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Abstract

Suppose that customers arrive to a service center (call center, web server, etc.) with two stations in accor-

dance with independent Poisson processes. Service times ateither station follow the same general distribu-

tion, are independent of each other and are independent of the arrival process. The system is charged station

dependent holding costs at each station per customer per unit time. At any point in time, a decision-maker

may decide to move, at a cost, some number of jobs in one queue to the other. The goals of this paper are

twofold. First, we are interested in providing insights into this decision-making scenario. We do so, in the

important case that the service time distribution is highlyvariable or simply has a heavy tail. Second, we

propose that the savvy use of Markov decision processes can lead to easily implementable heuristics when

features of the service time distribution can be captured byintroducing multiple customer classes. To this

end, we consider a two-station proxy for the original system, where the service times are assumed to be

exponential, but of one of two classes with different rates.We prove structural results for this proxy and

show that these results lead to heuristics that perform well.



1 Introduction

Suppose that customers arrive to a service center (call center, web server, etc.) with two stations in accor-

dance with independent Poisson processes. Service times ateither station follow the same general distribu-

tion, are independent of each other and are independent of the arrival process. The system is charged station

dependent holding costs at each station per customer per unit time. At any point in time, a decision-maker

may decide to move (or pass) some number of jobs in one queue tothe other. It should be clear that the

decision-maker’s choice of the number of customers to move should depend on the number of customers

at each station, the cost to move customers, the time elapsedsince the service times of customers currently

being processed by the server began and perhaps the number offuture customers (s)he expects to arrive in

the coming moments. With the exception of the elapsed service time information the control decisions seem

ripe for an analysis via Markov decision processes (MDPs). Unfortunately, it is just that part of the state

space that makes it uncountable and therefore intractable.

The goals of this paper are twofold. First, we are interestedin providing insights into the above decision-

making scenario. We do so, in the important case that the service time distribution is highly variable or

simply has a heavy (non-exponential) tail. Second, we propose that the savvy use of Markov decision

processes can lead to easily implementable heuristics whenfeatures of the service time distribution can be

captured by introducing multiple customer classes.

The limitations of MDPs are well-known. As long as the state and action space descriptions (called the

graph of the MDP) are multi-dimensional or consist of a largenumber of elements, solving the dynamic

program quickly becomes intractable. In order to alleviatethis problem there have been significant lines

of research that study the structure of optimal policies in such areas as control of queues, manufacturing,

transportation, inventory control and revenue management. For example, in the aforementioned model

suppose the service time distribution is exponential. The state space is then two-dimensional. If the optimal

policy can be described by amonotone switching curvethe search for the optimal policy is reduced to finding

the curve, rather than enumerating the state and action pairs throughout the decision space. Unfortunately,

even in simple cases finding a structured optimal policy whenthe service time is generally distributed may

be intractable. Consider an admission controlledM/G/1 queue that is used to model routing in a simple

manufacturing system. If the service time distribution is exponential (so the system is anM/M/1), it

is well-known that the optimal control policy is ofcontrol limit form. If the service times are generally

distributed, then when a new customer arrives, the decision-maker must once again consider the time since

the last service completion; the state space is uncountable. In this case, even reasonably sized discretizations

of the time dimension lead to an intractable problem.

In reality, when the service time distribution is general, past experience gives the decision-maker signifi-

cant information about its form. In this paper we present a heuristic that uses a multi-class queueing network
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with exponentially distributed service times as a proxy fora problem with general service time distributions.

In essence, for the original model with general distributions, services are classified into types as a way to

record partial historical information that is useful for making control decisions. The proxy network problem

has a tractable MDP solution with a control structure that isrelevant, in a heuristic sense, to the intractable

control problem faced in the original model. We focus our attention on the important case that the gen-

eral distribution has a “heavy tail” (does not decay exponentially) or is highly variable. Intuitively, we are

interested in systems where long service times provide significant useful information about the remaining

service time distribution. We discuss our heuristic in the context of the new load-balancing model described

above. Although it has its roots in service centers, it is also applicable to supply chain management and to

transhipment models in transportation networks.

We should point out that the goal is to introduce a method for approximating the load balancingdecisions

made in a parallel processing network, not to approximate the service time distributions themselves. With

an eye towards tractability and solutions that are easy to describe and implement, we restrict attention in

the proxy model to a hyper-exponential (mixture of exponentials) service distribution with two classes. We

find that the optimal control policies for the two-class proxy model, when translated in a smart way (as

discussed in Section5), indeed lead to policies that perform well in the original system. Alternatively, we

conjecture that one could approximate service times with anErlang distribution withk phases, and provide

a similar analysis using a Markov decision process formulation. The difficulty would then be in translating

that process into an implementable control policy. Moreover, the decision problem would be intractable for

k of moderate size. The optimal control for the proxy model we propose is quite simple. More sophisticated

MDP models would quickly lose this feature.

This paper makes several contributions. Of course, we describe a method for determining good control

policies for the otherwise intractable load balancing problem. The employed proxy model, which is also

new, most likely has applications outside of this context, and we find it interesting in its own right. For the

proxy model, we show that the optimal control structure is characterized by a series of “do-not-move/move-

up-to levels” and that these levels are monotone. Not only dothese structural results provide insight, but

they also aid in computation. In particular, since the statespace of the proxy model has infinite dimension,

computation is facilitated by truncation of the queue lengths. Truncation often leads to policies that are

not monotone near the boundaries. However, we “smooth” the policies in accordance with the theoretical

results, and we find that these smoothed policies perform better. Finally, performance was measured via

simulation. We display the results of the numerical study, which show that our policies perform well as

compared to some alternative heuristics.

The remainder of the paper is organized as follows. In Section 2 we discuss related literature. Section

3 contains some preliminary results, a further description of the original and proxy models and the optimal-
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ity criteria. We present a Markov decision formulation of the proxy model and show several monotonicity

results in Section4. The description of our heuristic for controlling the original load balancing problem,

including the relationship to the proxy model, is given in Section 5. Section5 also contains an implementa-

tion of the heuristic and the numerical comparison to several alternative heuristics. The paper is concluded

in Section6.

2 Literature review

The theory (and drawbacks) of MDPs is well-documented. We refer the interested reader to the now classic

text of Puterman [14]. The literature on the control of parallel processing networks is also abundant so we

do not provide a complete review here. Instead the reader is pointed to the work of Shirazi et al. [18] and

Wang and Morris [20] and the references therein. We focus on those papers with direct relevance to the

current work. For a basic introduction to heavy-tailed distributions and their properties, see Sigman [19]. A

discussion of several alternative definitions can be found in Heyde and Ku [8].

Paxson and Floyd [13] have found that for most of the traffic in the world wide websession and con-

nection arrivals are modeled well using Poisson processes, butpacket interarrivals are better described

with heavy tailed distributions. This is further confirmed by Crovella et al. [3]. In particular, the hyper-

exponential distribution has proved to be useful to approximate heavy-tailed distributions. Xu et al. [22]

use such approximations to formulate generalized Petri nets in order to study the properties of distributed

manufacturing systems. The hyper-exponential is one of themotivating factors of our two class Markov

decision process formulation.

Harchol-Balter and Downey [6] compare the reassignment of processes to a different server at the time

of birth vs. reassignment once the process has already started (preemptive migration) in order to balance

CPU load in a network of stations. They obtain a preemptive reassignment strategy that is more effective

than remote execution even when the memory transfer cost is high. Yum and Hua-Chun [23] develop an

adaptive rule for balancing the load on a parallel queueing system, where some customers are required to

wait for a particular server or set of servers. Their rule is acombination of a majority-vote rule (where

votes are issued by switchers or routers) and ajoin the biased queuerule as presented by Yum and Schwartz

[24]. Yum and Schwartz use this term to denote a rule similar tojoin the shortest queue, but a bias term is

added to the queue lengths. This rule is robust to changes in the buffer sizes and input rates, and performs

well according to the criteria of lower delay and lower blocking probability. Shimkin and Shwartz [17]

study a system of queues that share an arrival process. Arriving customers are subject to admission and

routing control. The purpose is to maximize income when there are holding costs and rewards for accepting

customers. The arrival and service process parameters depend on the current state of the system. The authors

prove the existence of a monotone optimal control policy.
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Other research on systems with heavy-tail distributed service times includes Crovella and Harchol-Balter

[2] who develop a policy that purposely operates the server hosts at different loads, and directs smaller tasks

to the lighter-loaded hosts. Riska et al. [15] present an inexpensive technique for modeling load balancing

policies on a cluster of servers conditioned on the fact thatthe service times of arriving tasks are drawn from

heavy-tailed distributions. Their results provide exact information regarding the distribution of task sizes

that compose the queue on each server. Beard and Frost [1] study a prioritization mechanism to alleviate

overloads that result in blocking the access to service to all customers. Of course none of these studies

include a Markov decision process formulation of an exponential model applied to the general model with

heavy tailed distributed service times.

Our model is closely related to that in Down and Lewis [4]. Their work refers to a system of parallel

queues, where the balancing decisions are taken at the timesof arrivals or departures. They seek the optimal

design and control policy for the system. There is also a close relation to the work of Lewis [10] where

an M/M/1 queue is controlled by two “gatekeepers” that make the decisions of acceptance or rejection of a

customer at two moments: the arrival and the moment prior to service. Another study related to the control

of queueing systems with exponentially distributed service times can also be found in He and Neuts [7], who

study policies that move a fixed amount of customers to control a system of two M/M/1 queues. Transfer of

customers occurs when the difference of the queues reaches acritical level.

3 Preliminaries and Model Descriptions

In this section we discuss the formal definition of a parallelprocessing network with service times that follow

a heavy-tailed distribution and theproxymodel with exponential service times. Consider 2 parallel queues.

Customers arrive to queuek according to independent Poisson processes of rateλk for k = 1, 2. The service

processes of each queue are independent of each other and of both arrival streams. Thenth customer that

is served by serverk requiresSk
n time units of service where{Sk

n, n ≥ 1, k = 1, 2} are assumed to be

i.i.d. and independent of the station to which the customer arrives. In thegeneralmodel that motivates this

study, the service times are assumed to follow a general distribution with finite mean. However, we are most

interested in those service distributions that see a large proportion of short service times, but also see some

very large service times; those that are highly variable. One such class of distributions is that with “heavy,”

non-exponential tails.

Definition 3.1 A distribution functionF , for random variableS, is said to beheavy-tailed if F (s) :=

1− F (s) = P(S > s) > 0, s ≥ 0, and

lim
s→∞

P(S > s+ δ|S > s) = lim
s→∞

F (s+ δ)

F (s)
= 1, δ ≥ 0. (3.1)
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Intuitively, if S follows a heavy-tailed distribution, then ifS ever exceeds a large value, it is likely to exceed

any larger value as well. Thus, while most times are short, a decision-maker that finds a customer whose

service time is unusually long would not want to leave customers in queue behind it.

As an approximation to this model we consider aproxymodel, where each arriving customer is of one

of two classes. A customer’s classification is not revealed until immediately prior to beginning service.

Customers are of classj, j = 1, 2, with probability pj and a classj customer requires an exponentially

distributed amount of service with mean1/µj . We assume that Class 1 are those with unusually long

(“heavy”) service times, while Class 2 corresponds to thosewith shorter (“standard”) service times seen in

the general model; that is,1/µ1 ≫ 1/µ2. We will explain exactly how they are related to the general model

when the heuristic is described more fully in Section5.

In either model, letΠ be the set of all non-anticipating policies. A policyπ ∈ Π prescribes how many

customers to move from one queue to another, given the numberof customers in each queue (the queue

length processes), perhaps the amount of time each customerhas been in service, and any other information

that is required to make the (policy dependent) process Markovian. For example, in the proxy system the

current “state” of the system includes the queue length processes and the classes of the customers currently

in service at each queue.

There is a fixed cost for moving each customer ofm units per customer. That is, ifθ customers are

moved, a cost ofmθ is incurred. Customers currently in service (in either queue) cannot be moved; the

control policy is assumed to be non-preemptive. The system also continuously incurs holding costhkqk per

unit time that queuek containsqk customers, including the one in service fork = 1, 2. Without loss of

generality we assume thath1 ≥ h2. We seek to find a strategy for load balancing under the infinite horizon

expected discounted cost or the long-run average expected cost optimality criteria. Note here that the term

“load balancing” is used somewhat loosely since the holdingcosts may cause the optimal policy to leave the

distribution of the workload for each queue unbalanced. In some sense, perhaps “load distribution” would

be more descriptive. However, having made this clarification, we will continue to refer to the control as

balancing without further comment since it is common terminology.

For a fixed policyπ, denote the set of decision epochs byD ≡ {dn, n ≥ 0} and the state at thenth

decision epoch byXn. For example, ifπ depends only on the queue lengths, thenD is the set of arrival

times and service time completions. We assume that the time between decision epochs is bounded away

from zero so that only a finite number of decisions can be made in a finite amount of time. That is, if the

time between thenth and(n+ 1)st decision epoch has distributionGn+1 then there existsδ > 0 andǫ > 0

such that1 −Gn+1(δ) ≥ ǫ (cf. p. 532 of [14]). LetQπ(t) = {Qπ
1 (t), Q

π
2 (t)} be the queue length process,

and letθn represent the balancing decision taken at decision epochn, underπ. Define the total discounted
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expected cost up until timet as

vπβ,t(x) = E
π
x

(

N(t)
∑

n=0

e−βdnc(Xn, θn)
)

+

∫ t

0
e−βu

E
π
x[h1Q

π
1 (u) + h2Q

π
2 (u)]du,

whereθn is the action taken at decision epochn, c(·, ·) is the lump sum cost associated with moving cus-

tomers from one queue to the other,N(t) is the number of decision epochs in the firstt time units, and the

expectation of the system under policyπ is conditioned on the initial statex. The criteria we are interested

in are

vπβ (x) = lim
t→∞

vπβ,t(x), ϕπ(x) = lim sup
t→∞

vπ0,t(x)

t
,

wherevπβ (x) represents the infinite horizonβ−discounted expected cost underπ (the interchange of limit

and expectation is justified by the monotone convergence theorem) andϕπ(x) is called the long-run average

expected cost starting in statex under policyπ. The objective then is to find a policyπ∗ under each criterion

such thatγπ
∗

(x) ≤ γπ(x) for all statesx and all policiesπ ∈ Π for γ = vβ, ϕ. In the next section we provide

results that simplify this search considerably for the proxy model. We view these results as interesting in

their own right, but they are particularly useful in the implementation of our heuristic in the general model.

4 Optimal Control for the Proxy Model

For the proxy model all inter-arrival and service times are exponentially distributed, and the state may be

described by a vector(I, y, i, j), whereI represents the total number of customers in the system andy is

the number of customers in queue2 (including any customer in service). Wheni (j) ∈ {1, 2} it represents

the class of customer currently at server1 (2); i (j) = 0 means that queue 1 (2) is empty. Ifx = (I, y, i, j),

then the possible actions set isAx = {−(y − 1)+,−(y − 2), . . . , I − y − 2, (I − y − 1)+}. That is, for

θ ∈ Ax, θ = 0 means that nothing will be moved whileθ > 0 meansθ customers are moved from queue

1 to queue 2 andθ < 0 means that|θ| are moved from queue 2 to queue 1. A customer that is currentlyin

service cannot be moved. LetW := {(I, y, i, j) | I − 1 ≥ y ≥ 1, i, j ∈ {1, 2}} represent the set of states

such that both servers have at least one customer to serve. Similarly, defineI1 := {(I, y, 0, j) | I = y ≥ 1}

andI2 := {(I, y, i, 0) | I ≥ 1, y = 0}, whereIk represents the set of states where there are no customers

to serve in queuek = 1, 2 while the other queue is non-empty (theI stands for “idle”). The state spaceX

can now be written

X := W ∪ I1 ∪ I2 ∪ {(0, 0, 0, 0)}.
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We applyuniformizationas described in Lippman [11], with uniformization constantΨ = λ1 + λ2 +

2max{µ1, µ2}. Without loss of generality assumeΨ = 1. This allows us to consider the discrete-time

equivalentto the continuous proxy model already described. That is to say that the stationary optimal

policies in the discrete-time case are the same as that in thecontinuous-time case. The infinite horizon

discounted cost and the long-run average costs also coincide, but only up to a multiplicative constant. The

cost function for each period includes holding and switching costs and is given by:

C((I, y, i, j), θ) = |θ|m+ (I − y − θ)h1 + (y + θ)h2,

where(I, y, i, j) andθ denote the current state and action, respectively. Let the total expected cost of a load

balancing policyπ over the firstt (discrete) decision epochs be defined

vπα,t(x) := E
π
x

t−1
∑

n=0

αtC(Xn, θn),

whereXn and θn represent the state and balancing decision at decision epoch n. Furthermore, define

vα,t(x) = infπ∈Π v
π
α,t(x), whereΠ is the set of all non-anticipating policies;vα,t(x) is the optimal cost-to-

go for at-horizon problem starting in statex, under discount factorα. In the case whent = ∞, we write

vα instead ofvα,∞. This defines the infinite horizon expected discounted cost criterion. As we are also

interested in the average case, the average cost of a fixed policy in the discrete time model equals

lim sup
n→∞

1

n
vπ1,n(x) = lim sup

n→∞

1

n
E
π
x

n
∑

t=1

C(Xt, θt).

In the remainder of the section, we present several structural results for the finite horizon case. We then

give a stability result and show that the structural resultscontinue to hold in the infinite horizon discounted

cost and average cost cases. The first result states that the basic features of an optimal policy in Lewis and

Down [4] carry over to the current model.

Proposition 4.1 Under the finite or infinite horizon discounted expected costor the long-run average ex-

pected cost criterion, there exists an optimal policy that does not move customers from queue 2 to queue 1

(sinceh1 ≥ h2), except possibly to avoid idling.

Proof. The proof follows precisely in the same manner as that in Theorem 4.1 of Down and Lewis [4] and

is omitted for brevity.

Supposeb = y+θ for θ ∈ A(I,y,i,j) (i.e., the number of customers in the low cost queue after performing

the control action). Letµ0 = 0. Definewα,t(I, y, i, j, b) as the cost-to-go, starting in state(I, y, i, j), for
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moving up to amountb in periodt, followed by optimal control in the remaining periods:

wα,t(I, y, i, j, b) =



































































m|b− y|+ h1(I − b) + h2b+ Uα,t−1(I, b, i, j), for 1 ≤ y ≤ I − 1,

m|b− y|+ h1(I − b) + h2b+ p1Uα,t−1(I, b, 1, j)

+p2Uα,t−1(I, b, 2, j) for y = I, i = 0, b < I,

h2I + Uα,t−1(I, b, 0, j) for y = b = I, i = 0,

m|b− y|+ h1(I − b) + h2b+ p1Uα,t−1(I, b, i, 1)

+p2Uα,t−1(I, b, i, 2) for y = 0, j = 0, b > 1,

h1I + Uα,t−1(I, b, i, 0) for y = b = 0, j = 0,

where for(I, b, i, j) ∈ W

Uα,t(I, b, i, j) = α[p1µivα,t(I − 1, b, 1, j) + p2µivα,t(I − 1, b, 2, j) + p1µjvα,t(I − 1, b − 1, i, 1)

+ p2µjvα,t(I − 1, b − 1, i, 2) + λ1vα,t(I + 1, b, i, j) + λ2vα,t(I + 1, b+ 1, i, j)

+ (1− λ1 − λ2 − µi − µj)vα,t(I, b, i, j)],

for (I, b, 0, j) ∈ I1 (b = I in this case)

Uα,t(I, I, 0, j) = α[p1µjvα,t(I − 1, I − 1, 0, 1) + p2µjvα,t(I − 1, I − 1, 0, 2)

+ λ1(p1vα,t(I + 1, I, 1, j) + p2vα,t(I + 1, I, 2, j)) + λ2vα,t(I + 1, I + 1, 0, j)

+ (1− λ1 − λ2 − µj)vα,t(I, I, i, j)],

for (I, b, i, 0) ∈ I2 (b = 0 in this case)

Uα,t(I, 0, i, j) = α[p1µivα,t(I − 1, 0, 1, 0) + p2µivα,t(I − 1, 0, 2, 0)

+ λ1vα,t(I + 1, 0, i, 0) + λ2(p1vα,t(I + 1, 1, i, 1) + p2vα,t(I + 1, 1, i, 2))

+ (1− λ1 − λ2 − µi)vα,t(I, 0, i, 0)],

and forI = b = 0

Uα,t(0, 0, 0, 0) = α[λ1(p1vα,t(1, 0, 1, 0) + p2vα,t(1, 0, 2, 0)) + λ2(p1vα,t(1, 1, 0, 1) + p2vα,t(1, 1, 0, 2))

+ (1− λ1 − λ2)vα,t(0, 0, 0, 0)].

Let AW := {1, 2, . . . , I − 1}. Similarly defineAI1 := {1, 2, . . . I}, AI2 := {0, 1, . . . I − 1} and

A(0,0,i,j) := {0}. It is well-known that for(I, y, i, j) ∈ W, vα,t (notevα,0 = 0) satisfies the followingfinite
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horizon optimality equations(FHOE)

vα,t(I, y, i, j) = min
b∈AK

{wα,t(I, y, i, j, b)}, (4.1)

whereK = W,I1,I2, or (0, 0, 0, 0) depending on(I, y, i, j).

The next result states that there exists an optimal policy such that for each state there is a “do-not-move/

move-up-to” amountL. This means that ify < L we move enough customers to haveL customers in queue

2, and ify ≥ L, we move no customers.

Proposition 4.2 Suppose the current types at servers1 and2 are i andj, respectively. Then,

1. there exists a levelLt
I,i,j < I such that for eacht ≥ 1, I ≥ 2 and(I, y, i, j) ∈ W ∪ I2, the optimal

policy is to bring the number of customers in queue 2 up toLt
I,i,j if y < Lt

I,i,j and to move no

customers ify ≥ Lt
I,i,j, and

2. vα,t(I, y, i, j) − vα,t(I, y + 1, i, j) is non-decreasing iny (i.e.,vα,t is convex iny) for all i, j, t ≥ 0,

I ≥ 3, andy ≤ I − 3.

Proof. By induction ont. Recall thatvα,0(·) = 0. So that Statement 2 holds trivially fort = 0. Consider

t = 1 and assumeI ≥ 2. We have

wα,1(I, y, i, j, b) = m|b− y|+ h1(I − b) + h2b. (4.2)

Since(I, y, i, j) ∈ W ∪I2 queue 1 is non-empty. Recall from Proposition4.1that it is not optimal to move

customers from queue 2 (the low-cost queue) to queue 1 (the high-cost queue) unless possibly if queue 1 is

empty. That is, it suffices to considerb ≥ y. When we restrict attention to the set{y, y + 1, ..., I − 1}, wα,1

is a linear function ofb (since on this set|b − y| = b − y). Depending on the direction of the inequality

m− h1 + h2 ≥ (≤) 0 the optimal action is either not to move customers or to move all of the customers to

the low cost queue (except for the one currently receiving service at queue1). That is to say either letting

L1
I,i,j = 0 or I − 1 is optimal. This proves the first statement fort = 1.

Assume Statement 2 holds fort− 1. To prove Statement 1 at timet recall

wα,t(I, y, i, j, b) = m|b− y|+ h1(I − b) + h2b+ Uα,t−1(I, b, i, j).

From Statement 2 at epocht−1, and from the definition ofUα,t,Uα,t−1(I, b, i, j) is a convex combination of

convex functions. Thus,wα,t(I, y, i, j, b) is convex inb. LetLt
I,i,j be the minimal (smallest) element of the

setargminb∈AW
{wα,t(I, 1, i, j, b)}. Note that by convexityLt

I,i,j is also in theargminb∈{y,y+1,...,I−1}{wα,t(I, y, i, j, b)}
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for all 1 ≤ y ≤ Lt
I,i,j. The convexity ofwα,t together with Proposition4.1 yield that it is not optimal to

move customers fory > Lt
I,i,j. This proves Statement 1.

To complete the proof it remains to show that the preceding arguments imply that Statement 2 holds for

time t and all(i, j). There are several cases to consider. Suppose for now that(I, y, i, j) ∈ W.

Case 1: Lt
I,i,j ≤ y. In this case, it is optimal not to move in the three states(I, y, i, j), (I, y + 1, i, j),

(I, y + 2, i, j). Thus,

vα,t(I, y, i, j) − 2vα,t(I, y + 1, i, j) + vα,t(I, y + 2, i, j)

= Uα,t−1(I, y, i, j) − 2Uα,t−1(I, y + 1, i, j) + Uα,t−1(I, y + 2, i, j) ≥ 0,

where the inequality follows from the inductive hypothesisthat the second statement holds att− 1.

Case 2:y ≤ Lt
I,i,j − 2. The optimal action in the three states(I, y, i, j), (I, y + 1, i, j), (I, y + 2, i, j) is to

allocateI − Lt
I,i,j customers in queue 1 andLt

I,i,j in queue 2. Thus,

vα,t(I, y, i, j) − vα,t(I, y + 1, i, j) = vα,t(I, y + 1, i, j) − vα,t(I, y + 2, i, j) = m.

Case 3:y = Lt
I,i,j − 1. First notewα,t(I, y+1, i, j, y +2) ≥ vα,t(I, y+1, i, j); moving one customer is a

(potentially) suboptimal action for state(I, y + 1, i, j)). Thus,

vα,t(I, y, i, j)− vα,t(I, y + 1, i, j)− [vα,t(I, y + 1, i, j)− vα,t(I, y + 2, i, j)]

≥ vα,t(I, y, i, j)− wα,t(I, y + 1, i, j, y + 1)− wα,t(I, y + 1, i, j, y + 2) + vα,t(I, y + 2, i, j)

= m+ Uα,t−1(I, y + 1, i, j)− Uα,t−1(I, y + 1, i, j)−m− Uα,t−1(I, y + 2, i, j) + Uα,t−1(I, y + 2, i, j) = 0,

as desired.

Suppose(I, y, i, j) ∈ I2. LetLt
I,i,0 be the minimal element of the setargminb∈AI2

{wα,t(I, 0, i, j, b)}.

Thus,vα,t(I, 0, i, j) = wt(I, 0, i, j, L
t
I,i,0). Assuming,Lt

I,i,2 ≥ 2

vα,t(I, 0, i, j) − vα,t(I, 1, i, j) − [vα,t(I, 1, i, j) − vα,t(I, 2, i, j)]

≥ wα,t(I, 0, i, j, L
t
I,i,0)− wα,t(I, 1, i, j, L

t
I,i,0)− [wα,t(I, 0, i, j, L

t
I,i,2)−wα,t(I, 2, i, j, L

t
I,i,2)]

= m−m = 0.

Similarly for Lt
I,i,2 < 2. Since for all(I, y, i, j) ∈ I1 ∪ {(0, 0, 0, 0)}, y = I there is no convexity require-

ment onI1 ∪ {(0, 0, 0, 0)}.
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We remark that the previous result states the existence of anoptimal “move-up-to” level for each(I, i, j).

We next characterize these levels as monotone, non-decreasing in I. This result not only lends insight into

the structure of the optimal policy, but it is also convenient both for implementation and to simplify its

computation. Moreover, it is used to implement the load balancing heuristic presented in Section5. Before

proving the result, it is useful to recall the definition of submodularity:

Definition 4.3 A functiong(j, k) is said to besubmodular if and only if the differenceg(j, k)− g(j, k +1)

is non-decreasing inj; that is,g(j, k) − g(j, k + 1) ≤ g(j + 1, k) − g(j + 1, k + 1).

Proposition 4.4 Let I ≥ 3, y ∈ {0, ..., I − 1}. Suppose the current types at servers1 and2 are i and j

respectively. The following hold:

1. For t ≥ 1 there exists optimal move-up-to levelsLt
I+1,i,j andLt

I,i,j such thatLt
I+1,i,j ≥ Lt

I,i,j.

2. vα,t(I, y, i, j) − vα,t(I, y + 1, i, j) is non-decreasing inI (i.e., vα,t is submodular in(I, y)) for all

t ≥ 0 and1 ≤ y ≤ I − 3.

Proof. By induction ont. For t = 0 Statement 2 holds trivially sincevα,0 = 0. At t = 1 we have

w1(I, y, i, j, b) = m|b− y|+ h1(I − b) + h2b. As in the proof of Proposition4.2it is optimal either(a) not

to move any customers, or(b) to move all the customers to the low cost queue (except for theone currently

receiving service at queue1). That is to say the optimal move up to level isL1
I,i,j = y or I−1 depending on

the direction of the inequalitym− h1 + h2 ≥ (≤) 0. Similarly, for state(I + 1, y, i, j), the optimal move

up to level isL1
I+1,i,j = y or I (depending on the same inequality. Thus,L1

I+1,i,j ≥ L1
I,i,j as desired.

Assume now that Statement 1 holds fort and Statement 2 fort−1. There are 4 cases to consider to prove

Statement 2 holds at timet. In each of the first three cases we take advantage of the fact thatwα,t ≥ vα,t.

Case 1:y + 1 < Lt
I,i,j andy < Lt

I+1,i,j. Then,

wα,t(I, y, i, j, L
t
I,i,j)− vα,t(I, y + 1, i, j) − vα,t(I + 1, y, i, j)

+ wα,t(I + 1, y + 1, i, j, Lt
I+1,i,j) = m−m = 0.

Case 2:y + 1 ≥ Lt
I,i,j but y < Lt

I+1,i,j. Then,

wα,t(I, y, i, j, y + 1)− vα,t(I, y + 1, i, j) − vα,t(I + 1, y, i, j)

+ wα,t(I + 1, y + 1, i, j, Lt
I+1,i,j) = m−m = 0.
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Case 3:y + 1 ≥ Lt
I,i,j andy ≥ Lt

I+1,i,j. In this case we have

wα,t(I, y, i, j, y) − vα,t(I, y + 1, i, j) − vα,t(I + 1, y, i, j) + wα,t(I + 1, y + 1, i, j, y + 1)

= h1 − h2 − (h1 − h2) + Uα,t−1(I, y, i, j) − Uα,t−1(I, y + 1, i, j) − Uα,t−1(I + 1, y, i, j)

+ Uα,t−1(I + 1, y + 1, i, j).

Each of preceding 3 cases imply submodularity forvα,t sincewα,t ≥ vα,t with the last one also using the

inductive hypothesis (Uα,t−1 is a linear combination ofvα,t−1).

Case 4:y+1 < Lt
I,i,j andy ≥ Lt

I+1,y,i,j. Note that sincey+1 < Lt
I,i,j we havey < Lt

I,i,j ≤ Lt
I+1,i,j ≤ y,

where the second inequality follows from the inductive assumption. Since Case 4 leads to a contradiction it

cannot occur.

It remains to show thatLt+1
I+1,i,j ≥ Lt+1

I,i,j. First note that ifLt+1
I,i,j = 1 the result holds trivially. Assume

thatLt+1
I,i,j ≥ 2. Note that the submodularity ofvα,t implies submodularity ofUα,t(·, y, ·, ·) for y ≥ 2.

Suppose the result does not hold so thatLt+1
I+1,i,j < Lt+1

I,i,j. Fix Lt+1
I+1,i,j < y ≤ Lt+1

I,i,j so that the optimal

action in(I + 1, y, i, j) is to do nothing, while the optimal action in state(I, y, i, j) is to move the number

of customers in queue 2 toLt+1
I,i,j. By usingLt+1

I,i,j in state(I + 1, y, i, j), the optimality equations imply

vα,t+1(I + 1, y, i, j) = h1(I + 1− y) + h2(y) + Uα,t(I + 1, y, i, j)

< m(Lt+1
I,i,j − y) + h1(I + 1− Lt+1

I,i,j)

+ h2(L
t+1
I,i,j) + Uα,t(I + 1, Lt+1

I,i,j, i, j).

A little algebra yields

m(Lt
I,i,j − y) + h1(y − Lt+1

I,i,j)− h2(L
t
I,i,j − y)

> Uα,t(I + 1, y, i, j) − Uα,t(I + 1, Lt
I,i,j, i, j). (4.3)

Similarly (by considering the action “do nothing” in state(I, y, i, j))

m(Lt
I,i,j − y) + h1(y − Lt+1

I,i,j)− h2(L
t
I,i,j − y)

< Uα,t(I, y, i, j) − Uα,t(I, L
t
I,i,j , i, j). (4.4)

Combining (4.3) and (4.4) yields

Uα,t(I, y, i, j) − Uα,t(I, L
t
I,i,j , i, j) − [Uα,t(I + 1, y, i, j) − Uα,t(I + 1, Lt

I,i,j , i, j)] > 0,

which contradicts submodularity and the result is proven.
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4.1 The Infinite Horizon Discounted Cost and Average Cost Cases

In this section we note that the results from the previous section extend to the infinite horizon models. While

the infinite horizon discounted cost case follows almost immediately, the average cost case is slightly more

subtle and requires a stability result.

Proposition 4.5 For the proxy model, under any stationary, non-idling policy the system is stable if and

only if

(λ1 + λ2)

(

p1
µ1

+
p2
µ2

)

< 2. (4.5)

That is, there exists a stationary distribution.

Proof. To prove sufficiency we fix an arbitrary, stationary, non-idling policy π, find aLyapunovfunction

and applyFoster’s criterion(cf. [9, Theorem 3.7]). This guarantees that all recurrent states are positive

recurrent. To this end, consider the Markov chain induced byπ. Denote this chain, with state spaceX, by

{Xn, n ≥ 0}. Note that sinceπ is non-idling,(0, 0, 0, 0) is accessible from every state inX; any recurrent

states must communicate with the distinguished state(0, 0, 0, 0). Denote the chain restricted to only those

states that communicate with(0, 0, 0, 0) by {Zn, n ≥ 0} and its state space byX0. LetG = {(I, y, i, j) ∈

X|I ≤ 1}. Letµ =
(

p1
µ1

+ p2
µ2

)−1
and define

L(I, y, i, j) = I/µ + 1/µi + 1/µj , (I, y, i, j) ∈ X.

For any action chosen and for(I, y, i, j) /∈ G

E [L(Zn+1)− L(Zn)|Zn = (I, y, i, j)] = (λ1 + λ2 − µi − µj)/µ + µi(p1/µ1 + p2/µ2 − 1/µi)

+µj(p1/µ1 + p2/µ2 − 1/µj)

= (λ1 + λ2)/µ− 2. (4.6)

Since G is a finite subset of the irreducible setX
0, we may now apply [9, Theorem 3.7] to{Zn} to get that

all states inX0 are positive recurrent when the right-hand side of (4.6) is strictly negative: when (4.5) holds.

Furthermore, since (4.6) also applies for states outside ofX
0, applying Proposition C.1.5 of [16] to {Xn}

yields that the expected time to reachX0 is finite. It follows that a stationary distribution exists (cf. [16, p.

294]).

To show necessity of the inequality, we note that [12, Theorem 11.5.1] implies that when(λ1+λ2)/µ ≥

2 the expected time to reachG from outside ofG is infinite, and thus a stationary distribution cannot exist.
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Let Uα andwα be the obvious infinite horizon analogues toUα,t andwα,t, respectively. The following

are called thediscounted cost optimality equations(DCOE):

vα(I, y, i, j) = min
b∈AK

{wα(I, y, i, j, b)}, (4.7)

whereK = W,I1,I2, or (0, 0, 0, 0) depending on(I, y, i, j). It is well-known thatvα satisfies the DCOE

and a policy made up of actions that achieve the minimum on theright hand side of (4.7) is discounted cost

optimal. Similarly, if we replacevα in the definition of the DCOE by some function onX, sayψ, and define

U andw as the obvious average cost analogues toUα andwα, then the following are called theaverage cost

optimality equations(ACOE):

g + ψ(I, y, i, j) = min
b∈AK

{w(I, y, i, j, b)}, (4.8)

whereK = W,I1,I2, or (0, 0, 0, 0) depending on(I, y, i, j).

Proposition 4.6 For the proxy model, the following hold:

1. For the discounted cost model

(a) The quantityvα,t is non-decreasing int and limt→∞ vα,t = vα.

(b) Any limit point of an optimalt−horizon policy is infinite horizon discounted cost optimal.

(c) In particular, the results of Propositions4.2and4.4hold in the infinite horizon discounted cost

case.

2. For the average cost model, suppose(λ1 + λ2)
(

p1
µ1

+ p2
µ2

)

< 2.

(a) The policy that moves customers only to avoid idling has finite average cost.

(b) The optimal average cost may be computed asg = limα↑1 vα(x) for anyx ∈ X.

(c) Any limit point of aα−discounted cost optimal policy is average cost optimal.

(d) There exists a limit function, sayψ ofψα(x) = vα(x)− vα(0, 0, 0, 0) for x ∈ X such that(g, ψ)

satisfy the ACOE.

(e) In particular, the results of Propositions4.2and4.4hold in the average cost case.

Proof. Since the state space is countable, the cost function is non-negative, and the action set in each state

finite, the first two results in the discounted cost case follow from Proposition 4.3.1 of Sennott [16]. Taking

limits in the value functions and along a subsequence in the policies yields the last discounted cost result.

In the average cost case conditionP1’ in Down and Lewis [4] holds for the non-idling policy described

(see Example 3.3 in [4]). Applying Theorem 3.6 therein yields the first result in the average cost case.
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Corollary 7.5.10 and Theorems 7.2.3 and 7.5.6 of Sennott [16] (collectively) yield Statements 2 (b), (c), and

(d). Taking limits in the value functions and along a subsequence in the policies yields the last average cost

result.

5 The Load Balancing Heuristic and Numerics

In this section we present theload balancing(LB) heuristic for control of the original system with heavy-

tailed distributed service times. The LB heuristic requires a mapping from (partial) state information of the

original system to the state of the proxy model. For the original system the information of interest is the

vector(I(t), y(t), η1(t), η2(t)), whereI(t) represents the total number of customers in the system at time t,

y(t) is the number of customers in the low cost queue (queue2), andηk(t) denotes the time elapsed since the

customer at stationk began service. The classification of the customers as “standard” or “heavy” in service

depends on a “trigger.” The trigger, denotedτ , indicates when the service timeηk(t) for the original system

is deemed long enough to treat the customer at stationk as a heavy type customer. We suggest a method of

determiningτ below. Define

zk(η) =







1 if η > τ ,

2 if η ≤ τ .

The original system is observed continuously and controlled at times of arrivals, times of departures, and

whenever a customer in service reachesτ units of time at the station. At such times, when the original

system vector is(I(t), y(t), η1(t), η2(t)), the LB heuristic uses the optimal action for the proxy modelwith

state(I(t), y(t), z1(η1(t)), z2(η2(t))), i.e., it uses the move-up-to policy with levelL(I(t),z1(η1(t)),z2(η2(t))).

The parameters for the proxy model should be chosen to resemble those of the original system. The

arrival rates equal those of the original system. If a service time for the original system,S, with distri-

butionF (·), has meanE[S] = 1/µ, then we suggest setting the average service time of the proxy model,

unconditional on the customer type (class), also equal to1/µ. That is,p1/µ1 + p2/µ2 = 1/µ. Note that

stability, condition (4.5), is guaranteed if(λ1 + λ2)/µ < 2. We will consider one, of perhaps many, ways to

determinep1 andp2. Let p2 = F (τ) andp1 = 1 − F (τ), whereτ is predetermined. Under these settings,

the service times conditioned on customer type are set to have the same means:1/µ2 =
∫ τ
0 sdF (s)/p2 and

1/µ1 =
∫∞
τ sdF (s)/p1. To determineτ , we suggest a quantile-based method. For a given probability a,

defineφa as the theath quantile: P(S ≤ φa) = a. Definez as the probability thatφa is reached given

that the triggerτ has been reached:z = P(S > φa|S > τ). Givena andz, exogenously,τ can then be

calculated fromF (·). For the numerical study presented in Section5.1, a = 0.8 andz = 0.75. Onceτ is

calculated, all of the parameters of the proxy model can be determined from the relationships above.
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There is one last consideration to make regarding the implementation of the LB heuristic. The state

space for the proxy model is (countably) infinite. Instead ofsolving this problem, the optimal policy is

approximated using a truncated state space. That is, the policy is calculated for a system in which each

queue has a maximum capacity ofB customers. (For the numerical study it was assumed that arrivals to a

full queue were lost, at no cost.) The truncated problem can be solved by well known algorithms, including

policy iteration and value iteration; cf. [14].

One question remains: How can we apply a truncated policy to the original, non-truncated system? For

example, suppose that the capacityB = 35 but the original system reaches(I(t), y(t), z1(η1(t)), z2(η2(t))) =

(41, 3, i, j). WhenB = 35, there are no proxy calculations for queue lengths(q1, q2) = (38, 3). One pos-

sibility is to simply use the actions associated with(q1, q2) = (min{I(t)− y(t), B},min{y(t), B}); for the

example,(q1, q2) = (35, 3). A downside of this approach is that truncation may result ina non-monotone

policy. In short, the computed move-up-to levels increase in I except near the capacity limits, where the

levels may suddenly drop off. As an alternative, we suggest a“smoothing” of move-up-to levels, in accor-

dance with Propositions4.2 and4.4. Denote the optimal number of customers to move in state(I, y, i, j),

for the truncated proxy model, asθ∗(I, y, i, j); let θ∗(I, y, i, j) = 0 for (I − y) > B or y > B. Define

b+(I, y, i, j) = y + θ∗(I, y, i, j), if θ∗(I, y, i, j) > 0; b+(I, y, i, j) = 0, otherwise. We first approximate

move-up-to levels̃L(I,i,j) = maxy b
+(I, y, i, j). These levels are not monotone inI; they decrease and are

zero forI > 2B. So, in a second step we smooth the move-up-to levels to guarantee that they are monotone

and positive for a large total number of customers. For(I, i, j) we choosêL(I,i,j) = max{ℓ:0≤ℓ≤I} L̃(ℓ,i,j).

Then, in the original system we implement a move-up-to policy with level L̂(I(t),z1(η1(t)),z2(η2(t))). This

smoothingapproach was compared to the aboveno-smoothingapproach (that ignores move-up-to levels

explicitly) in the numerical study, and the smoothing approach performed better.

5.1 Numerical Study

We tested the LB heuristic against four heuristics:do nothing(DN), no idling (NI), join the shortest queue

(JSQ), andmodified join the shortest queue(ModJSQ). The DN policy never moves customers. The NI

policy moves exactly 1 customer, if available, from one queue to the other if and only if the other server is

idle. The JSQ policy only moves customers at times of arrival, by moving an arriving customer to the other

queue if the other queue is shorter. The ModJSQ policy moves new arrivals to the other queue if the other

queue is accruing total holding costs at a lower rate. That is, a customer arriving to queue 1 (2) is moved to

queue 2 (1) ifh1q1 > h2q2 (h1q1 < h2q2).

In our experiment the service timeS is distributed according to aboundedandshiftedPareto distribution.

A standard (not bounded or shifted) Pareto distribution is aheavy-tailed, power-law distribution with two

parameters,α andκ. It has support[κ,∞), and has infinite variance forα ≤ 2. A bounded (but not

shifted) Pareto distribution is similar to a standard Pareto distribution except that it has support[κ, κ2);
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bounded above byκ2. A bounded and shifted Pareto is a translation of the boundedPareto to the origin. Its

probability density function is

f(s) =







α κα

1−(κ/κ2)α
(s+ κ)(−α−1) if 0 ≤ s ≤ κ2 − κ, 0 < κ ≤ κ2,

0 otherwise.

Its mean isE[S] =
κ−α
2 (κακ2α−κ κα

2
α)

((κ/κ2)
α−1)(α−1) −K and its variance is

Var[S] =
κ−2α
2

(

−
((κ/κ2)

α−1)(κ2κα
2
−κακ2

2)ακα
2

α−2 −
(κακ2α−κ κα

2
α)

2

(α−1)2

)

((κ/κ2)
α − 1)2

.

The design of experiment is as follows: We fixκ = 0.1 and vary the utilizationρ := 1/µ = E[S] and

Var[S], which in turn determineα andκ2. We also fixλ1 = λ2 = 1, in which case the stability condition

(4.5) becomesρ < 1. We considered all combinations ofρ ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99}

and Var[S] ∈ {1, 3, 6, 9, 12}. As noted above, for LBa = 0.8 andz = 0.75, which, together with the

distribution function, determineτ , p1, andp2. For the costs,h2 is fixed at 1 andh1 ∈ {1.25, 1.5, 2} and

m ∈ {0.75, 1.5, 2.5}. In total, the factorial consists of 360 combinations of parameter settings.

The policies were evaluated under the average cost criterion. For each policy and parameter setting, a

simulation was developed consisting of 60 (consecutive) runs, plus an additional run at the the beginning as

a warm-up period. Each run had a length of 100,000 time units.The optimal policy for the proxy model

was determined using a truncated state space with capacityB = 35 customers per queue. Unless stated

otherwise, LB refers to the smoothing approach.

Of the 360 cases, LB policy performs best in 298 (82.8%), the NI policy performs best in 29 (8.1%), the

JSQ policy performs best in 12 (3.3%), and the ModJSQ policy performs best in 21 (5.8%). The DN policy

has the highest costs in every case. In terms of costs, on average over the 360 cases, LB improves upon

DN by 58.9%, NI improves upon DN by 55.8%, ModJSQ improves up DN by 53.1%, and JSQ improves

upon DN by 51.9%. The standard deviations (s.d.) of these percent improvements upon DN are 6.4%, 6.1%,

6.3%, and 5.8% for LB, NI, ModJSQ, and JSQ, respectively. This implies that the use of a control policy to

balance the load of the system is worthwhile.

The average reduction in total costs for LB over the alternative policies are 7.0% (s.d. 6.4%) for NI,

14.5% (s.d. 9.1%) for JSQ, and 12.3% (s.d. 9.3%) for ModJSQ. In the cases for which LB is the best policy,

LB averages 7.4% (s.d. 5.3%) lower costs than the best alternative. On the other hand, when LB is not the

best policy, it has 6.1% (s.d. 9.1%) higher costs than the best. An important observation to make is the fact

that in most of the cases that LB is outperformed the utilization is high. Whenρ = .99 is omitted LB is the

best policy in 89.5% of the cases, and when bothρ = .99 andρ = .95 are omitted, LB is the best policy

in 93.7% of the cases. As it turns out, these high utilizationare subject to appreciable simulation error.
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We calculated 95% confidence intervals for the time average costs of a simulation run (assuming runs are

independent) and found that we cannot be confident that the LBpolicy is actually outperformed in any of

the cases withρ ≥ 0.95. Generally speaking, it can be problematic to simulate queues with truncated Pareto

service time distributions; see [5]. Therefore, we compared simulated costs for the DN policy against the

exact costs calculated using the Pollaczek-Khintchine formula. While the average absolute percent deviation

between the simulated and exact DN costs is only 0.8% forρ ≤ .9, it is 12.0% forρ = .99 and 2.2% for

ρ = .95. In light of this, from here on we restrict attention toρ ≤ .9.

Averaged over the remaining 270 cases, LB reduces costs by 7.6% (s.d. 5.7%) over NI, 18.0% (s.d.

6.5%) over JSQ, and 15.4% (s.d. 5.5%) over ModJSQ. Table1 displays the percent differences in costs for

ρ = .85, .9; LB is not outperformed inany of these cases. The best alternative to LB is NI, and in fact

NI is the only policy to outperform LB in the 270 cases – in 17 cases (6.3%); see Table2. LB tends to

be outperformed at the lower utilizations, when moving costs are higher, and the difference in holding cost

rates between the queues is lower. As indicated in Table1, for Var(S)= 1 the performances of LB and NI

are closest whenh1 = 1.25 andm = 2.5; though the trend does not hold for all variances. Compared to

NI, LB has lower costs by an average of 8.6% (s.d. 5.3%) whenρ = .85 and by 7.3% (s.d. 4.9%) when

ρ = .9. For all 270 cases, where LB outperforms NI it does so by an average of 8.2% (s.d. 5.4%). On the

other hand, when NI is better LB has only 0.8% (s.d. 0.6%) higher costs. This is true in general; the average

difference in total costs between LB and the best policy is very small compared to the difference between

the best policy and the other heuristics; see Table3. In terms of moving costs, LB has higher moving costs

than NI in 255 (94.4%) of the cases. The moving costs for LB are56.1% (s.d. 47.4%) higher than those of

NI. In the 15 cases where LB has lower moving costs, they are 2.6% (s.d. 2.5%) lower. The LB policy is

more aggressive in moving customers.

We also ran simulations for the no-smoothing approach to theLB heuristic. On average, the smoothing

approach outperformed the no-smoothing approach by 1.7% (s.d. 2.2%). To further test the effects of

truncation, we ran simulations for the smoothing approach with queue capacityB = 20 andρ = .85, .9.

As compared to the smoothing approach whenB = 35, the costs increased by 1.02% (s.d. 3.78%). (For

ρ = .85, .9, the costs of the no-smoothing approach forB = 35 over the smoothing approach forB = 35

are higher by0.7% (s.d. 1.2%).) So, truncation in the proxy model has an effecton the performance of the

LB heuristic, and the smoothing approach does a better job than the no-smoothing approach at mitigating

the effect.

In summary, LB (with smoothing) performs well. As indicatedby the poor performance of DN, moving

customers can greatly decrease holding costs. The simulation outputs forρ ≥ .95 are noisy and inconclusive;

otherwise, LB outperforms ModJSQ and JSQ. The best alternative to LB is NI. The performances of LB

and NI are closest when moving costs are high and the difference in holding cost rates is low. The NI policy

can outperform LB when utilization is low, but LB is not outperformed by much and there are larger gains

in the other cases. Finally, we should note that in choosing the parameters for the proxy model we only
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considereda = 0.8 andz = 0.75. There is room for improvement by optimizing these settings. We leave

such an exercise for future research.

6 Conclusion

In conclusion, we have introduced a new method for load balancing in the case for highly variable service

distributions. The method introduced is robust to changes in the parameter settings even in the case where

it is not adjusted to optimize the implementation. The most reasonable alternative to our heuristic appears

to be a non-idling heuristic. In this case, the question is simply, is the consistency and savings worth the

difficulty of implementing our heuristic. In many cases we believe more than 8.5% savings is worth the time

to implement our heuristic.

At the same time, we have shown that the use of Markov decisionprocesses can mitigate the challenges

of a general service time distribution. We believe that the ideas described here can lead to insights for other

queueing models. The example of admission controlledM/G/1 has already been alluded. Exactly the

same intuition holds for service rate control in aG/M/1. Of course, these are just the building blocks for

more sophisticated models. We note that an extension of the current work is to consider a larger network of

queues, and we conjecture that thetwo pairingheuristics described in (Wu et al. [21] and Down and Lewis

[4]) would be useful. We leave this for future research.
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NI JSQ ModJSQ

ρ h1 m Var[S] Var[S] Var[S]

1 3 6 9 12 1 3 6 9 12 1 3 6 9 12

0.75 4.52 4.46 4.73 7.84 4.17 11.56 11.13 11.13 12.16 9.46 13.44 11.36 10.78 10.55 5.85

1.25 1.5 3.56 3.86 2.39 5.76 2.95 12.07 12.82 7.56 9.02 9.57 11.65 12.67 8.58 8.94 7.41
2.5 0.90 1.64 2.85 2.41 2.86 10.98 10.51 10.47 7.06 9.63 13.79 11.00 12.60 6.86 8.14

0.75 10.45 10.96 8.90 8.02 6.64 17.19 16.71 14.60 12.56 11.75 15.88 14.38 11.72 9.14 7.56

0.85 1.5 1.5 7.78 10.20 7.38 8.17 4.61 17.28 16.63 14.08 14.03 10.22 14.63 14.01 11.23 11.32 8.99

2.5 4.56 6.75 4.94 5.75 5.82 15.77 14.38 12.47 12.00 11.41 15.33 15.11 9.77 10.40 7.47
0.75 21.05 20.31 15.85 14.50 13.94 27.59 24.88 20.11 19.93 18.87 21.89 18.97 15.73 10.77 7.11

2 1.5 16.83 16.70 15.58 15.52 14.29 23.48 23.56 21.76 19.10 19.68 19.00 17.40 14.11 10.93 10.29

2.5 13.59 16.20 11.76 11.09 10.65 23.36 22.57 18.30 17.28 15.36 16.89 16.94 11.76 10.03 7.40

0.75 4.96 4.66 3.55 1.77 3.10 10.63 9.01 9.47 6.57 6.45 11.33 8.49 7.41 4.95 7.42

1.25 1.5 2.88 2.59 4.80 0.42 0.36 11.02 8.22 6.80 5.96 5.80 12.32 10.95 6.18 4.50 2.66
2.5 2.24 2.64 2.25 1.18 1.41 10.80 9.77 7.13 6.41 5.60 12.61 8.50 9.67 7.40 5.49

0.9 0.75 10.99 9.68 7.62 5.66 7.18 15.96 14.29 9.80 9.94 10.85 16.76 13.23 9.35 6.49 7.12

1.5 1.5 9.18 8.10 6.98 2.80 4.95 15.78 12.56 11.56 8.13 8.61 14.75 12.68 7.98 8.39 8.12

2.5 7.32 6.73 5.45 2.72 4.48 15.61 12.42 12.14 8.88 8.75 15.55 11.73 7.42 7.61 9.12
0.75 20.93 15.98 13.21 8.92 9.88 25.69 20.07 17.09 13.01 14.80 19.86 14.75 8.35 4.22 0.99

2 1.5 17.92 15.28 12.63 10.33 8.87 23.75 20.15 18.06 14.39 12.01 18.71 14.28 9.93 6.29 2.40

2.5 15.65 13.17 11.26 6.58 7.49 22.26 18.37 13.78 11.96 12.25 16.49 11.04 7.33 1.86 1.60

Table 1: The percent decrease in total long-run average costs for LB compared to NI, JSQ, and ModJSQ.

# of times optimal/total

ρ LB NI JSQ ModJSQ

0.5 – 0.6 79/90 11/90 0/90 0/90

0.7 – 0.8 84/90 6/90 0/90 0/90

0.85 – 0.9 90/90 0/90 0/90 0/90

0.95 29/45 7/45 3/45 6/45

0.99 16/45 5/45 9/45 15/45

Table 2: The number of times each policy is optimal (amongst this group of heuristics).

ρ LB NI JSQ ModJSQ

0.5 0.1% 5.9% 30.5% 26.4%

0.6 0.1% 10.0% 29.9% 25.6%

0.7 0.1% 9.3% 24.2% 20.1%

0.8 0.0% 9.0% 19.9% 15.9%

0.85 0.0% 10.0% 18.3% 13.8%

0.9 0.0% 8.1% 14.4% 10.4%

Table 3: The average percent above optimal costs (amongst this group of heuristics).
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[4] D. Down and M. Lewis. Dynamic load balancing in parallel queueing systems: stability and optimal

control. The European Journal of Operational Research, 168(2):509–519, January 2006.4, 7, 14, 19

[5] D. Gross, J. F. Shortle, M. J. Fischer, and D. M. B. Masi. Difficultied in simulating queues with Pareto

service. InProceedings of the 2002 Winter Simulation Conference, pages 407–415, 2000.18

[6] M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for dynamic load balanc-

ing. ACM Transactions on Computer Systems, 15(3):253–285, August 1997.3

[7] Q. He and M. Neuts. Two m/m/1 queues with transfers of customers.Queueing systems, 42(4):377–

400, 2002.4

[8] C. Heyde and S. Ku. On the controversy over tailweight of distributions.Operations Research Letters,

32:399–408, 2004.3

[9] V. Kulkarni. Modeling, Analysis, Design, and Control of Stochastic Systems. Springer-Verlag, New

York, 1999.13

[10] M. Lewis. Average optimal policies in a controlled queuing system with dual admission control.

Journal of Applied Probability, 38:369–385, 2001.4

[11] S. Lippman. Applying a new device in the optimization ofexponential queueing systems.Operations

Research, 23:687–710, 1975.7

[12] S. Meyn and R. Tweedie.Markov Chains and Stochastic Stability. Springer–Verlag, New York, 1

edition, 1993.13

[13] V. Paxson and S. Floyd. Wide-area traffic: The failure ofPoisson modeling.IEEE/ACM Transactions

on Networking, 3(3):226–244, 1995.3

[14] M. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley

& Sons Inc., New York, 1994.3, 5, 16

21



[15] A. Riska, E. Smirni, and G. Ciardo. Analytic modeling ofload balancing policies for tasks with

heavy-tailed distributions. InProceedings of the Second International Workshop on Software and

Performance – WOSP 2000, pages 147–157, 2000.4

[16] L. Sennott. Stochastic Dynamic Programming and the Control of QueueingSystems. John Wiley &

Sons Inc., New York, 1999.13, 14, 15

[17] N. Shimkin and A. Shwartz. Control of admission and routing in parallel queues operating in a random

environment. InProceedings of the 28th Conference on Decision and Control, volume 2, pages 1064–

1065, Tampa, 1989. IEEE.3

[18] B. Shirazi, A. Hurson, and K. Kavi.Scheduling and Load Balancing in Parallel and Distributed

Systems. Wiley–IEEE Computer Society Press, 1 edition, 1995.3

[19] K. Sigman. A primer on heavy-tailed distributions.Queueing Systems, 33(1–3):261–275, 1999.3

[20] Y.-T. Wang and R. Morris. Load sharing in distributed systems. IEEE Transactions on Computers,

34:204–217, 1985.3

[21] C.-H. Wu, D. Down, and M. Lewis. Heuristics for allocation of reconfigurable resources in a serial

line with reliability considerations.IIE Transactions, 40(6):595–611, June 2008.19

[22] T. Xu, A. Desrochers, and R. Graves. Hyperexponential-based network traffic model for distributed

manufacturing. InIEEE International Conference on Systems, Man and Cybernetics, volume 4, pages

3452–3457. IEEE, October 2003.3

[23] T. Yum and L. Hua-chun. Adaptive load balancing for parallel queues with traffic constraints.IEEE

Transactions on Communications, 32(12):1339–1342, December 1984.3

[24] T.-S. Yum and M. Schwartz. The join-biased-queue rule and its application to routing in computer

communication networks.IEEE Transactions on Communications, 29(4):505–511, April 1981.3

22


	Introduction
	Literature review
	Preliminaries and Model Descriptions
	Optimal Control for the Proxy Model
	The Infinite Horizon Discounted Cost and Average Cost Cases

	The Load Balancing Heuristic and Numerics
	Numerical Study

	Conclusion
	Acknowledgments

