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Abstract

Suppose that customers arrive to a service center (cakicemtb server, etc.) with two stations in accor-
dance with independent Poisson processes. Service tine@heit station follow the same general distribu-
tion, are independent of each other and are independeng aftival process. The system is charged station
dependent holding costs at each station per customer petimai At any point in time, a decision-maker
may decide to move, at a cost, some number of jobs in one qodhe bther. The goals of this paper are
twofold. First, we are interested in providing insightsoiithis decision-making scenario. We do so, in the
important case that the service time distribution is higkdyiable or simply has a heavy tail. Second, we
propose that the savvy use of Markov decision processeseadrtd easily implementable heuristics when
features of the service time distribution can be capturethtvsgducing multiple customer classes. To this
end, we consider a two-station proxy for the original systernere the service times are assumed to be
exponential, but of one of two classes with different raté& prove structural results for this proxy and
show that these results lead to heuristics that perform well



1 Introduction

Suppose that customers arrive to a service center (cakiceméb server, etc.) with two stations in accor-
dance with independent Poisson processes. Service tine@heait station follow the same general distribu-
tion, are independent of each other and are independeng aftival process. The system is charged station
dependent holding costs at each station per customer petimai At any point in time, a decision-maker
may decide to move (or pass) some number of jobs in one queile twther. It should be clear that the
decision-maker’s choice of the number of customers to mbeeld depend on the number of customers
at each station, the cost to move customers, the time elasesl the service times of customers currently
being processed by the server began and perhaps the nunfbturefcustomers (s)he expects to arrive in
the coming moments. With the exception of the elapsed setiite information the control decisions seem
ripe for an analysis via Markov decision processes (MDPs)foldunately, it is just that part of the state
space that makes it uncountable and therefore intractable.

The goals of this paper are twofold. First, we are interestg@aoviding insights into the above decision-
making scenario. We do so, in the important case that thecgetvne distribution is highly variable or
simply has a heavy (non-exponential) tail. Second, we @egbat the savvy use of Markov decision
processes can lead to easily implementable heuristics Veatures of the service time distribution can be
captured by introducing multiple customer classes.

The limitations of MDPs are well-known. As long as the statd action space descriptions (called the
graph of the MDP) are multi-dimensional or consist of a langenber of elements, solving the dynamic
program quickly becomes intractable. In order to allevihis problem there have been significant lines
of research that study the structure of optimal policiesuichsareas as control of queues, manufacturing,
transportation, inventory control and revenue managemé&or example, in the aforementioned model
suppose the service time distribution is exponential. Taespace is then two-dimensional. If the optimal
policy can be described bymaonotone switching curvée search for the optimal policy is reduced to finding
the curve, rather than enumerating the state and actios frmoughout the decision space. Unfortunately,
even in simple cases finding a structured optimal policy wherservice time is generally distributed may
be intractable. Consider an admission controllddG /1 queue that is used to model routing in a simple
manufacturing system. If the service time distribution ¥p@nential (so the system is aif/M/1), it
is well-known that the optimal control policy is @bntrol limit form. If the service times are generally
distributed, then when a new customer arrives, the deeisiaker must once again consider the time since
the last service completion; the state space is uncounthllis case, even reasonably sized discretizations
of the time dimension lead to an intractable problem.

In reality, when the service time distribution is generalstpexperience gives the decision-maker signifi-

cant information about its form. In this paper we presentwibic that uses a multi-class queueing network



with exponentially distributed service times as a proxydgroblem with general service time distributions.
In essence, for the original model with general distribngioservices are classified into types as a way to
record partial historical information that is useful for kiveg control decisions. The proxy network problem
has a tractable MDP solution with a control structure thaglevant, in a heuristic sense, to the intractable
control problem faced in the original model. We focus oueribn on the important case that the gen-
eral distribution has a “heavy tail” (does not decay expdiaéy) or is highly variable. Intuitively, we are
interested in systems where long service times providefggnt useful information about the remaining
service time distribution. We discuss our heuristic in thetext of the new load-balancing model described
above. Although it has its roots in service centers, it is algplicable to supply chain management and to
transhipment models in transportation networks.

We should point out that the goal is to introduce a methodgpreximating the load balancirtgcisions
made in a parallel processing network, not to approximates#vice time distributions themselves. With
an eye towards tractability and solutions that are easy $orde and implement, we restrict attention in
the proxy model to a hyper-exponential (mixture of expoiasit service distribution with two classes. We
find that the optimal control policies for the two-class prorodel, when translated in a smart way (as
discussed in SectioB), indeed lead to policies that perform well in the origingstem. Alternatively, we
conjecture that one could approximate service times witBréang distribution witht phases, and provide
a similar analysis using a Markov decision process formaratThe difficulty would then be in translating
that process into an implementable control policy. MoreoWe decision problem would be intractable for
k of moderate size. The optimal control for the proxy model wappse is quite simple. More sophisticated
MDP models would quickly lose this feature.

This paper makes several contributions. Of course, we itbesarmethod for determining good control
policies for the otherwise intractable load balancing peob The employed proxy model, which is also
new, most likely has applications outside of this contert we find it interesting in its own right. For the
proxy model, we show that the optimal control structure @rebterized by a series of “do-not-move/move-
up-to levels” and that these levels are monotone. Not onlthdee structural results provide insight, but
they also aid in computation. In particular, since the statece of the proxy model has infinite dimension,
computation is facilitated by truncation of the queue lasgt Truncation often leads to policies that are
not monotone near the boundaries. However, we “smooth” tiei@s in accordance with the theoretical
results, and we find that these smoothed policies perforterbetinally, performance was measured via
simulation. We display the results of the numerical studlyjicw show that our policies perform well as
compared to some alternative heuristics.

The remainder of the paper is organized as follows. In Se&iwe discuss related literature. Section

3 contains some preliminary results, a further descriptiothe original and proxy models and the optimal-



ity criteria. We present a Markov decision formulation o goroxy model and show several monotonicity
results in Sectiorl. The description of our heuristic for controlling the ongl load balancing problem,
including the relationship to the proxy model, is given irctan 5. Section5 also contains an implementa-
tion of the heuristic and the numerical comparison to séatarnative heuristics. The paper is concluded

in Section6.

2 Literature review

The theory (and drawbacks) of MDPs is well-documented. \ié& tae interested reader to the now classic
text of Putermani4]. The literature on the control of parallel processing reks is also abundant so we
do not provide a complete review here. Instead the readaiigegal to the work of Shirazi et al18] and
Wang and Morris 20] and the references therein. We focus on those papers wihtdielevance to the
current work. For a basic introduction to heavy-tailedritisttions and their properties, see Sigma#][ A
discussion of several alternative definitions can be foundayde and Ku§].

Paxson and Floydl3] have found that for most of the traffic in the world wide wedssion and con-
nection arrivals are modeled well using Poisson processes padketinterarrivals are better described
with heavy tailed distributions. This is further confirmeg Grovella et al. B]. In particular, the hyper-
exponential distribution has proved to be useful to appnate heavy-tailed distributions. Xu et aR2]
use such approximations to formulate generalized Petsiinebrder to study the properties of distributed
manufacturing systems. The hyper-exponential is one ofrthvating factors of our two class Markov
decision process formulation.

Harchol-Balter and Downe)6] compare the reassignment of processes to a differentrsairtiee time
of birth vs. reassignment once the process has alreadgdtgmteemptive migration) in order to balance
CPU load in a network of stations. They obtain a preemptiassignment strategy that is more effective
than remote execution even when the memory transfer cogglis rum and Hua-Chun2f3] develop an
adaptive rule for balancing the load on a parallel queueystesn, where some customers are required to
wait for a particular server or set of servers. Their rule soabination of a majority-vote rule (where
votes are issued by switchers or routers) ajarathe biased queurile as presented by Yum and Schwartz
[24]. Yum and Schwartz use this term to denote a rule similaoitothe shortest queiidut a bias term is
added to the queue lengths. This rule is robust to changée ibuffer sizes and input rates, and performs
well according to the criteria of lower delay and lower blimgk probability. Shimkin and ShwartZ7]
study a system of queues that share an arrival process. ifgrbustomers are subject to admission and
routing control. The purpose is to maximize income whenetage holding costs and rewards for accepting
customers. The arrival and service process parameteradiepehe current state of the system. The authors

prove the existence of a monotone optimal control policy.



Other research on systems with heavy-tail distributedsetimes includes Crovella and Harchol-Balter
[2] who develop a policy that purposely operates the servdslaiglifferent loads, and directs smaller tasks
to the lighter-loaded hosts. Riska et dl5] present an inexpensive technique for modeling load batgnc
policies on a cluster of servers conditioned on the facttti@service times of arriving tasks are drawn from
heavy-tailed distributions. Their results provide exadbimation regarding the distribution of task sizes
that compose the queue on each server. Beard and BEiagufly a prioritization mechanism to alleviate
overloads that result in blocking the access to serviceltoustomers. Of course none of these studies
include a Markov decision process formulation of an exptinemodel applied to the general model with
heavy tailed distributed service times.

Our model is closely related to that in Down and Lewdk [Their work refers to a system of parallel
gueues, where the balancing decisions are taken at theainaesvals or departures. They seek the optimal
design and control policy for the system. There is also aectetation to the work of Lewis10] where
an M/M/1 queue is controlled by two “gatekeepers” that médleedecisions of acceptance or rejection of a
customer at two moments: the arrival and the moment prioetaice. Another study related to the control
of queueing systems with exponentially distributed sertiimes can also be found in He and Nedfs\Wwho
study policies that move a fixed amount of customers to cbatsgstem of two M/M/1 queues. Transfer of

customers occurs when the difference of the queues readhiEal level.

3 Preliminaries and Model Descriptions

In this section we discuss the formal definition of a parglielcessing network with service times that follow
a heavy-tailed distribution and thmroxy model with exponential service times. Consider 2 paralleugs.
Customers arrive to queueaccording to independent Poisson processes ofgafier k£ = 1,2. The service
processes of each queue are independent of each other aathairkival streams. The!” customer that

is served by servek requiresS* time units of service wheréSk.n > 1, k = 1,2} are assumed to be
i.i.d. and independent of the station to which the customevres. In thegeneralmodel that motivates this
study, the service times are assumed to follow a generaibdison with finite mean. However, we are most
interested in those service distributions that see a larggeoption of short service times, but also see some
very large service times; those that are highly variablee 8uch class of distributions is that with “heavy,”

non-exponential tails.

Definition 3.1 A distribution functionF, for random variableS, is said to beheavy-tailed if F(s) :=
1-F(s)=P(S>s)>0,s>0,and
lim P(S > s+ 4|5 > s) = limle,éZO. (3.2)

s§—00 s§—00 F(S)



Intuitively, if S follows a heavy-tailed distribution, then$f ever exceeds a large value, it is likely to exceed
any larger value as well. Thus, while most times are shorgastbn-maker that finds a customer whose
service time is unusually long would not want to leave custimin queue behind it.

As an approximation to this model we considgoraxy model, where each arriving customer is of one
of two classes. A customer’s classification is not revealetil immediately prior to beginning service.
Customers are of clags j = 1,2, with probability p; and a clasg customer requires an exponentially
distributed amount of service with medri;;. We assume that Class 1 are those with unusually long
(“heavy”) service times, while Class 2 corresponds to thaitle shorter (“standard”) service times seen in
the general model; that i$/ 1 > 1/u2. We will explain exactly how they are related to the generatig
when the heuristic is described more fully in Section

In either model, lell be the set of all non-anticipating policies. A poligyc II prescribes how many
customers to move from one queue to another, given the nuaflmrstomers in each queue (the queue
length processes), perhaps the amount of time each cust@méeen in service, and any other information
that is required to make the (policy dependent) process dl#hk. For example, in the proxy system the
current “state” of the system includes the queue lengthga®ses and the classes of the customers currently
in service at each queue.

There is a fixed cost for moving each customemolnits per customer. That is, 6f customers are
moved, a cost ofnf is incurred. Customers currently in service (in either ggezannot be moved; the
control policy is assumed to be non-preemptive. The systemcantinuously incurs holding cobt.qx. per
unit time that queué: containsg, customers, including the one in service for= 1,2. Without loss of
generality we assume that > ho. We seek to find a strategy for load balancing under the ieftmitrizon
expected discounted cost or the long-run average expeogtdptimality criteria. Note here that the term
“load balancing” is used somewhat loosely since the holdvgls may cause the optimal policy to leave the
distribution of the workload for each queue unbalanced.omes sense, perhaps “load distribution” would
be more descriptive. However, having made this clarificatiwe will continue to refer to the control as
balancing without further comment since it is common tewtogy.

For a fixed policyr, denote the set of decision epochslby= {d,,n > 0} and the state at the'"
decision epoch by,,. For example, ifr depends only on the queue lengths, tliers the set of arrival
times and service time completions. We assume that the tetveelen decision epochs is bounded away
from zero so that only a finite number of decisions can be madefinite amount of time. That is, if the
time between the" and(n + 1)** decision epoch has distributiaf,  ; then there exist§ > 0 ande > 0
such thatl — G,,4+1(6) > € (cf. p. 532 of [L4]). Let Q™ (t) = {Q7 (¢), Q5 (t)} be the queue length process,

and letd,, represent the balancing decision taken at decision eppahderr. Define the total discounted



expected cost up until timeas

N(t)

t
vg (7)) =E} ( Z e_ﬁd"c(Xn,Hn)> +/ e Bu EZ[h1QT (u) + ha Q7 (u)]du,

n=0 0

whered,, is the action taken at decision epoehc(-, -) is the lump sum cost associated with moving cus-
tomers from one queue to the othaf(¢) is the number of decision epochs in the firsime units, and the
expectation of the system under policys conditioned on the initial state. The criteria we are interested
in are

™ Ug)r,t(x)

o oy
V(@) = Jim o (x), 7" () = limsup 4

wherevg(x) represents the infinite horizof—discounted expected cost undefthe interchange of limit

and expectation is justified by the monotone convergenagéh® andy™ () is called the long-run average
expected cost starting in statainder policyr. The objective then is to find a poliey* under each criterion
such thaty™ (z) < 47 (z) for all statese and all policiesr € Il for y = vg, ¢. Inthe next section we provide
results that simplify this search considerably for the gramnodel. We view these results as interesting in

their own right, but they are particularly useful in the implentation of our heuristic in the general model.

4 Optimal Control for the Proxy Model

For the proxy model all inter-arrival and service times atpomentially distributed, and the state may be
described by a vectdl, y, i, j), where! represents the total number of customers in the systeny ad
the number of customers in queRé€including any customer in service). Whe(fy) € {1, 2} it represents
the class of customer currently at servéR); i (j) = 0 means that queue 1 (2) is emptyzlt= (1,y,1i,75),
then the possible actions setds = {—(y — 1)*,—(y — 2),..., I —y —2,(I —y —1)T}. Thatis, for

0 € A,, § = 0 means that nothing will be moved white> 0 meansy customers are moved from queue
1 to queue 2 and < 0 means thatf| are moved from queue 2 to queue 1. A customer that is currently
service cannot be moved. L&Y := {([,y,i,5) | I — 1>y > 1,i,j € {1,2}} represent the set of states
such that both servers have at least one customer to sem#éar$j, defineZ; := {(1,y,0,5) | I =y > 1}
andZ, := {(I,y,4,0) | I > 1,y = 0}, whereZ; represents the set of states where there are no customers
to serve in queué = 1,2 while the other queue is non-empty (thestands for “idle”). The state space

can now be written

X:=WUZ3 UZ, U{(0,0,0,0)}.



We applyuniformizationas described in Lippmarl]], with uniformization constan® = Ay + Ay +
2max{u1, uo}. Without loss of generality assumie = 1. This allows us to consider the discrete-time
equivalentto the continuous proxy model already described. That isajotbat the stationary optimal
policies in the discrete-time case are the same as that inahgnuous-time case. The infinite horizon
discounted cost and the long-run average costs also ceinoid only up to a multiplicative constant. The

cost function for each period includes holding and switgtgnsts and is given by:
C((1,y,1,5),0) = |0l m + (I —y —0)h1 + (y + 0)ho,

where(1,y, 1, j) andf denote the current state and action, respectively. Lebtiaéexpected cost of a load

balancing policyr over the firstt (discrete) decision epochs be defined

e

where X,, and é,, represent the state and balancing decision at decisiorhepod-urthermore, define
vat(7) = infren vy (), wherell is the set of all non-anticipating policies, . () is the optimal cost-to-
go for at-horizon problem starting in state under discount factas. In the case wheh = oo, we write

v, instead ofv, »,. This defines the infinite horizon expected discounted cotrion. As we are also

interested in the average case, the average cost of a fixiegt pothe discrete time model equals

1
lim sup —wv = limsup —E7 C(Xy,0
n—)oopn ln( ) n—)oopn Z ! t)
In the remainder of the section, we present several strictesults for the finite horizon case. We then
give a stability result and show that the structural restdtgtinue to hold in the infinite horizon discounted
cost and average cost cases. The first result states thaagtefeatures of an optimal policy in Lewis and

Down [4] carry over to the current model.

Proposition 4.1 Under the finite or infinite horizon discounted expected ocoghe long-run average ex-
pected cost criterion, there exists an optimal policy the¢slnot move customers from queue 2 to queue 1

(sinceh; > hoy), except possibly to avoid idling.

Proof. The proof follows precisely in the same manner as that in fidragt.1 of Down and Lewis4] and

is omitted for brevity. "

Supposeé = y+0forb € Ay, ;) (i-e., the number of customers in the low cost queue aftéopreing

the control action). Lety = 0. Definew, (1, v,1,7,b) as the cost-to-go, starting in statg y, i, j), for



moving up to amount in periodt, followed by optimal control in the remaining periods:

(1nlb = y] + ha(I = B) + hob+ Uny 1(I,b,i,j),  forl<y<I-—1,
m|b —y|+ hi(I —b) + hab + p1Ua-1(1,b,1,5)
+p2Ua-1(1, 0,2, 7) fory=1,i=0,b<1,
Wot(1,Y,4,5,b) = § hol + Uay—1(1,b,0, 5) fory=b=1,i=0,
m|b —y|+ hi(I —b) + hob+p1Uss—1(1,b,14,1)
+p2Ua,t—1(1,b,1,2) fory=0,7=0,b>1,
kh1[+Ua7t—1(I,b,i,0) fory=b6=0,7 =0,

where for(I,b,i,7) € W
Uat(1,b,i,7) = a[pipiva,(I —1,b,1,7) + poptiva,e(I — 1,b,2,7) + p1pjvae(l —1,b — 1,4, 1)
+ paptjva (I — 1,0 — 1,4,2) + Mva (L +1,b,4,5) + Aova (I + 1,0+ 1,4, 7)
+ (1 =X = Xo— i — pj)va(L, 0,4, )],
for (1,0,0,7) € Z; (b = I in this case)
Uat(I,1,0,5) = alpipjva (I — 1,1 —1,0,1) 4+ papjva (I — 1,1 —1,0,2)
+ M (prvas(I +1,1,1,5) + pova(I +1,1,2,5)) + Aava (L + 1,1+ 1,0, )
+ (1 =X = Xo = pj)va(L, 1,1, )],
for (1,0,4,0) € Zy (b = 0 in this case)
Uat(I1,0,4,7) = a[pipiva(I —1,0,1,0) + paprive (I —1,0,2,0)
+ Mo (I +1,0,%,0) + Xa(p1va (I +1,1,4,1) + pove (I +1,1,4,2))
+ (1 =X — A2 — pi)van(1,0,4,0)],
andforl =b=0
Ua,t(0,0,0,0) = a[A1(p1va,:(1,0,1,0) + p2va,(1,0,2,0)) + A2(p1va,(1,1,0,1) + pavas(1,1,0,2))

+ (1 — /\1 — )\g)vaﬂg(o, 0, 0, 0)]

Let Ay = {1,2,...,I — 1}. Similarly defineAz, := {1,2,...1}, Az, := {0,1,...1 — 1} and

A0,0,i,5) = {0}. Itis well-known that for(1,y, 4, j) € W, va, (NOtev,o = 0) satisfies the followindinite

8



horizon optimality equationdHOE)

Ua,t([ayaiuj) = Jg}}c{wai([ayai?ja b)}7 (41)

wherelC = W,Z;,7Z,, or (0,0,0,0) depending o/, y, 1, j).
The next result states that there exists an optimal polic sat for each state there is a “do-not-move/
move-up-to” amount. This means that if < L we move enough customers to hdveustomers in queue

2, and ify > L, we move no customers.

Proposition 4.2 Suppose the current types at serveind?2 arei and j, respectively. Then,

1. there exists a Ieveilf,ij < I such that for eacth > 1, I > 2 and(1,y,1i,j) € W U Iy, the optimal
policy is to bring the number of customers in queue 2 ugfg; if y < L7, and to move no

i t
customers ify > L; ; ., and

2. vot(1,y,1,5) —vat(I,y + 1,14, 7) is non-decreasing i (i.e., v, ¢ is convex iry) for all 4, 5, ¢ > 0,
I >3,andy <1 -3.

Proof. By induction ont. Recall that, o(-) = 0. So that Statement 2 holds trivially for= 0. Consider

t = 1 and assumé > 2. We have

wat(1,,,5.b) = mlb — y| + hy (I = b) + hab. (4.2)

Since(7,y,i,7) € WUZ, queue 1is non-empty. Recall from Propositiaf that it is not optimal to move
customers from queue 2 (the low-cost queue) to queue 1 (fedast queue) unless possibly if queue 1 is
empty. That is, it suffices to consider> y. When we restrict attention to the det, y + 1, ..., 1 — 1}, wa 1

is a linear function ob (since on this sefh — y| = b — y). Depending on the direction of the inequality
m — hy + hy > (<) 0 the optimal action is either not to move customers or to mdwvef the customers to
the low cost queue (except for the one currently receivingice at queud). That is to say either letting

Ll

1. =0orI —1isoptimal. This proves the first statement for 1.

Assume Statement 2 holds for- 1. To prove Statement 1 at tinieecall

wa,t(lvyvi>j7 b) = ’I’)’L|b - y| + hl(I - b) + h2b+ Ua,t—1(17 bvlm])

From Statement 2 at epo¢hk 1, and from the definition o/, , Un +—1(Z, b, 7, j) is a convex combination of

convex functions. Thusy, +(I,y, i, j,b) is convex inb. Let Ltm. be the minimal (smallest) element of the

setargminge 4., {wa,(1,1,4,5,0)}. Note that by convexit;L?ivj isalsoin theargminge g, 1, -1 {wa,t (1, y,4,5,0)}



foralll <y < Lf,m. The convexity ofw, ; together with Propositiod.1 yield that it is not optimal to

.. This proves Statement 1.

t
move customers fay > Ly,

To complete the proof it remains to show that the precediggraents imply that Statement 2 holds for

timet and all(i, j). There are several cases to consider. Suppose for no/that, j) € W.

Case 1: L7, ; < y. Inthis case, it is optimal not to move in the three stdtes;,, j), (I,y + 1,4, ),
(I,y+2,i,7). Thus,

’Ua,t(l7y>i7j) - 2Ua,t(l,y+ 17Z7]) +Ua,t(17y+27i7j)
= Oz,t—l(I»y?ivj) - 2Ua,t—1(17y+ 17Z7]) + Ua,t—1(17y+2>i7j) > 07

where the inequality follows from the inductive hypothesiat the second statement holds at 1.

Case 2:y < L?m’ — 2. The optimal action in the three statgs vy, i, j), (I,y + 1,4,7), (I,y + 2,4,7) isto

t
allocatel — L7 ;

customers in queue 1 ard ; ; in queue 2. Thus,
Ua7t([ayai7j) - Ua,t(I7y + 17%]) = va,t([ay + 17%]) - Ua,t(I7y + 2717]) =m.

Case 31y = Lt

74;— 1. First notewq (I, y+ 1,4, j,y +2) > va+(I,y + 1,4, j); moving one customer is a

(potentially) suboptimal action for staté, y + 1,1, j)). Thus,

Vot (I, y,1,7) — Vot (L, y+1,0,7) — [Vat(I,y + 1,4, 5) — va (I, y + 2,4, )]
> Vel y,1,7) — wa (I, y+ 1,4, j,y + 1) —wa (I, y + 1,4, 5,y + 2) + va, (I, y + 2,4, )
=m+Us-1(L,y+1,0,7) = Uspr1(L,y + 1,4, 5) = m — Uap—1(L,y + 2,4, 5) + Uap—1(L,y + 2,4, ) = 0,

as desired.
Suppos€1,y,i,j) € Z,. Let L}, , be the minimal element of the satgminbeAh{wa,t(I,O,i,j, b)}.

Thus,va(1,0,4,j) = wi(I,0,4, 5, L} ; 5). Assuming,L} ; , > 2
Umt(I, O, 17]) - va,t(I7 17 17]) - [UOé,t(I7 17 Z?]) - UOé,t(I7 27 Z?])]
> wa,t([a 07 ia j7 Lfi,i,o) - wa,t(L 17 i7 ja LtLLO) - [wa,t(I7 07 i7 ja Lt],z’72) - waﬂf([? 27 i? j? Lff,i,Z)]

=m—-—m=0.

Similarly for L ., < 2. Since for all(Z, y,,j) € Z; U {(0,0,0,0)}, y = I there is no convexity require-
ment onZ; U {(0,0,0,0)}. .

10



We remark that the previous result states the existenceaftamal “move-up-to” level for eacty, i, j).
We next characterize these levels as monotone, non-dewead . This result not only lends insight into
the structure of the optimal policy, but it is also conveniboth for implementation and to simplify its
computation. Moreover, it is used to implement the load gy heuristic presented in SectibnBefore
proving the result, it is useful to recall the definition obswodularity:

Definition 4.3 A functiong(j, k) is said to besubmodular if and only if the difference(j, k) — g(j,k + 1)
is non-decreasing in; thatis, g(j, k) — g(j,k+1) < g(j+ 1,k) —g(j + 1,k + 1).

Proposition 4.4 Let > 3,y € {0,...,I — 1}. Suppose the current types at servérand2 are i and j
respectively. The following hold:

1. Fort > 1 there exists optimal move-up-to levéls, , ; . and L} ; ; such thatl. >L

t
I+177/7] - Ivivj.

2. vot(1,y,1,5) —var(L,y + 1,4, ) is non-decreasing id (i.e., v, is submodular in(1,y)) for all
t>0andl <y <I-3.

Proof. By induction ont. Fort = 0 Statement 2 holds trivially since,, = 0. Att = 1 we have
wh(I,y,14,7,b) = m|b—y| + h1(I — b) + hob. As in the proof of Propositiod.2it is optimal either(a) not
to move any customers, ¢b) to move all the customers to the low cost queue (except footieecurrently
receiving service at queug. That is to say the optimal move up to Ievelli%z.’j =y or I — 1 depending on
the direction of the inequalityx — hy + he > (<) 0. Similarly, for state(1 + 1,y, 4, j), the optimal move
up to levelisLj, , ; ; = y or I (depending on the same inequality. Thilg, , , ; > L}, ; as desired.
Assume now that Statement 1 holds fand Statement 2 far— 1. There are 4 cases to consider to prove
Statement 2 holds at tinte In each of the first three cases we take advantage of thehtatetf ; > v ;.

Case Ly +1 < L}, jandy < L, ;.. Then,

wa,t([ayaihi? Lt],l,j) - va,t([ay + 1727j) - Uoc,t(‘[ + 17y7i7j)

+ wa,t(l +1,y+1,12,7, ij—l—l,i,j) =m—-—m =0.
Case2:y+1> L}, buty <L, .. Then,

woc,t(‘[7y7i7j7y + 1) - Ua,t(Ly + 1717]) - Ua,t(l+ 17y7i7j)

+ wa,t(l + lvy + 1>i7j7 Lfr+1,i,j) =m-—m=0.
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Case 3:;y+1> L7, ;andy > L7, ;.. Inthis case we have
Wat(1,y,%4,75,y) — VoL, y +1,4,5) —va(L +1,y,4,j) + war(I +1,y+1,i,5,y+1)
=h1—hy — (h1 = ha) + Ua—1(L, 9,4, §) = Uap—1(Ly + 1,4, 5) = Uag—1(I + 1, 9,4, j)
+Upi—1(L + 1,y 4+ 1,4,5).

Each of preceding 3 cases imply submodularitydgy sincew,; > v, with the last one also using the
inductive hypothesisl{, ;1 is a linear combination of,, ;).
Case4iy+1 < L}, andy > L] <Lt <y,

Note that sincg+1 < Lt . . we havey < L!

I+1y,i,5" 1, 1, I+14,5 —

where the second mequahty follows from the inductive agstion. Since Case 4 leads to a contradiction it
cannot occur.

It remains to show thak(' , - > Li*!. First note that ifL}%!; = 1 the result holds trivially. Assume

that Ltltlj > 2. Note that the submodularity af,, implies submodularity ot/ ;(-,y,,-) for y > 2.

Suppose the result does not hold so thidt! , . < Li%L. Fix LT . - <y < Li*! so that the optimal

action in( 4+ 1,y,1, ) is to do nothing, while the optimal action in stdtg v, 7, j) is to move the number
of customers in queue 2 to}%};. By usingL}’;". in state(! + 1, y,1, j), the optimality equations imply
Vat1(L + 1,y,4,5) = hi(l +1—y) + ha(y) + Uae(I + 1,9,1, )
<m(LL —y)+ ha(I+1—L75L)
+ ho(LT55) 4+ Uau (T + 1, L5 0, ).
A little algebra yields
m(Lf},z,j —y)+hi(y — Lt[tly) - hz(LtI,z’,j —Y)
> Uat(I+ 1,4, 5) — Uap(I +1, LY, 5,1, ). (4.3)
Similarly (by considering the action “do nothing” in stdtg v, 7, j))
m(LfT,i,j —y)+hi(y Lt[tly) h2(L3,i,j )
< Uat(1,9:1,5) = Uag(I, LY ; 5,4, 5)- (4.4)
Combining @.3) and @.4) yields
Uot(I,y,1,§) = Uae(I, Ly ,6,§) = [Uat (T +1,9,4,5) = Uay(I + 1, L7 ; 4,1, 4)] > 0,

which contradicts submodularity and the result is proven. "
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4.1 The Infinite Horizon Discounted Cost and Average Cost Cas

In this section we note that the results from the previoui@eextend to the infinite horizon models. While
the infinite horizon discounted cost case follows almost @diately, the average cost case is slightly more
subtle and requires a stability result.

Proposition 4.5 For the proxy model, under any stationary, non-idling pplitbe system is stable if and
only if

(A1 + o) (ﬂ + @> <2 (4.5)
M1 p2

That is, there exists a stationary distribution.

Proof. To prove sufficiency we fix an arbitrary, stationary, noridlpolicy 7, find aLyapunovfunction
and applyFoster’s criterion(cf. [9, Theorem 3.7]). This guarantees that all recurrent staepaesitive
recurrent. To this end, consider the Markov chain inducea .bPenote this chain, with state spaXeby
{Xn,n > 0}. Note that sincer is non-idling, (0,0, 0, 0) is accessible from every state ¥ any recurrent
states must communicate with the distinguished diate, 0,0). Denote the chain restricted to only those

states that communicate with, 0,0, 0) by {Z,,,n > 0} and its state space . LetG = {(I,y,i,j) €

-1
X|I <1}. Lety = (% + %) and define

L(IL,y,i,5) = I/pu+1/p+1/uj, (I,y,4,7) € X.

For any action chosen and foF, y,i,7) ¢ G

E[L(Zns1) = L(Zn)|Zn = (1,y,1,5)] = (M + X2 — i — p5)/ i+ pi(pr /i + p2/p2 — 1/ 1)
15 (p1/ 1 + p2/p2 — 1/ 1)
= (M1 + X))/ —2. (4.6)

Since G is a finite subset of the irreducible X8t we may now apply9, Theorem 3.7] td Z,,} to get that
all states inX? are positive recurrent when the right-hand sidedof)(is strictly negative: wher4(5) holds.
Furthermore, since(6) also applies for states outside Xf, applying Proposition C.1.5 ofip] to {X,,}

yields that the expected time to reaXHh is finite. It follows that a stationary distribution exists.([16, p.
294)).

To show necessity of the inequality, we note tHz [Theorem 11.5.1] implies that whén; + \o)/p >
2 the expected time to reachfrom outside ofG is infinite, and thus a stationary distribution cannot exist
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Let U, andw, be the obvious infinite horizon analoguesifg; andw,;, respectively. The following
are called theliscounted cost optimality equatio(iI3COE):.

va(l,y,1,j) = gg}’lc{wa(f,y,i,ﬁ b)}, (4.7)

whereK = W,7;,7,, or (0,0,0,0) depending ort/,y,, j). Itis well-known thatv,, satisfies the DCOE
and a policy made up of actions that achieve the minimum onigine hand side of4.7) is discounted cost
optimal. Similarly, if we replacey, in the definition of the DCOE by some function &n say, and define
U andw as the obvious average cost analoguds t@ndw,, then the following are called theserage cost
optimality equationgACOE):

g+ ¢(I7y72a,7) = blnln {w([,y,i,j, b)}? (48)
cAx

whereC = W,Z;,7Z,, or (0,0,0,0) depending o/, y, 1, j).

Proposition 4.6 For the proxy model, the following hold:
1. For the discounted cost model

(a) The quantity, ¢ is non-decreasing i andlim; ;. Vot = Vq.
(b) Any limit point of an optimat—horizon policy is infinite horizon discounted cost optimal.

(c) In particular, the results of Propositions2and4.4 hold in the infinite horizon discounted cost
case.

2. For the average cost model, suppdse + \2) (% + Z—i) < 2.

(&) The policy that moves customers only to avoid idling hatefaverage cost.
(b) The optimal average cost may be computed aslim,; v, (x) foranyz € X.
(c) Any limit point of ao—discounted cost optimal policy is average cost optimal.

(d) There exists a limit function, sayof ), (z) = va(z) — v4(0,0,0,0) for z € X such that(g, 1)
satisfy the ACOE.

(e) In particular, the results of Propositiors2 and4.4 hold in the average cost case.

Proof. Since the state space is countable, the cost function is\agative, and the action set in each state
finite, the first two results in the discounted cost case fofilmm Proposition 4.3.1 of Sennott§]. Taking
limits in the value functions and along a subsequence indheigs yields the last discounted cost result.

In the average cost case conditiB’ in Down and Lewis 4] holds for the non-idling policy described
(see Example 3.3 ird]). Applying Theorem 3.6 therein yields the first result ire tAverage cost case.
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Corollary 7.5.10 and Theorems 7.2.3 and 7.5.6 of Senh6}{ollectively) yield Statements 2 (b), (c), and
(d). Taking limits in the value functions and along a subsemge in the policies yields the last average cost
result. "

5 The Load Balancing Heuristic and Numerics

In this section we present thead balancing(LB) heuristic for control of the original system with heavy
tailed distributed service times. The LB heuristic regslisemapping from (partial) state information of the
original system to the state of the proxy model. For the nebsystem the information of interest is the
vector(I(t),y(t),n(t),n2(t)), wherel (t) represents the total number of customers in the system at tim
y(t) is the number of customers in the low cost queue (q@guendn; (¢) denotes the time elapsed since the
customer at statioh began service. The classification of the customers as “atdhdr “heavy” in service
depends on a “trigger.” The trigger, denotedndicates when the service timg(t) for the original system

is deemed long enough to treat the customer at statema heavy type customer. We suggest a method of
determiningr below. Define

) 1 ifn>rT,
Zp\n) =
2 ifn<r.

The original system is observed continuously and conttadietimes of arrivals, times of departures, and
whenever a customer in service reachegnits of time at the station. At such times, when the original
system vector i$1(t), y(t), n1(t), n2(t)), the LB heuristic uses the optimal action for the proxy mawiéth
state(1(t), y(t), z1(m(t)), z2(m2(t))), i.e., it uses the move-up-to policy with 1evBl; ) ., (n, (1)), (n2 (1)) -

The parameters for the proxy model should be chosen to rdsehidse of the original system. The
arrival rates equal those of the original system. If a sertime for the original system§, with distri-
bution F(), has mear£[S] = 1/u, then we suggest setting the average service time of they pnadel,
unconditional on the customer type (class), also equalto That is,p1/u1 + p2/pu2 = 1/u. Note that
stability, condition 4.5), is guaranteed if\; + \2)/u < 2. We will consider one, of perhaps many, ways to
determinep; andp,. Letp, = F(7) andp; = 1 — F(7), wherer is predetermined. Under these settings,
the service times conditioned on customer type are set @ thasame means; ., = [ sdF(s)/p, and

1/p1 = [ sdF(s)/p1. To determiner, we suggest a quantile-based method. For a given prolyabilit

define¢, as the thes’” quantile: P(S < ¢,) = a. Definez as the probability thab, is reached given
that the triggerr has been reached: = P(S > ¢,|S > 7). Givena andz, exogenously; can then be
calculated from#'(-). For the numerical study presented in Sectioh a = 0.8 andz = 0.75. Oncer is
calculated, all of the parameters of the proxy model can beraened from the relationships above.
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There is one last consideration to make regarding the imgi¢ation of the LB heuristic. The state
space for the proxy model is (countably) infinite. Insteadsalfving this problem, the optimal policy is
approximated using a truncated state space. That is, theypslcalculated for a system in which each
gueue has a maximum capacity Bfcustomers. (For the numerical study it was assumed thagakstio a
full gueue were lost, at no cost.) The truncated problem easobved by well known algorithms, including
policy iteration and value iteration; cfl14].

One question remains: How can we apply a truncated polidgdmtiginal, non-truncated system? For
example, suppose that the capadity= 35 but the original system reach€&t), y(t), z1 (n1(t)), z2(n2(t))) =
(41,3,1,7). WhenB = 35, there are no proxy calculations for queue lendihsqz) = (38,3). One pos-
sibility is to simply use the actions associated wigh, g2) = (min{I(¢t) — y(¢), B}, min{y(t), B}); for the
example,(q1,g2) = (35,3). A downside of this approach is that truncation may resué fmon-monotone
policy. In short, the computed move-up-to levels increasé éxcept near the capacity limits, where the
levels may suddenly drop off. As an alternative, we suggéstrenothing” of move-up-to levels, in accor-
dance with Propositiond.2 and4.4. Denote the optimal number of customers to move in dtatg, i, j),
for the truncated proxy model, &(1,y,1,j); let 0*(1,y,i,j) = 0 for (I —y) > B ory > B. Define
bt (I1,y,i,5) =y + 0*(1,y,i,5), if 0*(I,y,4,5) > 0; b+ (I,y,i,7) = 0, otherwise. We first approximate
move-up-to Ievelsi(lm) = max, b (I,y,1, 7). These levels are not monotonelinthey decrease and are
zero for] > 2B. So, in a second step we smooth the move-up-to levels to ifear¢hat they are monotone

and positive for a large total number of customers. Hot, j) we choosei(l,i,j) = max{y.o<s<1} E(&m’)-

Then, in the original system we implement a move-up-to goliath level i}(l(t),zl(m(t))@(m(t))). This

smoothingapproach was compared to the abomesmoothingapproach (that ignores move-up-to levels
explicitly) in the numerical study, and the smoothing apto performed better.

5.1 Numerical Study

We tested the LB heuristic against four heuristide:nothing(DN), no idling (NI), join the shortest queue
(JSQ), andnodified join the shortest que®lodJSQ). The DN policy never moves customers. The NI
policy moves exactly 1 customer, if available, from one queuthe other if and only if the other server is
idle. The JSQ policy only moves customers at times of arrlwaimoving an arriving customer to the other
gueue if the other queue is shorter. The ModJSQ policy mogesarrivals to the other queue if the other
queue is accruing total holding costs at a lower rate. That esistomer arriving to queue 1 (2) is moved to
queue 2 (1) ithyq1 > haqo (h1q1 < hage).

In our experiment the service tintgis distributed according tolzoundedandshiftedPareto distribution.
A standard (not bounded or shifted) Pareto distribution ieavy-tailed, power-law distribution with two
parametersq and <. It has supporix, cc), and has infinite variance far < 2. A bounded (but not
shifted) Pareto distribution is similar to a standard Radistribution except that it has suppdr, x2);
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bounded above bys. A bounded and shifted Pareto is a translation of the bouRg@eeto to the origin. Its
probability density function is

f() %(S"F’%)(_a_l) if0<s<ky—r 0<k<Hha,
S) =

0 otherwise.

—af o o
Ko (/4 KoQ—K H2a)

((r/m2) " —D(a=1) K and its variance is

Its mean isE[S] =

2 J—

@ « o « « a 2
I{—Za _((5/52) _1)(5252 —K H%)Omg (H K2Q—K K5 a)
a—2 (a—1)2

Var[S] =

((r/r2)™ = 1)°

The design of experiment is as follows: We fix= 0.1 and vary the utilizatiorp := 1/u = E[S] and
Var[S], which in turn determiner and k2. We also fixA\; = A\ = 1, in which case the stability condition
(4.5 becomesp < 1. We considered all combinations pf € {0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.99}
and VafS] € {1,3,6,9,12}. As noted above, for LB: = 0.8 andz = 0.75, which, together with the
distribution function, determine, p;, andps. For the costshs is fixed at 1 andh; € {1.25,1.5,2} and
m € {0.75,1.5,2.5}. In total, the factorial consists of 360 combinations ofgmaeter settings.

The policies were evaluated under the average cost cniteRor each policy and parameter setting, a
simulation was developed consisting of 60 (consecutive$,rplus an additional run at the the beginning as
a warm-up period. Each run had a length of 100,000 time uiiit® optimal policy for the proxy model
was determined using a truncated state space with cap8city 35 customers per queue. Unless stated
otherwise, LB refers to the smoothing approach.

Of the 360 cases, LB policy performs best in 298 (82.8%), thpdlcy performs best in 29 (8.1%), the
JSQ policy performs best in 12 (3.3%), and the ModJSQ pol&yopms best in 21 (5.8%). The DN policy
has the highest costs in every case. In terms of costs, oagev@ver the 360 cases, LB improves upon
DN by 58.9%, NI improves upon DN by 55.8%, ModJSQ improves i iy 53.1%, and JSQ improves
upon DN by 51.9%. The standard deviations (s.d.) of theseepeimprovements upon DN are 6.4%, 6.1%,
6.3%, and 5.8% for LB, NI, ModJSQ, and JSQ, respectivelysTinplies that the use of a control policy to
balance the load of the system is worthwhile.

The average reduction in total costs for LB over the altévagiolicies are 7.0% (s.d. 6.4%) for NI,
14.5% (s.d. 9.1%) for JSQ, and 12.3% (s.d. 9.3%) for ModJ8@hd cases for which LB is the best policy,
LB averages 7.4% (s.d. 5.3%) lower costs than the best atteen On the other hand, when LB is not the
best policy, it has 6.1% (s.d. 9.1%) higher costs than the Besimportant observation to make is the fact
that in most of the cases that LB is outperformed the utiliwais high. Wherp = .99 is omitted LB is the
best policy in 89.5% of the cases, and when hoth .99 andp = .95 are omitted, LB is the best policy
in 93.7% of the cases. As it turns out, these high utilizaBo& subject to appreciable simulation error.
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We calculated 95% confidence intervals for the time averagésof a simulation run (assuming runs are
independent) and found that we cannot be confident that thpdliBy is actually outperformed in any of
the cases with > 0.95. Generally speaking, it can be problematic to simulate gaevith truncated Pareto
service time distributions; se&][ Therefore, we compared simulated costs for the DN polggirest the
exact costs calculated using the Pollaczek-Khintchineéda. While the average absolute percent deviation
between the simulated and exact DN costs is only 0.8%p far .9, it is 12.0% forp = .99 and 2.2% for

p = .95. In light of this, from here on we restrict attentiongo< .9.

Averaged over the remaining 270 cases, LB reduces coststBy &.d. 5.7%) over NI, 18.0% (s.d.
6.5%) over JSQ, and 15.4% (s.d. 5.5%) over ModJSQ. TaHdisplays the percent differences in costs for
p = .85,.9; LB is not outperformed irany of these cases. The best alternative to LB is NI, and in fact
NI is the only policy to outperform LB in the 270 cases — in 18a&m(6.3%); see Tablz LB tends to
be outperformed at the lower utilizations, when moving €@st higher, and the difference in holding cost
rates between the queues is lower. As indicated in Tabller Var(S) = 1 the performances of LB and NI
are closest wheh,; = 1.25 andm = 2.5; though the trend does not hold for all variances. Compaved t
NI, LB has lower costs by an average of 8.6% (s.d. 5.3%) when .85 and by 7.3% (s.d. 4.9%) when
p =.9. For all 270 cases, where LB outperforms NI it does so by arageeof 8.2% (s.d. 5.4%). On the
other hand, when Nl is better LB has only 0.8% (s.d. 0.6%)duglosts. This is true in general; the average
difference in total costs between LB and the best policy iy genall compared to the difference between
the best policy and the other heuristics; see Table terms of moving costs, LB has higher moving costs
than NI in 255 (94.4%) of the cases. The moving costs for LBo5&:&% (s.d. 47.4%) higher than those of
NI. In the 15 cases where LB has lower moving costs, they &% Zs.d. 2.5%) lower. The LB policy is
more aggressive in moving customers.

We also ran simulations for the no-smoothing approach ta.Bigeuristic. On average, the smoothing
approach outperformed the no-smoothing approach by 1.786 &2%). To further test the effects of
truncation, we ran simulations for the smoothing approaith queue capacity3 = 20 andp = .85,.9.

As compared to the smoothing approach wlign= 35, the costs increased by 1.02% (s.d. 3.78%). (For
p = .85,.9, the costs of the no-smoothing approach Be= 35 over the smoothing approach fér = 35

are higher by0.7% (s.d. 1.2%).) So, truncation in the proxy model has an effedhe performance of the
LB heuristic, and the smoothing approach does a better jai tthe no-smoothing approach at mitigating
the effect.

In summary, LB (with smoothing) performs well. As indicateglthe poor performance of DN, moving
customers can greatly decrease holding costs. The sionlatitputs fop > .95 are noisy and inconclusive;
otherwise, LB outperforms ModJSQ and JSQ. The best alieentd LB is NI. The performances of LB
and NI are closest when moving costs are high and the ditferenholding cost rates is low. The NI policy
can outperform LB when utilization is low, but LB is not outfigmed by much and there are larger gains
in the other cases. Finally, we should note that in choodiegparameters for the proxy model we only
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consideredh = 0.8 andz = 0.75. There is room for improvement by optimizing these settinge leave
such an exercise for future research.

6 Conclusion

In conclusion, we have introduced a new method for load loaignin the case for highly variable service
distributions. The method introduced is robust to changehe parameter settings even in the case where
it is not adjusted to optimize the implementation. The mesaspnable alternative to our heuristic appears
to be a non-idling heuristic. In this case, the questionnspdy, is the consistency and savings worth the
difficulty of implementing our heuristic. In many cases wédae more than 8.5% savings is worth the time
to implement our heuristic.

At the same time, we have shown that the use of Markov decjsiocesses can mitigate the challenges
of a general service time distribution. We believe that theas described here can lead to insights for other
queueing models. The example of admission controléd5/1 has already been alluded. Exactly the
same intuition holds for service rate control iizgM /1. Of course, these are just the building blocks for
more sophisticated models. We note that an extension ofuitiere work is to consider a larger network of
gueues, and we conjecture that the pairing heuristics described in (Wu et aR] and Down and Lewis
[4]) would be useful. We leave this for future research.
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NI JSQ ModJSQ

P hy m Var[S] Var[S] Var[S]

1 3 6 9 12 1 3 6 9 12 1 3 6 9 12
0.75 4.52 4.46 4.73 7.84 4.17|| 11.56 11.13 11.13 12.16 9.44| 13.44 11.36 10.78 10.55 5.89
1.25 1.5 3.56 3.86 2.39 5.76 2.95|| 12.07 12.82 7.56 9.02 9.57|| 11.65 12.67 8.58 8.94 7.41
25 0.90 1.64 2.85 2.41 2.86|| 1098 1051 1047  7.06 9.63| 13.79 11.00 1260 6.86 8.14
0.75 || 10.45 10.96  8.90 8.02 6.64| 17.19 1671 1460 1256 11.7§ 1588 1438 11.72 9.14 7.54
085 | 15 15 778 1020 7.38 8.17 461|| 17.28 16.63 14.08 14.03 10.24 1463 1401 11.23 11.32  8.99
25 4.56 6.75 4.94 5.75 5.82|| 15.77 1438 1247 1200 11.4fl 1533 1511 9.77 1040 7.47
0.75 21.05 20.31 15.85 14.50 13.94 27.59 24.88 20.11 19.93 18.8)] 21.89 18.97 15.73 10.77 7.11
2 1.5 16.83 16.70 15.58 15.52 14.28 23.48 23.56 21.76 19.10 19.6§ 19.00 17.40 14.11 10.93 10.2p
25 13.59 16.20 11.76 11.09 10.6§ 23.36 22.57 18.30 17.28 15.3§ 16.89 16.94 11.76 10.03 7.40
0.75 4.96 4.66 3.55 1.77 3.10|| 10.63  9.01 9.47 6.57 6.45/| 11.33  8.49 7.41 4.95 7.42]
125 | 15 2.88 2.59 4.80 0.42 0.36|| 11.02  8.22 6.80 5.96 5.80/| 12.32 1095 6.18 4.50 2.66|
25 2.24 2.64 2.25 1.18 1.41|| 10.80 9.77 7.13 6.41 5.60|| 12.61 8.50 9.67 7.40 5.49
0.9 0.75 10.99 9.68 7.62 5.66 7.18|| 15.96 14.29 9.80 9.94 10.8% 16.76 13.23 9.35 6.49 7.12|
1.5 1.5 9.18 8.10 6.98 2.80 4.95|| 15.78 12.56 11.56 8.13 8.61| 14.75 12.68 7.98 8.39 8.12
25 7.32 6.73 5.45 2.72 4.48|| 15.61 12.42 12.14 8.88 8.79| 15.55 11.73 7.42 7.61 9.12
0.75 || 20.93 1598 1321 892 9.88| 25.69 20.07 17.09 13.01 14.8{] 19.86 1475 835 4.22 0.99
2 15 17.92 1528 1263 10.33 8.87| 23.75 20.15 1806 1439 120l 1871 1428 9.93 6.29 2.40)
25 15.65 13.17 11.26 658 7.49| 22.26 1837 1378 11.96 1224 1649 11.04 733 1.86 1.60f

Table 1: The percent decrease in total long-run averags tmstB compared to NI, JSQ, and ModJSQ.

# of times optimal/total
P LB NI JSQ ModJSQ
0.5-0.6 | 79/90 11/90 0/90 0/90
0.7-0.8 | 84/90 6/90 0/90 0/90
0.85-0.9/ 90/90 0/90 0/90 0/90
0.95 29/45 7/45  3/45 6/45
0.99 16/45 5/45 9/45  15/45

Table 2: The number of times each policy is optimal (amongstdroup of heuristics).

p | LB NI JSQ ModISQ
05 ]01% 59% 305% 26.4%
0.6 | 0.1% 10.0% 29.9% 25.6%
07 | 01% 9.3% 242% 20.1%
0.8 | 0.0% 9.0% 19.9%  15.9%
0.85| 0.0% 10.0% 18.3% 13.8%
09 | 0.0% 8.1% 14.4% 10.4%

Table 3: The average percent above optimal costs (amonigsjrihup of heuristics).

20



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

C. Beard and V. Frost. Prioritized resource allocationdtressed network$EEE-ACM Transactions
on networking9(5):618—-633, 20014

M. Crovell, M. Harchol-Barter, and C. Murta. Task assigent in a distributed system: improving
performance by unbalancing loaderformance Evaluation Revie®6(1):268—-269, June 1998.

M. Crovella, M. Taqqu, and A. Bestavroz. Heavy tailed lpability distributions in the world wide
web. In R. Adler, R. Feldman, and M. Tagqu, editokspractical Guide to Heavy Tails: Statistical
Techniques & Applicationgages 3—26. Birkhauser, 1998.

D. Down and M. Lewis. Dynamic load balancing in parallelegieing systems: stability and optimal
control. The European Journal of Operational Researtf8(2):509-519, January 2006.7, 14, 19

D. Gross, J. F. Shortle, M. J. Fischer, and D. M. B. MasiffiBiltied in simulating queues with Pareto
service. InProceedings of the 2002 Winter Simulation Conferepeges 407-415, 200038

M. Harchol-Balter and A. Downey. Exploiting proces<liime distributions for dynamic load balanc-
ing. ACM Transactions on Computer Systes(3):253-285, August 1993.

Q. He and M. Neuts. Two m/m/1 queues with transfers of@ustrs. Queueing systemd2(4):377—
400, 2002.4

C. Heyde and S. Ku. On the controversy over tailweightisfributions. Operations Research Letters
32:399-408, 20043

[9] V. Kulkarni. Modeling, Analysis, Design, and Control of Stochastic &yst Springer-Verlag, New

[10]

[11]

[12]

[13]

[14]

York, 1999.13

M. Lewis. Average optimal policies in a controlled qumy system with dual admission control.
Journal of Applied Probability38:369-385, 20014

S. Lippman. Applying a new device in the optimizationesiponential queueing systen3perations
Research23:687-710, 1975/

S. Meyn and R. TweedieMarkov Chains and Stochastic Stabilityspringer—\Verlag, New York, 1
edition, 1993.13

V. Paxson and S. Floyd. Wide-area traffic: The failuréofsson modelinglEEE/ACM Transactions
on Networking 3(3):226—-244, 19953

M. Puterman.Markov Decision Processes: Discrete Stochastic Dynamigmming John Wiley
& Sons Inc., New York, 19943, 5, 16

21



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Riska, E. Smirni, and G. Ciardo. Analytic modeling lofad balancing policies for tasks with
heavy-tailed distributions. IfProceedings of the Second International Workshop on Scdtaad
Performance — WOSP 200pages 147-157, 200@.

L. Sennott. Stochastic Dynamic Programming and the Control of Queu&wygtems John Wiley &
Sons Inc., New York, 199913, 14, 15

N. Shimkin and A. Shwartz. Control of admission and nogiin parallel queues operating in a random
environment. IfProceedings of the 28th Conference on Decision and Coniodime 2, pages 1064—
1065, Tampa, 1989. IEEEB

B. Shirazi, A. Hurson, and K. Kavi.Scheduling and Load Balancing in Parallel and Distributed
SystemsWiley—IEEE Computer Society Press, 1 edition, 1995.

K. Sigman. A primer on heavy-tailed distributionrQueueing System33(1-3):261-275, 199

Y.-T. Wang and R. Morris. Load sharing in distributeds®ms. IEEE Transactions on Computers
34:204-217, 19853

C.-H. Wu, D. Down, and M. Lewis. Heuristics for alloaati of reconfigurable resources in a serial
line with reliability considerationslIE Transactions40(6):595-611, June 20089

T. Xu, A. Desrochers, and R. Graves. HyperexponemiEsed network traffic model for distributed
manufacturing. INEEE International Conference on Systems, Man and Cybiespeblume 4, pages
3452-3457. IEEE, October 2003.

T. Yum and L. Hua-chun. Adaptive load balancing for pletagueues with traffic constraintdEEE
Transactions on Communicatiqri32(12):1339-1342, December 19&4.

T.-S. Yum and M. Schwartz. The join-biased-queue ruld @s application to routing in computer
communication networkdEEE Transactions on Communicatior9(4):505-511, April 19813

22



	Introduction
	Literature review
	Preliminaries and Model Descriptions
	Optimal Control for the Proxy Model
	The Infinite Horizon Discounted Cost and Average Cost Cases

	The Load Balancing Heuristic and Numerics
	Numerical Study

	Conclusion
	Acknowledgments

