
MATH 416, PROBLEM SET 3

Comments about homework.

• Solutions to homework should be written clearly, with justification, in
complete sentences. Your solution should resemble something you’d write
to teach another student in the class how to solve the problem.

• You are encouraged to work with other 416 students on the homework, but
solutions must be written independently. Include a list of your collaborators
at the top of your homework.

• You should submit your homework on Gradescope, indicating to Grade-
scope where the various pieces of your solutions are. The easiest (and
recommended) way to do this is to start a new page for each problem.

• Attempting and struggling with problems is critical to learning mathemat-
ics. Do not search for published solutions to problems. I don’t have to tell
you that doing so constitutes academic dishonesty; it’s also a terrible way
to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Problem 1. By pre-sorting the input array at the beginning, show that
the Closest-Pair algorithm we described in class can be improved to have
worst-case running time O(n log n) (where n is the number of points), as
advertised.

Problem 2.
(a) For a given constant δ > 0, find an example (with proof) of an

increasing function f : N → N such that f is O(nδ), but f is not
O(nγ) for any γ < δ, and f is not Θ(nδ). Conclude by commenting
on the claim, “any f that is O(nlogb a) is covered by one of the first
two cases in the Master Theorem.”

Recall the third case of the Master Theorem (assuming a ≥ 1 and b > 1 are
constants, f : N→ N is increasing, . . . ):

If both
(i) f is Ω(nγ) for some constant γ > logb a, and
(ii) there is a constant c < 1 such that af(n/b) ≤ cf(n) for

all n sufficiently large,
then T (n) is Θ(f(n)).

(b) Show that if f(n) = nlogb a, then (ii) is false.
(c) Find an example of a function f for which (i) holds but (ii) fails.

(You may choose your favorite values of a and b, e.g., a = b = 2.)
(Hint: One approach is to build a function f for which the inequality
af(n/b) ≥ f(n) holds for infinitely many n. You can choose which n these



2 MATH 416, PROBLEM SET 3

are in advance, and then you have a lot of freedom to decide the remaining
values of the function in order for (i) to hold. )

(d) Show that in fact (ii) implies (i). (For simplicity you may consider
only n that are exact powers of b.)

Problem 3. A partial matching of [n] = {1, . . . , n} is simply a set of
pairwise-disjoint 2-element subsets of [n]. That is, it’s a way of pairing
up some of the elements of [n], possibly leaving some unpaired. For example,
{{2, 5}, {3, 6}, {1, 7}} is a partial matching of [8] (in which 4 and 8 are left
unpaired). (The pairs are unordered.)

(a) List or draw all partial matchings of [4].
(b) Let mn be the number of partial matchings of [n]. Prove that this

sequence satisfies the recurrence mn+1 = mn + nmn−1 for n ≥ 1 and
m0 = m1 = 1.

(c) The exponential generating function of a sequence1 (an) is the (formal)
power series

∞∑
n=0

an
n!
zn.

Let M(z) be the exponential generating function of (mn). Verify
thatM(z) and ez+

1
2
z2 each satisfy the initial value problem d

dzM(z) =
(1 + z)M(z), M(0) = 1 (and hence are equal).

Problem 4. Suppose that you are given n nonvertical lines in the plane,
labeled L1, . . . , Ln, with the ith line specified by the equation y = aix+ bi.
Assume also that no three lines intersect in a single point. Say that the line
Li is uppermost at an x-coordinate x0 if aix0 + bi > ajx0 + bj for all j 6= i.
Say that the line Li is visible if there is some x-coordinate at which it is
uppermost. (Intuitively, this means that some portion of the line can be seen
“looking down from y =∞.”) Give (with proof) an algorithm that takes n
lines as input and (with proof) in O(n log n) time returns exactly the visible
lines.

(Hint: First, sort the list of lines by slope. Then recursively apply the algorithm
to the first n/2 lines and to the second n/2 lines. But it won’t be enough to know
which of the first n/2 lines are visible and which of the second n/2 lines are visible;
your algorithm should report a bit more than that. (Consider the case n = 4.) )

Problem 5. Suppose you are given a 2n × 2n checkerboard with one (arbi-
trarily chosen) square removed. Describe an algorithm in pseudocode that
computes a tiling of the board by L-shaped tiles, each composed of exactly
three squares. Your input is the integer n and two n-bit integers representing
the row and column of the missing square. The output is a list of the positions
and orientations of (4n − 1)/3 tiles. Your algorithm should run in O(4n).

1The exponential generating function is often useful for counting objects that involve some
choice of ordering.


