We start to understand our first paradigm of algorithm design, **Divide and Conquer**. D&C algorithms follow this strategy:

- Break the problem into subproblems that are smaller instances of the same problem.
- Recursively solve these subproblems.
- Merge (hopefully efficiently) solutions of the subproblems into solutions of the big problem.

Notes.
- Often D&C is well-suited to problems for which brute-force search is already polynomial (e.g. finding the closest pair of points among \(n \) in the plane).
- Small improvements in steps of D&C can add up to material improvements in the overall running time.

We focus now on an example of this second point.

Integer multiplication Recall that if \(x \) and \(y \) each have \(n \) bits then the grade-school algorithm for computing \(x \cdot y \) has running time \(O(n^2) \).

Problem 1. Run the algorithm to compute \(1100 \times 1101 \), just to make sure you remember how it works. (You are more familiar with it in base-10, but it works the same way in base-2.)

Problem 2. Suppose that we are trying to multiply the two \(n \)-bit numbers \(x \) and \(y \). Let \(x_L \) be the first \(n/2 \) bits of \(x \) and \(x_R \) the last \(n/2 \) bits. Similarly, let \(y_L \) be the first \(n/2 \) bits of \(y \) and \(y_R \) the last \(n/2 \) bits.

(a) Write two equations, one that expresses \(x \) in terms of \(x_L \) and \(x_R \) and another that expresses \(y \) in terms of \(y_L \) and \(y_R \).

(b) Multiply your two equations to get an expression for \(xy \) in terms of the four products \(x_Ly_L, x_Ly_R, x_Ry_L, \) and \(x_Ry_R \) of two \((n/2)\)-bit integers.

(c) This suggests a D&C solution, since, using the previous part of the problem, you can compute \(xy \) using four recursive calls to compute \((n/2)\)-bit instances. Explain why the worst-case running time \(T(n) \) of this algorithm on inputs of size \(n \) satisfies the recurrence \(T(n) = 4T(n/2) + O(n) \).

(Unfortunately, as we’ll see, functions \(T(n) \) of this type are \(\Theta(n^2) \). So we have not improved on the grade-school algorithm.)

Problem 3.

(a) After meditating on the equation

\[
ab + cd = (a + b)(c + d) - ac - bd,
\]

show that in fact three recursive calls to compute products of \((n/2)\)-bit numbers would suffice in Problem 2(c).

(b) Write your algorithm in pseudocode and explain why its worst-case running time \(T(n) \) satisfies the recurrence \(T(n) = 3T(n/2) + O(n) \).

(c) By analyzing the tree of recursive calls, show that \(T(n) \) is \(O(n^{\log_2 3}) = O(n^{1.59}) \), which is sub-quadratic!

(Hint: You will probably need a standard log trick: \(n^{\log_a b} = a^{\log_a n} \).)

1You’re right! Actually maybe one of them is a product of two \((n/2 + 1)\)-bit integers. But that doesn’t affect the asymptotic analysis, luckily.
Strassen’s Trick for matrix multiplication A similar trick allows us to speed up matrix multiplication a bit. Suppose that we want to multiply two $n \times n$ matrices, X and Y, each of which we divide into four $n/2 \times n/2$ blocks:

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}. $$

Problem 4. The product XY can be computed *blockwise*. Fill in the remaining entries:

$$XY = \begin{bmatrix} AE + BG \\ \end{bmatrix}$$

This suggests a D&C strategy for multiplying matrices: recursively compute eight $n/2 \times n/2$ matrix products AE, BG, etc., and do a few $O(n^2)$ additions of $n \times n$ matrices. Unfortunately this gives $O(n^3)$ running time, the same as the usual linear algebra algorithm.

Strassen’s trick allows us to get away with only 7 multiplications. They are these:

$$P_1 = A(F - H) \quad P_5 = (A + D)(E + H)$$
$$P_2 = (A + B)H \quad P_6 = (B - D)(G + H)$$
$$P_3 = (C + D)E \quad P_7 = (C - A)(E + F)$$
$$P_4 = D(G - E)$$

Problem 5. Pick a couple of entries of XY and show that they can be computed by adding and subtracting some of the seven Strassen products P_1, \ldots, P_7.

Problem 6. Explain how we can compound these savings into an algorithm for multiplying $n \times n$ matrices whose worst-case running time $T(n)$ satisfies the recurrence $T(n) = 7T(n/2) + O(n^2)$ and is therefore $O(n \log_2 7) = O(n^{2.807})$.