— Math 416

Worksheet 1. Long division

Warning. Many of you will be familiar with pseudocode or the syntax of an actual programming
language. While we will all soon be writing in pseudocode, be aware that some people in your
group might not have seen it before! And your work in this class should never be specific to a
particular programming language. For example, I don’t want to see this:

for (int i = 0; i < mn; i++) {
What you write should be intelligible to any other student in the class; it should never require
knowledge of a particular programming language’s syntax.

Practice with pseudocode and conditionals

Problem 1. Write in pseudocode an algorithm that takes as input a fruit and returns ‘3’ if the fruit
is an apple, ‘5’ if the fruit is a blackberry, and ‘0’ otherwise.

Problem 2. Write in pseudocode an algorithm that takes as input an integer d and returns the
first 100 d*™ powers: 1¢,2¢, ..., 100%

Problem 3. Write in pseudocode an algorithm that takes as input an integer N and returns the
sequence of divisors of N. (You may assume that your idealized computer can check as a basic
operation whether k | N.) So, for example, on input 10 the algorithm should return (10, 5,2,1) (or
any permutation of that sequence).

(Hint: Use a while loop.)

In gradeschool you learned an algorithm (“long division”) for computing a quotient of an integer by
another integer. (E.g. 416 +9.) Suppose for simplicity that the divisor is a single-digit number. The
purpose of this worksheet is to introduce algorithms by considering this familiar example. We will:

e give a precise description of long division; and
e prove that it always produces the correct answer.

Problem 4.

(a) Take a moment to make sure everyone in your group remembers how long division works.
(It has probably been a long time since you divided numbers by hand!) Do a few examples.

(b) What is / are the input(s) of this long division algorithm? What type of object are they?

(¢) What should the output be, in terms of the input? What does it mean for the output to be
correct? (State this precisely!)

(d) What information do you need to keep track of during the course of the algorithm’s execution?
What local variables do you need?

(e) Pick one of the examples you did in part (a). Label (i.e., give names) to the input, the
output, and the value of the local variables stored along the way.

Now we will try to write such an algorithm in pseudocode. !

Notation. Since this Long Division algorithm uses base-10 representations of numbers, it will be
convenient to have notation for this.

(anan,l s a1a0)10 = a,10" + an,llon_l +---+ai-10+ ap.
Since the algorithm deals first with the most significant digits of the dividend, our indexing is

going to be a bit backward.

Lour version probably used memory more efficiently, if you have some programming experience. For example, you
can reuse a variable r for all of the remainders you find along the way. But this can sometimes make analyzing the
algorithm more difficult.



Algorithm 1: Long Division
Input: the (decimal) digits (po, ..., pn) of an integer (po - - - pn)io and a divisor d € {1,...,9}.
Output: the digits (qo, ..., qn) of the quotient and a remainder r € {0,1,...,d — 1}.

1 look up qo, 7o such that pg = dgg + 10 ;
2 for ¢ from 1 to n do

3 lookupq,rsuchthatlilqu—l—r; /% r<d x/
4 set ¢; = ¢;

5 set r; =,

6 return (qo,...,qn), Tn.

Problem 5. The algorithm is incomplete; what should go in the box in Line 37

Problem 6. We should clarify Line 3. It is important that we are not asking something unreasonable
of our idealized computer / 4"-grader. How many pieces of information does the computer / 4*P-
grader need to memorize (i.e., store in the lookup table) in order to execute any command they might
encounter in Line 37 Try to give a minimal answer, which will depend on d.

Problem 7. Run Long Division to compute 416416 + 3. Keep track of the sequence of remainders.

(a) Using only the execution of the algorithm on 416416 = 3 (i.e., don’t run it again on new
inputs), deduce 4164 + 3 (quotient & remainder). How about 41 <+ 37

(b) Do you see now what the first i iterations of the for loop in the algorithm achieve? This is
called a loop invariant. State it formally by completing the following.
At the beginning of the i iteration of the for loop in line 2, ...

Now that you have identified the loop invariant, you must prove that it is actually a loop invariant:
Initialization: The loop invariant is true at the beginning of the first iteration of the loop.
Maintenance: If the loop invariant is true at the beginning of a loop, then it remains true at the

beginning of the next loop.
Termination: The loop terminates, and at the end the invariant gives us something useful.

(So this is a proof by induction on the number of iterations.)

Problem 8.

(a) (Initialization) Why does the invariant hold at the beginning of the first iteration of the for
loop in Line 27

(b) What is (po - - pi—1pi)10 in terms of (pg---pi—1)10? (Remember that the most significant
digit is the first one!)

(c) Assuming that the loop invariant holds at the beginning of the i*! iteration, prove that it
holds at the beginning of the (i + 1)s*.

(d) Complete your proof that the algorithm is correct.

Problem 9. At what point (if any!) in your proof of maintenance do you use the fact that the
remainders r; obtained by querying the lookup table are less than d? You need that the last
remainder 7, is less than d for correctness, of course, but what about the others?

(Hint: Tt appears in a very sneaky place! You might find it useful to consider a specific example, perhaps
the one from Problem 7.)



	Long division

