
Math 416

Worksheet 9. Roots of unity and polynomial multiplication

Euler’s Formula. eiθ = cosθ + isinθ (which remember represents the point (cosθ, sinθ) on
the unit circle in C.)

Definition. An nth root of unity is a solution (in C) to zn = 1.

Problem 1.

(a) Prove that for any integer k, the number e2πik/n is a complex nth root of unity.
Where does it appear on the unit circle?

(b) Find all solutions θ ∈ R to eiθ = 1.
(c) Prove that, for any n ∈ N, the numbers

e2πik/n, k = 0, 1, . . . , n− 1,

are the complex nth roots of unity. (In particular, you must show that this is a list
of n distinct numbers!) Draw a picture and indicate where these n points appear in
the plane.

(d) Write ζ = e2πi/n. Prove that

1, ζ, ζ2, . . . , ζn−1

is also a complete list of the nth roots of unity.
(e) Prove that if n is even, then squaring the nth roots of unity gives a list (with

repetitions) of the (n/2)th roots of unity.
(f) Prove that if n is even, then the nth roots of unity come in ± pairs: ξ is an nth root

of unity iff −ξ is. What about when n is odd?

Polynomial multiplication Given two polynomials A(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and B(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n, we would like to compute the coefficients of the
product

A(x)B(x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ anbnx
2n

= c0 + c1x+ · · ·+ c2nx
2n.

Problem 2. Find an explicit formula for the coefficient ck of xk in A(x)B(x), for k =
0, 1, . . . , 2n.

Problem 3. Briefly discuss with your groupmates a naïve algorithm to multiply two degree
n polynomials in O(n2) time.

Our goal is to find a D&C solution that runs in O(n log n) time. The main idea is to
convert the polynomial to point–value form.

Problem 4. Discuss with your groupmates the assertion, a polynomial of degree n is
determined by n+ 1 of its values. Can you interpret this in terms of linear algebra?



So we need to translate between coefficient form and point–value form efficiently:

coefficients
a0, . . . , an

values
A(x0), . . . , A(xn)

evaluation

interpolation

Problem 5. Show how evaluation at a single value x can be performed in linear time using
Horner’s Rule:

A(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−2 + x(an−1 + anx)) · · · )
Do a small example, say a degree-3 polynomial.

So we need a way to interpolate quickly. The trick will be to choose the interpolation
points xk cleverly. But actually we won’t worry much about interpolation yet; it will turn
out by some magic that if we find a nice evaluation algorithm, then interpolation will fall
right out of it.

Problem 6. Explain how, if we could both interpolate polynomials in O(n log n) and evaluate
at n points in O(n log n) time, then we could multiply polynomials in O(n log n) time. Draw
a diagram.

A preview: Choose the n points for interpolation in ± pairs, so that the even powers of
±xk are the same:

±x0,±x1, . . . ,±xn/2−1.

Then we can split A(x) up as a sum A(x) = AE(x
2) + xAO(x

2), where AE and AO are each
polynomials of degree n

2 − 1. These lower-degree polynomials have to be evaluated at n/2
points each:

(x0)
2, (x1)

2, . . . , (xn/2−1)
2.

But, (uh-oh!), these n/2 points no longer come in ± pairs! How do we continue the
recursion?! Answer: By evaluating at the nth roots of unity in C (!), which we will explore
on the next worksheet.

In case you’re fast, like last time:

We want to interpolate! That is, we still want to be able to take n values of a polynomial
A(x0), A(x1), . . . , A(xn−1) and return its coefficients a0, a1,. . . , an−1. This problem can be
thought of in terms of matrices:

A(x0)
A(x1)

...
A(xn−1)

 =


1 x0 x0

2 · · · x0
n−1

1 x1 x1
2 · · · x1

n−1

...
...

...
...

...
1 xn−1 xn−1

2 · · · xn−1
n−1



a0
a1
...

an−1

 .
Problem 7 (Challenging!). The large n× n matrix M is called a Vandermonde matrix.
Prove that if the xis are distinct, then the Vandermonde matrix is invertible.


	Roots of unity and polynomial multiplication

