
Math 416

Worksheet 11. The Fast Fourier Transform

Remember that we want to evaluate a polynomial A(x) at the nth roots of unity 1, ζ, . . . , ζn−1.
The idea: to evaluate A(ζk), we recursively evaluate Aeven(ζ2k) and Aodd(ζ2k) and combine
as follows:

A(ζk) = Aeven(ζ2k) + ζkAodd(ζ2k)

A(ζk+n/2) = Aeven(ζ2k)− ζkAodd(ζ2k)

Problem 1. Why does the second equation give the correct value for A(ζk+n/2)?

Here is the algorithm.

Algorithm 1: Fast Fourier Transform
1 FFT(a, ζ)

Input: A sequence a = (a0, . . . , an−1), n a power of 2, a primitive nth root of unity ζ
Output: Mn(ζ) · a

2 if ζ = 1 then
3 return a

4 set (E0, E1, . . . , En/2−1) = FFT((a0, a2, . . . , an−2), ζ
2);

5 set (O0, O1, . . . , On/2−1) = FFT((a1, a3, . . . , an−1), ζ
2);

6 foreach k = 0 to n/2− 1 do
7 set ck = Ek + ζkOk ;
8 set ck+n/2 = Ek − ζkOk;
9 return (c0, c1, . . . , cn−1)

Problem 2.
(a) Run FFT((x, y),−1) to see that FFT works correctly on sequences of size 2.
(b) Verify (using either i or −i) that the FFT algorithm works correctly on input

sequences of size 4.

We want to prove that the FFT algorithm is correct, i.e., that

FFT(z•, ζ
−1) = M(ζ−1)z• = DFT(z•) and

1
n FFT(c•, ζ) = 1

nM(ζ)c• = IFT(c•),

where here by ζ we mean e2πi/n.
This boils down to the following fact.

Proposition. Suppose that c• = Mn(ζ)(z•) and write

E• = Mn/2(ζ
2) ·
[
z0 z2 · · · zn−2

]> and

O• = Mn/2(ζ
2) ·
[
z1 z3 · · · zn−1

]>
.



Then c0, . . . , cn−1 are given by the following formula, for k = 0, 1, . . . , n/2− 1.

ck = Ek + ζkOk

ck+n/2 = Ek − ζkOk

Problem 3. Write down exactly what the Proposition is asserting in the case n = 4, ζ = i.

Problem 4. Prove the Proposition, and explain why the correctness of the FFT algorithm
follows.

Here’s another way to look at it:

M(ζ−1)z• =

[
In/2 Dn/2

In/2 −Dn/2

] [
M(ζ−2)zeven
M(ζ−2)zodd

]
. (?)

Problem 5. In Equation (?), In/2 is the (n/2)× (n/2) identity matrix. What is Dn/2?

Running time The FFT Algorithm, on an input sequence of length n, makes two recursive
calls to itself on input sequences of length n/2, and also does some variable reassignment,
etc., that takes Θ(n) time.

Problem 6. Write T (n) for the worst-case running time of the FFT Algorithm on input
sequences of size n.

(a) What is the recurrence that T (n) satisfies?
(b) Which case of the Master Theorem does this fall under?
(c) What can we conclude about the asymptotics of T (n) from the Master Theorem?

Polynomial multiplication Our original goal was to multiply polynomials f(x) and g(x)
efficiently. The idea is to use FFT to pass from the coefficient forms of f and g to their
point-value forms: (f(1), f(ζ), f(ζ2), . . . , f(ζn−1)) and similarly for g. Then it is easy to
multiply in point-value form: e.g. (f · g)(ζ) = f(ζ) · g(ζ). Then we use FFT to convert back
to coefficient form.

Problem 7. Write out this polynomial-multiplication procedure in pseudocode, calling the
FFT subroutine as necessary.

Remark. Base-b notation (e.g. in base b = 10, 753 = 7 · 102 + 5 · 10 + 3 · 100) expresses
integers as polynomials evaluated at b, so a fast algorithm for polynomial multiplication
gives a fast algorithm for integer multiplication.



Culture: for the interested reader
• FFT crucial for signal-processing. See Wikipedia.
• FFT credited to Cooley–Tukey (1965), but the main ideas go back to Gauss 1805.
• Shor’s quantum algorithm to factor into primes uses a quantum FFT.
• Can O(n log n) be improved? Open question!

Fourier analysis: for the interested reader What the heck does this have to do with
Fourier analysis?

If f : R→ R is 2π-periodic and ‘reasonable’ (bounded derivative, differentiable at most
points, . . . ), then there are real numbers a0, a1, b1, a2, b2, . . . such that

f(x) = a0 + a1cos(x) + b1sin(x) + a2cos(2x) + b2sin(2x) + · · · (1)

(and in particular the expression on the right converges). This is called the Fourier series
of f . (Compare to the Taylor series:

∑
anx

n.)
A 2π-periodic function is better thought of as a function S1 → R, or even better S1 → C.

(This S1 is the unit circle.) Try again with functions θ 7→ eiπθ:

f(θ) = · · ·+ c−2e
−2iθ + c−1e

−iθ + c0 + c1e
iθ + c2e

2iθ + · · · (2)

=
∞∑
−∞

cke
ikθ

=

∞∑
−∞

ck(cos(kθ) + isin(kθ))

= c0 +
∞∑
k=1

ck(cos(kθ) + isin(kθ)) + c−k(cos(kθ)− isin(kθ))

= c0 +
∞∑
k=1

(ck + c−k)cos(kθ) + i(ck − c−k)sin(kθ).

Set a0 = c0 and ak = c−k + ck, bk = i(ck − c−k) for k > 0 to get the first expression (1).

Exercise. Assuming f(θ) equals a series as in (2) above, and that integration of infinite
series can be done term by term, show that

ck =
1

2π

∫ 2π

0
f(θ)e−ikθ dθ.

The Fourier Transform sends f to (ck : k ∈ Z); its inverse sends the sequence ~c to f .
Now observe that the Riemann sum of

∫ 2π
0

1
2πf(θ)e−ikθ dθ with n sample points θ = 2lπ/n,

l = 0, 1, . . . , n− 1, is

1

2π

n−1∑
l=0

f(2lπ/n)e−ikθ · 2π

n
=

1

n

n−1∑
l=0

f(2lπ/n)e−2πikl/n

=
1

n
DFT(f(0), f(2π/n), f(4π/n), . . . , f(2(n− 1)/nπ)),

a ‘uniform sample’ from f .
(Notice that our 1

n shows up in IFT instead. You can do it either way.)


	The Fast Fourier Transform

