
Math 416

Worksheet 15. Dijkstra’s Algorithm

Minimum-weight paths Now our input will be a weighted graph, i.e., a graph in which each
edge e comes with a weight or cost wt(e) ≥ 0. The weight of a path is defined to be the sum of
weights of edges on the path.

Given vertices s and t in the graph, we want to find a minimal-weight path from s to t, as in this
picture.

s t

2

3

8

4.5
1

2

0

2

If we knew the k vertices v1, . . . , vk closest to s and their distances to s, then we could find the
(k + 1)st-closest vertex vk+1 as follows. Vertices on a minimum-weight path from vk+1 to s must
be closer to s, so among v1, . . . , vk. Examine all the ‘frontier edges’ (vj , w) and find such a w that
minimizes the distance from s to vj plus the weight of the edge (vj , w). This w will be vk+1.

Problem 1. Fill in the gaps in the pseudocode for Dijkstra’s algorithm, below.

Algorithm 1: Dijkstra’s algorithm
Input: a weighted graph G = (V,E,wt) (with nonnegative weights) and a vertex s ∈ V
Output: an array dist so that dist(v) is the length of a min-weight path from s to v

1 set dist(s) = 0;
2 set S = {s} ; // S is the set of marked or explored nodes

3 foreach v 6= s do
4 set dist(v) =∞;
5 while S 6= V do
6 find w /∈ S a vertex adjacent to a v ∈ S for which ;
7 record pred(w) = v ; // for later analysis

8 add w to S ;
9 set dist(w) = ;

10 end

Problem 2. After running the algorithm, how can you find the min-weight path from s to your
favorite vertex t? (Hint: use pred)

Remarks. (i) Dijkstra’s algorithm works just as well for weighted digraphs.
(ii) Dijkstra’s algorithm is ‘greedy’ in the sense that we always extend a path by adding a single

edge minimizing some objective function.
(iii) From the right point of view, Dijkstra’s algorithm generalizes breadth-first search.
(iv) Dijkstra’s algorithm no longer works if weights are allowed to be negative, as you’ll see.
(v) The while loop iterates ≤ n− 1 times, where n = |V |. (Why?) It seems like choosing the

right w in the loop will require a search over V \ S and for each w ∈ V \ S a computation of
minv∈S dist(v) + wt(v, w), which in the end looks like O(mn) time. (Here m is the number
of edges.) The algorithm can be implemented more carefully to achieve O(m log n) time.

Problem 3. Dijkstra’s algorithm produces a tree of minimum-weight paths, if it is run on a connected
graph. Describe the tree precisely (i.e., give an exact description of which edges are in the tree, in
terms of variables in the algorithm) and explain why it is a tree.

Problem 4. By executing Dijkstra’s algorithm, find minimal weight paths from (0)-(4) and (a)-(e)
respectively in the below graphs. Plot the corresponding minimal weight trees.

Problem 5. What does Dijkstra’s algorithm do on an unweighted graph? That is, suppose that all
the weights in a graph are 1 and describe the execution of Dijkstra’s algorithm.

Problem 6. Spend two minutes (i.e. don’t spend too long) with your groupmates speculating about
how Dijkstra’s algorithm can be implemented to run in O(m log n) time. (Hint: Explicitly maintain
values of minv∈S dist(v) + wt(v, w) for all w /∈ S rather than recomputing them in each iteration. Keep the
nodes of V \ S in a ‘priority queue’ with the values minv∈S dist(v) + wt(v, w) as keys. Look up the definition
of a priority queue if you need to! This is actually a bit subtle: see the discussion on pp. 661–662 of clrs, if
you are interested in understanding the whole argument.)

Correctness of Dijkstra’s Algorithm. We are proving the validity of a certain loop invariant for
Dijkstra.

Problem 7. What is the loop invariant?

Claim. Consider the set S during the execution of Dijkstra’s algorithm, at the start of the while
loop on line 5 of the algorithm.

(1) For all u ∈ S, the quantity dist(u) is the length of the minimum-weight path from s to u;
and

(2) Pu is a path of minimum weight from u to s. (By Pu we mean the path obtained by starting
at u and iterating pred until you reach s.)

Problem 8. Fill in the following outline of a proof of the Claim.
(a) We proceed by induction on |S|. Verify that the Claim holds for |S| = 1.
(b) Now suppose that the claim holds for |S| = k. Suppose that w is discovered in line 6 of the

algorithm to make |S| = k+1, say with pred(w) = v. By induction, Pv is a min-weight path
from s to v. How does Pw relate to Pv?

(c) Consider any path P from s to w. We must show that wt(P) ≥ wt(Pw). Since s ∈ S but
w /∈ S, there is a first vertex y on P that does not belong to S. Let x be the previous vertex
on P , so that x ∈ S. Let P ′ be the portion of P from s to x. What can you say about
wt(P ′) versus wt(Px)?

(d) (Draw a picture and) Complete the proof that wt(P) ≥ wt(Pw).
(e) Verify that you have a complete proof of the Claim.
(f) At what point (if any) does your proof use that the algorithm chose w instead of y?
(g) At what point (if any) does your proof use that weights are nonnegative?

	Dijkstra's Algorithm

