
MATH 416, PROBLEM SET 2

Comments about homework.
• Solutions to homework should be written clearly, with justification, in
complete sentences. Your solution should resemble something you’d write
to teach another student in the class how to solve the problem.

• You are encouraged to work with other 416 students on the homework, but
solutions must be written independently. Include a list of your collaborators
at the top of your homework.

• You should submit your homework on Gradescope, indicating to Grade-
scope where the various pieces of your solutions are. The easiest (and
recommended) way to do this is to start a new page for each problem.

• Attempting and struggling with problems is critical to learning mathemat-
ics. Do not search for published solutions to problems. I don’t have to tell
you that doing so constitutes academic dishonesty; it’s also a terrible way
to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Warning. These are not necessarily model solutions; they are meant to
help you understand the problems you didn’t totally solve and maybe to give
you alternative solutions. Sometimes I will give less or more detail here than
I would expect from you.

Problem 1. In class we described a binary-search algorithm that searches a
sorted array L[1, . . . , n] for a given element x in time O(log n). Show that
this is optimal, in the following sense: any algorithm that access the array
only via comparisons must take Ω(log n) steps.

Solution. The proof follows our proof of the lower bound for comparison
sorting. The decision tree for a comparison-based search is a binary tree with
(at least) n leaves, one for each of n possible outcomes. A binary tree with
≥ n leaves must have height ≥ log2 n. The height of the decision tree is the
worst-case number of comparisons, which is therefore Ω(log n). �



2 MATH 416, PROBLEM SET 2

Problem 2. Consider the Bubblesort algorithm, given in pseudocode below.

Algorithm 1: Bubblesort
Data: A = (A[1], . . . , A[n]) a list of n numbers

1 for i = 1 to i = n do
2 for j = n downto i + 1 do
3 if A[j] < A[j − 1] then
4 swap A[j − 1] and A[j]

5 return A

(a) Let A′ denote the output of Bubblesort on input A. To prove that
Bubblesort is correct, we need to prove at least that A′ is correctly
sorted. What else must be proved?

(b) Identify and prove the validity of a loop invariant for the for loop in
lines 1–4.

(c) Identify and prove the validity of a loop invariant for the for loop in
lines 2–4.

(d) What is the worst-case running time of Bubblesort? How does it
compare to the running time of Insertion Sort?

Solution. (a) You must also show that it contains the same elements as
A does, but this is clear because the only changes made to the array
during the course of the algorithm are swaps, so (by induction) the
contents never change.

(b) At the start of the ith iteration of the outer for loop, A[1], . . . , A[i−1]
will be the i− 1 smallest elements of A in the correct order. At the
beginning, this says nothing: the first 0 elements are sorted.

Maintenance: Suppose that at the start of the ith iteration the first
i− 1 elements are in positions A[1], . . . , A[i− 1], in order. In the next
part we will show that after finishing the iteration of the inner loop
the smallest element of {A[i], . . . , A[n]} is A[i]. The smallest i − 1
elements of the array are already stored in positions 1 through i− 1,
so A[i] must therefore be the ith-smallest entry in the array. Therefore
A[1], . . . , A[i] are the i smallest elements, in order, as desired.

At the end of the algorithm, the smallest n− 1 elements will be
sorted into positions A[1], . . . , A[n − 1], which leaves as the only
possibility that the maximum element is A[n].

(c) At the start of each iteration, the least element of {A[i], . . . , A[n]}
occurs among A[i], . . . , A[j]. This is certainly true at the start.

Maintenance: Suppose that j = k and that the least element of
{A[i], . . . , A[n]} occurs among A[i], . . . , A[k]. The algorithm compares
A[k] and A[k − 1].



MATH 416, PROBLEM SET 2 3

Case 1: If A[k] < A[k−1], then A[k−1] cannot be the least element
of {A[i], . . . , A[n]}. After we swap A[k] and A[k − 1], the least
element of {A[i], . . . , A[n]} now must be one of A[i], . . . , A[k−1],
so we have maintained the invariant.

Case 2: IfA[k] = A[k−1], andA[k] is the least element of {A[i], . . . , A[n]},
then so is A[k − 1], so it occurs among A[i], . . . , A[k − 1] (after
we do nothing). If neither A[k] nor A[k − 1] is the least element
of {A[i], . . . , A[n]}, then the least element must occur among
A[i], . . . , A[k − 2].

Case 3: If A[k] > A[k − 1], then we don’t perform a swap. In this
case, A[k] cannot be the least element of {A[i], . . . , A[n]}, so the
least element must be among A[i], . . . , A[k − 1] already.

When the loop terminates, the smallest element of {A[i], . . . , A[n]} is
A[i].

(d) The ith iteration of the outer for loop will cause n− i iterations of the
inner loop. Assuming (as we may) that the inner loop has constant
time-cost (one comparison and possibly one swap), we conclude that
the number of times the algorithm visits line 4, say, should be

n∑
i=1

(n− i) =
n−1∑
k=0

= n(n− 1)/2,

which is O(n2). This analysis does not depend on the input, so this
is also the best-case running time of Bubblesort.

It is worth mentioning that Insertion Sort, which also has worst-case
running time O(n2), has linear best-case running time.



4 MATH 416, PROBLEM SET 2

Problem 3. Prove (carefully!) by induction that a binary tree of height ≤ h
has at most 2h leaves.

Solution. Let’s write l(T ) for the number of leaves of a tree T and h(T ) for
its height.

We prove by induction on the number n of vertices of T that every binary
tree T with n vertices, l(T ) ≤ 2h(T ).

This is certainly true for a tree with only n = 1 vertex.
Suppose inductively that every binary tree T with < n vertices, l(T ) ≤

2h(T ).1 Suppose that T has n vertices. Let TL be the left subtree of the
root, and let TR be the right subtree (each without the root of T ). Every
leaf of T is a leaf either of TL or TR, so l(T ) = l(TL) + l(TR). And a path
of maximal length from the root in T goes through either TL or TR, so
h(T ) = max(h(TL), h(TR)) + 1. (It is possible that TL or TR is empty, so
we should define h(∅) = −1.) Each of TL and TR has fewer than n vertices,
so our induction hypothesis implies that l(TL) ≤ 2h(TL) and l(TR) ≤ 2h(TR).
Now we have

l(T ) = l(TL) + l(TR)

≤ 2h(TL) + 2h(TR)

≤ 2max(h(TL),h(TR)) + 2max(h(TL),h(TR))

= 2max(h(TL),h(TR))+1

= 2h(T ),

which is what we set out to prove. �

1We are using so-called strong induction.



MATH 416, PROBLEM SET 2 5

Problem 4. Use mathematical induction to show that when n is an exact
power of 2, the solution of the recurrence

T (n) =

{
2 if n = 2,
2T (n/2) + n if n = 2k, for k > 1

is T (n) = n log2(n).

Solution. When n = 2 we have T (2) = 2 log2(2) = 2.
The inductive hypothesis is that when n = 2k then T (2k) = 2k log2(2

k) =
nk. Now for n = 2k+1, by definition of the recurrence

T (2k+1) = 2T (2k+1/2) + 2k+1.

By induction, we have

2T (2k+1/2) + 2k+1 = 2T (2k) + 2k+1

= 2(2k log2(2
k)) + 2k+1

= 2k+1(log2(2
k) + 1)

= 2k+1(log2(2
k+1))

which completes the proof by induction. �



6 MATH 416, PROBLEM SET 2

Problem 5. We can express insertion sort as a recursive procedure as follows.
In order to sort A[1 . . . n], we recursively sort A[1 . . . n− 1] and then insert
A[n] into the sorted array A[1 . . . n−1]. Write an recurrence for the worst-case
running time of this recursive version of insertion sort.

Solution. To insertion sort a list of length n, we first insertion sort a list of
length n− 1. This takes T (n− 1). We then must place A[n] into the sorted
list A[1 . . . n − 1]. This can take up to n − 1 swaps. So we have that the
worst case run time satisfies the recurrence:

T (n) = T (n− 1) + (n− 1).



MATH 416, PROBLEM SET 2 7

Problem 6. Let A[1 . . . n] be an array of n distinct numbers. If i < j and
A[i] > A[j], then the pair (i, j) is called an inversion of A.

(a) List the five inversions of the array 〈2, 3, 8, 6, 1〉.
(b) Without proving it. What array with elements from the set {1, 2, . . . , n}

has the most inversions? (and how many are there?).
(c) What is the relationship between the running time of insertion sort and

the number of inversions in the input array? Give a brief justification.
(d) Give an algorithm that determines the number of inversions in any

permutation on n elements in Θ(n log(n)) worst-case time. (Hint:
Modify merge sort.) You do not need to prove that your algorithm
runs in Θ(n log(n)), but you should give a brief explanation.

Solution. (a) The inversions of 〈2, 3, 8, 6, 1〉 are (1, 5), (2, 5), (3, 4), (3, 5),
and (4, 5).

(b) The array with the most inversions is 〈n, n− 1, . . . , 2, 1〉. There are(
n
2

)
inversions.

(c) In insertion sort we sort the first i elements in the list and then decide
where the i + 1th element goes. The number of swaps we perform
with the i + 1th element is the same as the number of array entries
before A[i + 1] that are greater than A[i + 1] in other words they
correspond exactly to the j such that j < i + 1 BUT A[j] > A[i + 1].
Therefore, the number of inversions in an array is the same as the
number of swaps performed by insertion sort.

(d) The key is to modify how we merge two ordered lists. Suppose A1

and A2 are ordered. Giving an array A = A1 +A2 (where we append
A2 to the end of A1), recall that Merge(A1, A2) is given as follows:

Algorithm 2: Merge
1 INPUT: A1 and A2 ordered lists of length n

2 OUTPUT: A1 + A2 merged as an ordered list. LOCVARS: P1, P2

(pointers), and A3 (array) INITIALVALS: P1 = 1, P2=1, and A3 = []
3 while P1 ≤ n and P2 ≤ n do
4 if A1[P1] < A2[P2] then
5 Append A1[P1] to A3

6 Increase P1 by 1
7 if P1 = n + 1 then
8 Append the list A2[P2 . . . n] to A3.
9 else

10 Append A2[P2] to A3

11 Increase P2 by 1
12 if P2 = n + 1 then
13 Append the list A1[P1 . . . n] to A3.



8 MATH 416, PROBLEM SET 2

The observation is that we should also keep track of inversions as
we go, with a counter. The point is that if we take A1 and append
A2 at the end. The number of total inversions if we sort A1 + A2

is given by counting the inversions in A1, the inversions in A2, and
then once A1 and A2 are sorted we must also add an inversion for
every pair of elements (a1, a2) ∈ A1 ×A2 with a1 > a2. This can be
tracked during the Merge process.

Algorithm 3: MergeAndTrackInversions
1 INPUT: A1 and A2 (ordered lists of lengths n1 and n2 respectively)

and i1, i2 (total inversions so far for A1 and A2 respectively).
2 OUTPUT: A1 +A2 merged as an ordered list and i the total inversions.
3 LOCVARS: P1, P2 (pointers), A3 (array), and i (inversion counter)
4 INITIALVALS: P1 = 1, P2=1, A3 = [], i = i1 + i2.
5 while P1 ≤ n1 and P2 ≤ n2 do
6 if A1[P1] < A2[P2] then
7 Append A1[P1] to A3

8 Increase P1 by 1
9 if P1 = n + 1 then

10 Append the list A2[P2 . . . n] to A3.
11 else
12 Append A2[P2] to A3

13 Increase P2 by 1
14 Increase i by n1 − P1 + 1. (THIS IS THE MAIN CHANGE)
15 if P2 = n + 1 then
16 Append the list A1[P1 . . . n] to A3.

Using this algorithm in place of Merge in MergeSort counts the total
inversions. The run time is the same as MergeAndTrackInversions also runs
in O(n).



MATH 416, PROBLEM SET 2 9

Problem 7. Suppose you are given a stack of n pancakes of different sizes.
You want to sort the pancakes so that smaller pancakes are on top of larger
pancakes. The only operation you can perform is a flip – insert a spatula
under the top k pancakes, for some integer k between 1 and n, and flip them
all over. Describe an algorithm to sort an arbitrary stack of pancakes using
O(n) flips.

Solution. Here is one possible algorithm. For pancakes stacks of height 1
there is nothing to do. Now for a pancake stack of height n, first perform
flips on the top n− 1 pancakes so that they are sorted. This takes T (n− 1)
flips. Now we need to put the last pancake (name it P ) in the correct spot.

(1) Flip all of the pancakes (so that the P is now on top).
(2) Make a flip between the two pancakes where the P belongs.
(3) Make another flip directly above P
(4) Flip all pancakes.

Thus, to order all the pancakes requires T (n− 1) + 4 flips. So we see that
T (n) is O(n).


