
Math 416

Worksheet 5. Divide & Conquer I

We start to understand our first paradigm of algorithm design, Divide and Conquer. D&C
algorithms follow this strategy:

• Break the problem into subproblems that are smaller instances of the same problem.
• Recursively solve these subproblems.
• Merge (hopefully efficiently) solutions of the subproblems into solutions of the big problem.

Notes.
• Often D&C is well-suited to problems for which brute-force search is already polynomial
(e.g. finding the closest pair of points among n in the plane).

• Small improvements in steps of D&C can add up to material improvements in the overall
running time.

We focus now on an example of this second point.

Integer multiplication Recall that if x and y each have n bits then the gradeschool algorithm for
computing x · y has running time O(n2).

Problem 1. Run the algorithm to compute 1100 × 1101, just to make sure you remember how it
works. (You are more familiar with it in base-10, but it works the same way in base-2.)

Problem 2. Suppose that we are trying to multiply the two n-bit numbers x and y. Let xL be the
first n/2 bits of x and xR the last n/2 bits. Similarly, let yL be the first n/2 bits of y and yR the
last n/2 bits.

(a) Write two equations, one that expresses x in terms of xL and xR and another that expresses
y in terms of yL and yR.

(b) Multiply your two equations to get an expression for xy in terms of the four products xLyL,
xLyR, xRyL, and xRyR of two (n/2)-bit integers.

(c) This suggests a D&C solution, since, using the previous part of the problem, you can
compute xy using four recursive calls to compute (n/2)-bit instances. Explain why the
worst-case running time T (n) of this algorithm on inputs of size n satisfies the recurrence
T (n) = 4T (n/2) + O(n).

(Unfortunately, as we’ll see, functions T (n) of this type are Θ(n2). So we have not
improved on the grade-school algorithm.)

Problem 3.
(a) After meditating on the equation

ad + bc = (a + b)(c + d) − ac− bd,

show that in fact three recursive calls to compute products of (n/2)-bit numbers would suffice
in Problem 2(c).1

(b) Write your algorithm in pseudocode and explain why its worst-case running time T (n)
satisfies the recurrence

T (n) = 3T (n/2) + O(n).

(c) By analyzing the tree of recursive calls, show that T (n) is O(nlog2 3) = O(n1.59), which is
sub-quadratic!

(Hint: You will probably need a standard log trick: nlogb(a) = alogb(n).)

1You’re right! Actually maybe one of them is a product of two (n/2 + 1)-bit integers. But that doesn’t affect the
asymptotic analysis, luckily.



Strassen’s Trick for matrix multiplication A similar trick allows us to speed up matrix multi-
plication a bit. Suppose that we want to multiply two n× n matrices, X and Y , each of which we
divide into four n/2 × n/2 blocks:

X =

[
A B
C D

]
Y =

[
E F
G H

]
.

Problem 4. The product XY can be computed blockwise. Fill in the remaining entries:

XY =

[
AE + BG

]
This suggests a D&C strategy for multiplying matrices: recursively compute eight n/2 × n/2

matrix products AE, BG, etc., and do a few O(n2) additions of n× n matrices. Unfortunately this
gives O(n3) running time, the same as the usual linear algebra algorithm.

Strassen’s trick allows us to get away with only 7 multiplications. They are these:

P1 = A(F −H)

P2 = (A + B)H

P3 = (C + D)E

P4 = D(G− E)

P5 = (A + D)(E + H)

P6 = (B −D)(G + H)

P7 = (C −A)(E + F )

Problem 5. Pick a couple of entries of XY and show that they can be computed by adding and
subtracting some of the seven Strassen products P1, . . . , P7.

Problem 6. Explain how we can compound these savings into an algorithm for multiplying n× n
matrices whose worst-case running time T (n) satisfies the recurrence T (n) = 7T (n/2) + O(n2) and
is therefore O(nlog2 7) = O(n2.807).


	Divide & Conquer I

