = c(−g)p ≠ 0 ∈ m/m2

so (a−)∗(Fs )/cp−1 is regular away from the closed point (c,U1, . . . ,Un , V ).
A similar calculation (changing appropriate − signs to + signs) applies for part (2). In part

(3), the strict transform has equation:

(a+)∗(Gs )/cp+1 = V p+pV 2g (cV )/c(2p−4)k + pVXp−1/c(2p−2) (s+1)

+ U2
1 + · · · + U

2
n + p f2(U1, . . . ,Un) + c(p+1)/2 f ′3 .

but now g = pXp−1/c(2p−2) (s+1) is a unit in R. The exceptional divisor of the strict transform
has equation:

V p + gV + U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp
.

The derivative m/mV is never 0 (as g is a unit). Thus the exceptional divisor is a smooth
Cartier divisor and the scheme is regular.

Now we examine the WB±y -chart. This is defined as

WB±y (A) = Spec
(
A ⊗R [x1,...,xn ,y] R [U1, . . . ,Un ,y , W]/(c = yW)

)
,

and there is an étale map WB±y (A)→WB±y . The strict transform of Fs is

(a−y )∗(Fs )/y p−1 = y+g (y)p/(yW) (2p−4)s y p−3 + pXp−1/(yW) (2p−2)s y p−2

+ U2
1 + · · · + U

2
n + p f2(U1, . . . ,Un) + y (p−1)/2 f ′3 .

Restricting to the exceptional divisor y = 0 gives the equation:

U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp
.

So the only place we need to check regularity is at points with maximal ideal

m = (c,U1, . . . ,Un ,y , W + g) ⊂ A ⊗R [x1,...,xn ,y] R [U1, . . . ,Un ,y , W] .
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To check regularity, we need to show that (a−y )∗(Fs )/y p−1 and c − yW are Fp -independent in
m/m2. This is straightforward as (a−y )∗(Fs )/y p−1 ≡ y (mod m2).
A similar calculation (changing appropriate − signs to + signs) applies for part (2). In part

(3), the strict transform has equation:

(a+y )∗(Fs )/y p+1 = W+g (y)p/(yW) (2p−2)s+p−2y p + pXp−1/(yW) (2p−2)s+p−2y p

+ U2
1 + · · · + U

2
n + p f2(U1, . . . ,Un) + y (p+1)/2 f ′3 .

Observe that

pXp−1/y (2p−2) (s+1)W (2p−2)s+p−2 = gWp ∈ R [U1, . . . ,Un ,y , W]/(yW = c)

for some unit g ∈ R. Restricting to the exceptional divisor gives:

W + gWp + U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp
.

This is smooth, thus the total space is regular.

Now we want to check ruledness. In part (1) the exceptional divisor has equation:

U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp

which is rational (as it is a quadric). In part (2) the exceptional divisor has equation:

W + U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp

which is also rational. Finally in part (3) the exceptional divisor has equation:

W + gWp + U2
1 + · · · + U

2
n = 0 ⊂ An+1

Fp
.

This is birational to a hypersurface with homogeneous equation:

(W\p−1 + gWp + \p−2(U2
1 + · · · + U

2
n) = 0) ⊂ ℙn+1

Fp

Note that this is a degree p hypersurface with points of multiplicity p − 1 (any point where
W = \ = U2

1 + · · · + U
2
n = 0). Projecting from any such point gives a degree 1 map onto ℙn+1

Fp
,

thus these exceptional divisors are rational as well.

It just remains to study the chart WB±x1 . There is a (branched) cyclic cover

ŴB
±
x1 (A)→WB±xi (A).

with degree (p ± 1)/2. By definition we have

ŴB
±
x1 (A) := Spec

(
A ⊗R [x1,...,xn ,y] R [U2, . . . ,Un , V ,W, Z ]/(c = WZ)

)
.

The preimage of the strict transform of Fs in ŴB
−
x1 (A) is

(â−x1)
∗Fs/Z p−1 = Z V p−1 + V 2g (Z V )p/(WZ) (2p−4)s Z p−3 + Xp−1Vp/(WZ) (2p−2)s Z p−2

1 + U2
2 + · · · + U

2
n + p f (1,U2, . . . ,Un) + Z (p−1)/2 f ′3 .
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We want to show this equation defines a regular scheme in ŴB
−
x1 (A). It su�ces to show the

intersection with the preimage of the exceptional divisor (Z = 0) is smooth. This restriction
has equation:

1 + U2
2 + · · · + U

2
n = 0 ⊂ An+1

Fp

which is smooth. It follows that the strict transform of Fs = 0 has cyclic quotient singularities
in the chart WB−x1 . Part (2) and (3) follow by a similar calculation. �

Lemma 2.4. Suppose that V andW are normal R-schemes of �nite type and there is a �nite map
V→W of degree d . Suppose that V has ruled modi�cations. Then for any birational mapW ′→W
from a normal R-schemeW ′, every exceptional divisor has a uniruling of degree ≤ d .

Proof. Let V ′ be the normalization of the closure of the graph of VdW ′. There is some
exceptional divisor of V ′→V (that is ruled) which dominates E by a degree ≤ d map. �

Proof of Theorem C in char. p>2. We need to show thatYR admits separably uniruled modifica-
tions. By Proposition 2.3, there is a birational model Y ′R→R with ruled exceptional divisors
such thatY ′R only has cyclic quotient singularities by cyclic groups of order ≤ (p +1)/2. Then
by Lemma 2.4 we are done, as any exceptional divisor overYR is either exceptional overY ′R
(which has separably uniruled modifications) or is exceptional for the mapY ′R→YR . �

Proof of Theorem C in char. 2. In the central fiber at a singular point of the cyclic cover we have
the equation:

0 = y2 + u + q + f3 ∈ (S /2) [y]
where S is a dimension n + 1 regular local ring which is smooth over ℤsh2 (and 2,x1, . . . ,xn
is a regular sequence), u ∈ F2 is a unit, q ∈ (S /2) [x1, . . . ,xn] is a quadratic form with
nondegenerate Hessian, and f3 vanishes to order at least 3. As the characteristic is 2, q
having a nondegenerate Hessian implies that n is even. By abuse of notation we lift this to
an equation

0 = y2 + u + q + 2f1 + f3 ∈ S [y]
where f1 (resp. q ) is a linear (resp. quadratic) form in ℤsh2 [x1, . . . ,xn], q/2 has a nondegener-
ate Hessian, and u ∈ ℤsh2 is a unit. Now base change along a finite extension ℤsh2 ⊂ R. After
possibly extending so that u has a square root −X ∈ R we can make a change of coordinates
to get the equation:

0 = y2 + (Xy + f1)2 + q + f3 ∈ SR [y] .
where ordc (2) = k for a uniformizer c ∈ R. Now consider ordinary blowup at the singular
point (c,x1, . . . ,xn ,y). The exceptional divisor of this blowup is given by

y2 + q = 0 ⊂ ℙn+1
F2

where the projective coordinates are [c : x1 : · · · : xn : y]. This is only singular at the point
[1 : 0 : · · · : 0], and it follows that the blow up has a unique singularity of the form

0 = y2 + (Xy + f1)2/c + q + f3 ∈ SR [y]
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and the exceptional divisor is a quadric and thus ruled. Iterating the ordinary blowup brings
us to the case that the exceptional divisor has the form:

y2 + Xy2/ck−1 + f12/ck−1 + q = 0 ⊂ ℙn+1
F2

.

As Xy2/ck−1 = gyc for some unit g ∈ F2 the whole quadric has nondegenerate Hessian
and is therefore smooth. So we see that iterating ordinary blowups of points resolves the
singularities and the exceptional divisors are all quadrics in projective space and thus are
ruled. �

3. Endomorphisms in characteristic p

The purpose of this section is to prove the nonexistence of separable rational endomor-
phisms of degree at least 2 for p -cyclic covers in characteristic p . We start by defining pull
backs for rational endomorphisms.

De�nition 3.1. Let Φ : YdY be a rational endomorphism of a proper, normal, ℚ-factorial
variety over an algebraically closed field. Let ΓΦ be the normalization of the closure of Φ in
Y ×Y with projections p1 and p2 of degree 1 and deg(Φ) respectively. We define the pullback
along Φ:

Φ∗ : Pic(Y ) ⊗ ℚ→Pic(Y ) ⊗ ℚ

to be the composition:

Pic(Y ) ⊗ ℚ
p∗2−→ Pic(ΓΦ) ⊗ ℚ ↩→ Cl(ΓΦ) ⊗ ℚ

p1∗−−→ Cl(Y ) ⊗ ℚ � Pic(Y ) ⊗ ℚ.

We would like to thank Nguyen-Bac Dang and John Lesieutre for suggesting the use of the
Khovanskii-Teissier inequalities to prove the following proposition.

Proposition 3.2. Let
q : Y d Y

be a rational endomorphism of degree _ ≥ 1 of a normal ℚ-factorial projective varietyY of dimension
n over an algebraically closed �eld of arbitrary characteristic. If Pic(Y ) ⊗ ℚ � ℚ then

q∗ : Pic(Y ) ⊗ ℚ→Pic(Y ) ⊗ ℚ

is multiplication by a where a ≥ n
√
_ .

Proof. Recall that for any 2 nef divisor classes H1 and H2 on a varietyY we have the inequal-
ities

(H i
1 ·H

n−i
2 )n ≥ (H n

1 )
i · (H n

2 )
n−i

(see Corollary 1.6.3(ii) and Remark 1.6.5 of [12] – this is closely related to the log concavity of
dynamical degrees). Let Γ→Y ×Y be the graph of q with projections p1 : Γ→Y and p2 : Γ→Y
of degrees 1 and _ respectively. Let H be an ample generator for Pic(Y ). Set Hi = p∗iH .
Applying the above inequality for i = n − 1 gives

(H n−1
1 ·H2)n ≥ (H n

1 )
n−1 · (H n

2 ).
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Applying the projection formula to the left hand side gives

(aH n)n ≥ (H n)n−1 · _ (H n),

which reduces to a ≥ n
√
_ . �

Now we recall Kollár’s result on the existence of holomorphic forms on cyclic covers in
characteristic p . Let X ⊂ ℙn+1

Fp
be a degree e hypersurface and let D = (s = 0) ⊂ X be divisor

for some s ∈ H 0(X ,OX (pe )). Assume that s has nondegenerate critical points ([11, 17.3]).
Then the cyclic cover of X branched at D admits a resolution

(3.1) Z Y X ,
`

a

f

obtained by blowing up finitely many isolated singular points. When n ≥ 3 there is an
injection:

M := a∗
(
OX (pe + e − n − 2)

)
↩→ Ωn−1Z .

Remark 3.3. If we write d = pe + f where 0 ≤ f ≤ p − 1, then d ≥ p d(n + 3)/(p + 1)e if and
only if pe + e − n − 2 > 0. Indeed, we have

e +
f
p
≥

⌈
n + 3
p + 1

⌉
⇐⇒ e ≥

⌈
n + 3
p + 1

⌉
⇐⇒ e ≥ n + 3

p + 1 ⇐⇒ pe + e − n − 2 > 0.

Lemma 3.4. For n ≥ 3 we have Pic(Y ) ⊗ ℚ � Cl(Y ) ⊗ ℚ � ℚ; in particular Y is ℚ-factorial.

Proof. By [7, XII Cor 3.7] the hypersurface X ⊂ ℙn+1
Fp

satisfies Pic(X ) � ℤ. The cyclic cover

construction gives
Y ⊂ O(e )

(the total space of OX (e )), and the composition

Pic(Y ) f∗−−→ Pic(X ) � ℤ
f∗−−→ Pic(Y )

is multiplication by p . It follows that Pic(Y ) ⊗ ℚ � Pic(X ) ⊗ ℚ � ℚ. �

Proposition 3.5. If pe + e − n − 2 > 0 (i.e. ifM is big and nef on Z ) then any separable rational
endomorphism q : YdY has degree 0 or 1.

Proof. The idea is that if deg(q) ≥ 2 then pulling back M under a large iterate q◦k gives an
arbitrarily positive line bundle inside

∧n−1ΩZ , which is impossible.

Now let HY be an ample line bundle onY and let HZ := `∗HY . We consider the following
invariant:

S := sup
{
(L ·H n−1

Z ) | L is a line bundle on Z and L ↩→ ∧n−1ΩZ }
∈ ℤ.

As M ↩→ ∧n−1ΩZ we have S > 0. We also claim that S is bounded. Indeed, for any line
bundle L ↩→ ∧n−1ΩZ we have

(`∗L)∨∨ ↩→ (`∗
∧n−1ΩZ )∨∨.
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The sheaf (`∗L)∨∨ is a rank one reflexive sheaf onY . By ampleness there exists some N1 > 0,
N2 > 0 such that

(`∗
∧n−1ΩZ )∨∨ ↩→ ((HY )⊗N1)⊕N2 .

It follows that (`∗L)∨∨ injects into one of the factorsH ⊗N1
Y which bounds the degree (`∗L)∨∨ ·

H n−1
Y . Lastly, applying projection formula gives:

(`∗L)∨∨ ·H n−1
Y = L ·H n−1

Z .

Therefore, S is bounded.

Now assume for contradiction that there is a separable rational endomorphism q ofY with
deg(q) = _ ≥ 2. Let ΓY (resp. ΓZ ) be the normalization of the graph of q◦k : YdY . Then
we have a diagram:

ΓZ

Z Z

ΓY

Y Y.

k1 k2

W

` `

c1 c2

q◦k

Let q◦kZ denote the rational endomorphism of Z . This gives rise to a diagram of the associated
Picard groups (and divisor class groups).

(3.2)

Pic(Y ) ⊗ ℚ Pic(ΓY ) ⊗ ℚ Cl(ΓY ) ⊗ ℚ Pic(Y ) ⊗ ℚ

Pic(Z ) ⊗ ℚ Pic(ΓZ ) ⊗ ℚ Cl(ΓZ ) ⊗ ℚ Pic(Z ) ⊗ ℚ

c∗2

`∗ W∗

c1∗

k∗2 k1∗

W∗ `∗

This diagram is commutative (the left and right squares commute by functoriality and the
central square commutes as W is birational). The composition of the top row is (q◦k )∗ and
the composition of the bottom row is (q◦kZ )

∗.

Let Φ be any positive degree separable rational endomorphism Φ : ZdZ of Z and let ΓΦ
be the normalization of the graph of Φ in Z × Z . For any line bundle L ⊂ ∧n−1ΩZ there are
injections:

p∗2L ↩→ p∗2
∧n−1ΩZ ↩→ ∧n−1ΩΓΦ .

and the composition is injective. Pushing forward this uniquely defines an injection:(
p1∗(p∗2L)

)∨∨
↩→

(
p2∗

(∧n−1ΩΓΦ))∨∨ � ∧n−1ΩZ .
(As both sheaves are S2 the last isomorphism can be checked away from the codimension
≥ 2 locus where p−11 is undefined.) We also have that

(
p1∗(p∗2L)

)∨∨
= Φ∗(L) ∈ Pic(W ) ⊗ ℚ.

Thus for each k > 0 there is an injection

(q◦kZ )
∗M ↩→ ∧n−1ΩZ ,
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and we know M = `∗N for some ample line bundle N onY . By commutativity of the outer
arrows of diagram 3.2,

S ≥ (q◦kZ )
∗M ·H n−1

Z = `∗
(
(q◦kZ )

∗`∗N
)
·H n−1

Y

= (q◦kY )
∗N ·H n−1

Y

= aN ·H n−1
Y

for some constant a ≥ n
√
_k (by Proposition 3.2 and Lemma 3.4). For k � 0, this is arbitrarily

large, which is a contradiction. �

4. Degrees of endomorphisms of complex hypersurfaces

Let Xℤshp
⊂ ℙn+1

ℤshp
be a degree e hypersurface that is smooth over ℤshp with n ≥ 3. Let

s ∈ H 0(Xℤshp
,OX

ℤshp
(pe ))

be a section such that Dℤshp
= (s = 0) ⊂ Xℤshp

is smooth over ℤshp and such that

s |X
Fp
∈ H 0(XFp

,OX
Fp
(pe ))

has nondegenerate critical points.

Proposition 4.1. Let Yℂ be the p-cyclic cover of Xℂ branched at Dℂ. If

pe ≥ p d(n + 3)/(p + 1)e

and q : YℂdYℂ is any rational endomorphism of Yℂ of degree _ then

_ ≡ 0 or 1 (mod p),

and every uniruling degree of Yℂ is divisible by p.

Proof. By Lemma 1.11, as Xℂ andYℂ are defined over ℚsh
p , there is an endomorphism q ofYℂ

of degree _ which is defined over a finite extension of ℚsh
p . Theorem C implies thatYℤshp

has

sustained separably uniruled modifications. By Proposition 3.5 any rational endomorphism
ofYFp

of degree greater than 1 is inseparable. Thus the degree of any rational endomorphism
ofYFp

is 0 or 1 (mod p). By [10, Lem. 7],YFp
is not separably uniruled. Thus by Theorem 1.9

we have _ ≡ 0 or 1 (mod p). �

Proof of Theorem A. To start we prove the theorem when d = pe . By Mori’s construction [13]
(or see [11, §5]) there is a smooth family of complex varieties which contains all smooth
hypersurfaces of degree pe in ℙn+1

ℂ
and all smooth degree p cyclic covers of smooth degree

e hypersurfaces in ℙn+1
ℂ

. If d ≥ p d(n + 3)/(p + 1)e then by Proposition 4.1 there are p -cyclic
covers of degree e hypersurfaces such that every rational endomorphism has degree ≡ 0 or 1
(mod p) and every uniruling degree is divisible by p . Thus, if X is a very general hypersurface
of degree pe , then every rational endomorphism has degree ≡ 0 or 1 (mod p).
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Now we consider the general case with d = pe + f . Consider a pencil of hypersurfaces of de-
gree d such that the general member is smooth and the central fiber is a union of hyperplanes
and a very general hypersurface of degree pe meeting with simple normal crossings. By the
previous paragraph and Remark 3.3 every rational endomorphism of the degree pe hyper-
surface has degree ≡ 0 or 1 (mod p). By [11, Lem. V.5.14.5] every uniruling degree of such
a degree pe hypersurface is divisible by p . Therefore, by Theorem 1.9(2) and Lemma 1.11
every rational endomorphism of a very general hypersurface of degree d has degree ≡ 0 or
1 (mod p). �
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