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We have simulated the isomerization of 38-atom Lennard-Jones clusters (LJ38) – a well-
known prototype system for global-optimization and energy landscape analyses – over a 
wide range of temperatures using a combination of molecular dynamics (MD) and 
temperature accelerated dynamics (TAD).  At high temperatures, we find that (surprisingly) 
MD with steepest descent quenches (MDSDQ) is effective for finding the global minimum of 
LJ38 as well as for determining the isomerization rates between the stable fcc isomer and the 
group of metastable icosahedral isomers. Importantly, the MDSDQ-determined isomerization 
rate was found to be approximately seven times greater than in previous studies based on 
discrete path sampling (DPS). The long simulation times enabled by TAD allows for the 
determination of isomerization rates at low temperatures, and reveals that isomerization 
proceeds primarily via processes with relatively low activation barriers.  Using TAD we have 
found a new LJ38 isomerization pathway with a smaller activation barrier than any pathway 
published previously. In addition, we have determined that correlated events play an 
important role in the accurate determination of isomerization rates.  We conclude that the 
slower rates observed by DPS are due to the omission of correlated events and some low 
energy pathways. 
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I.  INTRODUCTION 
 

 Predicting the lowest energy state for a given collection of atoms is a long-standing 
challenge that spans the fields of condensed matter physics, chemistry, materials science, 
and molecular biology.1  The difficulty of this global optimization problem varies 
dramatically depending on the details of the atomic system.  Lennard-Jones clusters 
represent a prototypical system and have been studied in great detail.2  For most small 
clusters, the lowest energy states are based on Mackay icosahedra and are easy to find.  
However for a few cluster sizes, it is much more difficult to find the lowest energy state 
due the complicated nature of the energy landscape.  The 38-atom Lennard-Jones cluster 
(LJ38) is of particular interest, because it is simple to describe yet represents a 
challenging global optimization problem.  It is thus an excellent test case for the study of 
energy landscapes.  
 LJ38 can adopt two different types of low-energy structures, as shown in Fig. 1.  The 
lowest energy state is an fcc crystal in the form of a regular truncated octahedron. 
Somewhat higher in energy there are a large number of states based on a 5-fold 
icosahedral structure.  Because fcc and icosahedral states involve radically different 
crystal structures, it is difficult to make the transition from one to the other.  The 
transformation of the crystal structure requires that the cluster pass through liquid-like 
states.  Except at very low temperatures, the free energy of the ensemble of icosahedral 
states is lower than the free energy of the fcc states.  This makes it difficult to find the 
global minimum using simulated-annealing and many other global optimization methods.   
 While finding the lowest energy state for LJ38 is challenging, finding isomerization 
rates and mechanisms for transformations between the fcc and icosahedral states is even 
more difficult.  To determine isomerization rates, it is typically necessary to consider a 
large amount of information regarding low-lying metastable states and the transition 
states connecting these metastable states to form pathways from fcc to icosahedral states.  
To date, isomerization rates and pathways for LJ38 have been determined using a master 
equation (ME) approach3 and using discrete path sampling (DPS).4   This problem has 
been studied in detail by David Wales who has performed extensive studies of the 
transition rates and isomerization mechanisms of LJ clusters, summarized in his book on 
the subject of energy landscapes.5 
 In this paper we take an alternative, dynamical approach to this problem.  We study 
the LJ38 cluster using high-temperature molecular dynamics with steepest-descent 
quenches (MDSDQ), and in addition employ temperature accelerated dynamics (TAD) 
simulations at low temperatures.6  We find that MDSDQ is effective for finding the fcc 
global minimum.  Calculating the isomerization rates using MDSDQ, we find they are 
more than 5 times faster than those previously reported using ME or DPS.  TAD 
simulations are in fairly good agreement with the MDSDQ results thereby offering a way 
to extend the fcc-to-icosahedral isomerization rate calculations to much lower 
temperatures. (We will discuss the origin of the small rate differences between TAD and 
MDSDQ at the end of this paper.)  Importantly, we find that TAD is an excellent method 
for finding low energy pathways for isomerization.  Indeed, TAD reveals a previously 
unknown lowest energy path for conversion between the LJ38 fcc and icosahedral 
structures.  This reaction path plays an important role in determining the transition rate at 
low temperatures. 
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II.  COMPUTATIONAL METHODS AND DETAILS 

 
 The potential energy for Lennard-Jones clusters is given by 
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The bond strength is determined by ε, and the equilibrium separation is determined by σ.  
As is customary, we employ reduced units; i.e. ε = σ = 1.  In these units, temperature is 
expressed in units of kBT/ε and time in units of εσ2m where m is the atomic mass.  In 
both the MDSDQ simulations and the TAD simulations, the cluster was free to rotate and 
translate.  We did not find it necessary to apply any constraining potential, as has been 
imposed in some parallel-tempering studies to prevent cluster dissociation at high 
temperatures.7  
 For the MDSDQ, a standard molecular dynamics simulation was run at constant 
temperature using a Langevin thermostat with a time step of 0.00650 (units εσ2m ) 

and a friction coefficient of 0.0308 (units 

€ 

ε mσ2 ).  At regular time intervals of 6.5 x 

104 (units εσ2m ), the trajectory was interrupted and the configuration was quenched 
using a steepest-descent algorithm. This approach was originally proposed for mapping 
the energy landscape of liquids.8  The technique has previously been employed to find 
minimum energy configurations of Si clusters.9   Other, more recent, papers describe 
optimization using similar combinations of annealing and quenching.10  We were 
somewhat surprised (and pleased) to find that MDSDQ could reliably find the global 
optimum for LJ38, typically considered a difficult global optimization problem.  
 Molecular dynamics simulations are limited to relatively short lengths of time.  We 
used MDSDQ to directly determine isomerization rates at temperatures kBT/ε ≥ 0.132, as 
discussed in the next section.  To access lower temperatures (slower rates), we used 
temperature accelerated dynamics (TAD).6 In this approach, thermostated molecular 
dynamics is performed at a relatively high temperature, Thigh, while the dynamical 
evolution of the system is monitored for transitions out of the initial state.  Each time the 
system escapes from the starting basin, the saddle point for that escape pathway is found 
using the nudged elastic band (NEB) method.11,12,13 Knowing the energy of this saddle 
point, the high-temperature escape time is extrapolated to give a corresponding low-
temperature escape time - i.e. the time at which this particular escape would have 
occurred in a corresponding hypothetical simulation at the desired low temperature (Tlow).  
This extrapolation assumes that rate constants in the system are accurately approximated 
by harmonic transition state theory.  The system is then placed back into the starting 
basin, rethermalized, and the high-temperature dynamics are continued.  In this way, a 
list of low-temperature escape times is generated.  It can be shown6 that there is a time 
(the "stop time") at which the high-temperature trajectory can be terminated, knowing, 
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with a desired confidence, that the shortest-time event in the list is the actual escape that 
would have occurred first in the real dynamics at Tlow.  The system is then moved to the 
state corresponding to this first event at Tlow, and the TAD procedure is begun again in 
the new state.  It is important to note that this chosen first event at Tlow is not simply the 
lowest-barrier pathway; rather it is the one that would have occurred first in this 
particular realization of the dynamics.  The other important point is that, in this TAD 
procedure, there is no need to discover all the pathways for escape from the basin.  
Typically, only a small number of escapes are observed at Thigh before the stop time is 
reached.  The stop time is a function of Thigh, Tlow, the time of the current shortest-time 
event at Tlow, the desired uncertainty level (δ), and a pre-specified, assumed lower bound 
on the pre-exponential factors in the system (νmin).  In this study, we used Thigh = 0.163 
(units kBT/ε), δ = 0.01 (i.e., 99% confidence level), and νmin = 16.24 (units 

€ 

ε mσ2 ). 
Transitions were detected by interrupting the trajectory regularly (much the same as in 
MDSDQ) and performing a minimization.  A transition was declared if any bond length 
changed by more than 0.176 (units σ). 
 In this work, we also made three additional assumptions/approximations to improve 
the computational efficiency of the TAD simulations.  The first assumption involved the 
identification of symmetry-equivalent states (including states with permutations of the 
atom numbering) visited during the simulation.  By combining information obtained 
during repeated visits to each set of symmetry-equivalent states significant computational 
speedup was obtained.  As more time is spent in a set of symmetry-equivalent states 
through repeated visits, the average stop time for accepting a transition out of those states 
is reduced.   In order to quickly identify symmetry-equivalent states we first calculated 
the potential energy.  If two states varied in energy by less than 0.00079 (units ε) we 
proceeded to check the sum of all the distances between atom pairs, providing an 
additional test for symmetry equivalence.   A consequence of utilizing this symmetry 
equivalence is that during post-processing, a direct playback of the sequence of states 
visited in the TAD run will contain some transitions that are not physically correct, 
because the actual transition was to a symmetry-transformed version of the state.  To 
generate the detailed minimum energy paths shown in Figs. 5 and 6, we had to first 
transform each minimum and saddle along the path to the correct symmetry equivalent 
form before applying the nudged elastic band method. 
 Our second approximation was to ignore all transitions with small reverse barriers, 
<0.29 (units ε), by returning them to the starting state as non-transitions.  (The reverse 
barrier is defined as the energy barrier to return from the final state to the initial state.)  In 
rough terms, this has the effect of lumping states connected by very small barriers into a 
superstate or superbasin, introducing an approximation that we believe is inconsequential 
for this system.  Although these particular low barriers are ignored in the rate 
determination by TAD, they are revealed by NEB calculations linking the states visited 
by TAD.  As we will see in Fig. 6, the barriers for these neglected saddle points are 
typically much smaller than the barriers for the accepted transitions.  
 Our third assumption was to pre-specify the minimum barrier for transitions out of 
the fcc minimum (ignoring those with low reverse barriers) to be 3.429 (units ε).  As 
described elsewhere [13] knowledge of the minimum barrier for escape from a state 
allows the TAD procedure to reach its stop time, and accept an event, more quickly.  The 
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higher this minimum barrier is, the greater the speedup relative to regular TAD.  In this 
case, the minimum barrier was postulated based on the behavior of the first few 
simulations, which showed a high barrier for escape from the fcc minimum.  Later, we 
used the cumulative total high-temperature time in this state from all of our TAD runs 
with Thigh=0.163, along with some additional runs at Thigh=0.188, to verify that this 
minimum-barrier assumption was valid  -- i.e., we verified that, with 1% uncertainty, the 
minimum barrier for escape from the fcc state was at least 3.429 (units ε), assuming the 
lowest prefactor in the system was no lower than νmin = 16.24 (units 

€ 

ε mσ2 ). We did 
not use a pre-specified minimum barrier for any other states in the system.  This 
“gambling” approach, in which the TAD runs are validated after the fact, was first used 
in a study of shuffling events on fcc(100) metal surfaces.14 
 In both the MDSDQ and the TAD simulations, we needed criteria for determining 
when the trajectory had made a complete transition from the fcc state to the icosahedral 
superbasin and vice versa.   An fcc-to-icosahedral transition was declared when, after 
starting in the fcc state with E=0.0, the system first arrived in a state with E=0.793 (units 
ε).  These same energies were used to define the reverse transition in an analogous way. 
 Using the above implementation of TAD, we were able to determine isomerization 
rates from the fcc to the icosahedral configuration of LJ38 at temperatures as low as 
kBT/ε = 0.075.   We also found TAD to be an excellent tool to find the fast pathways for 
isomerization at low temperatures.  Since TAD determines the basins visited and the 
transition states joining them, it provides a map of the basins’ state-to-state pathway 
followed during isomerization.  
 
 
III.  GLOBAL OPTIMIZATION AND ISOMERIZATION RATES 

 
 Figure 2 shows a plot of the energies for basins found during a typical MDSDQ run at 
kBT/ε = 0.138.  At this temperature the configurations were stored and quenched at time 
intervals of 6.5x104.   The zero of energy has been chosen as the energy of the global 
minimum (fcc) cluster.  As described in Ref. 15, the points at E < 0.67 are fcc states, the 
points at 0.67 < E < 2.33 are icosahedral states, and states at E > 2.33 are liquid-like 
states.   Thus the points at zero energy represent the fcc global minimum and the other 
points represent states with icosahedral or liquid-like structures.  During this run the 
system is seen to move back and forth between the two funnels several times.  At this 
temperature, it is thus clear that it would be straightforward to start the system in an 
icosahedral state and find the fcc global minimum.  We estimate that the mean CPU run 
time to find the fcc global minimum (starting from an icosahedral state at temperature 
kBT/ε = 0.163) is ~100 minutes using a single 2 GHz G5 PowerPC processor.  Given 
enough runs, similar to the MDSDQ run shown in Fig. 2, it is possible to determine the 
mean time required for the cluster to escape from the fcc funnel to icosahedral funnel, 
and the mean time to return.  Since these times follow Poisson statistics, we can easily 
determine the probable error associated with the measurement.  We have performed such 
runs as a function of temperature in order to obtain the escape and return rates.  The 
results are shown as an Arrhenius plot in Fig. 3.  Here the error bars represent plus or 
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minus one standard deviation.  The values plotted for the discrete path sampling 
technique are digitized from Fig. 6 of Ref. 3. 
 From Fig. 3, it is obvious that our MDSDQ rates are somewhat larger than the 
previously published DPS rates.  Over the range of temperatures covered by MDSDQ, 
the rate for escape from the fcc funnel is about 7 times faster than predicted by DPS, 
whereas the rate for return from the icosahedral funnel varies from 7 to 11 times faster 
than predicted by DPS.   Indeed, our ability to find the global minimum and determine 
isomerization rates using MDSDQ is due in part to the isomerization rates being in reality 
larger than previously calculated.  In order to understand these effects we turn now to a 
discussion of the temperature accelerated dynamics (TAD) runs.   
 
 
IV.  TRANSITION RATES AT LOW TEMPERATURES 

 
 As described above, TAD allows much longer simulation times at low temperatures 
than does ordinary molecular dynamics.  To determine the fcc-to-icosahedral 
isomerization rates using TAD, we started a number of simulations (typically on the order 
of 100 runs at each temperature) in the fcc minimum.  Each simulation was continued 
until it reached a state with an energy characteristic of the icosahedral state, as described 
in Section II, or until it reached a predetermined number of transitions or CPU time 
without showing a transition to the icosahedral state.  The rate constant was then 
computed as the number of successful events divided by the total TAD time of all the 
trajectories.  At the lowest temperature (kBT/ε =0.075), the typical boost factor 
(computational speedup relative to direct molecular dynamics) was approximately 1010.  
The boost factor is high when the typical barriers are high and increases as the 
temperature (Tlow) is lowered.  Although the boost factor is even greater at temperatures 
lower than kBT/ε =0.075, the overall rate of isomerization (measured in wall-clock time 
or CPU time) slows down to the point where it is difficult to determine a rate constant. 
We also note that because the typical barriers are lower in the icosahedral and liquid-like 
super basins, we did not obtain boost factors nearly so large for the reverse process.  In 
fact, while we observed a few icosahedral-to-fcc transitions in the TAD runs, they were 
infrequent enough that we made no attempt to determine a statistically meaningful 
reverse rate constant using TAD. 
 Figure 4 shows an Arrhenius rate plot for the whole temperature range simulated 
using MDSDQ and TAD.  The rates determined by both methods are nearly in agreement 
and have been fit by a single straight line on the Arrhenius plot.  (We discuss the reason 
for a slight discrepancy between the MDSDQ and TAD rates in section VI).  The error 
bars shown represent a single standard deviation for a Poisson distribution. Using TAD, 
we are able to simulate the fcc-to-icosahedral isomerization rate over a doubling of the 
temperature and ~15 orders of magnitude in the rate.   The slope of the Arrhenius line 
corresponds to an activation energy of 4.35, in reasonable agreement with the barrier 
heights described below and shown in figures 5, 6, and 7.   
 A remaining issue is the difference in rates between the present molecular dynamics 
simulations and methods such as discrete path simulation (DPS)4 which enumerate all 
relevant metastable states and activation energies between these states, and then use 
master equation3 dynamics to predict isomerization rates.  As shown in Fig. 4, our 
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molecular dynamics simulations show escape rates between 6 and 7.5 times faster than 
previous discrete path sampling determinations over the temperature range for which 
DPS results have been published.  We also found that escape rates determined from 
MDSDQ runs were approximately 2 times faster than the escape rates from the TAD runs 
reported. As we discuss in the next two sections, there are two reasons for the rate 
discrepancies between DPS, TAD, and MDSDQ.   One reason (see Sec. V) can be traced 
to the difficulties associated with calculating all of the lowest energy isomerization 
reaction pathways.  The second (see Sec. VI) pertains to a broader issue, the issue of 
correlated events that are not included in transition rate theory.  
 
V.  ISOMERIZATION REACTION PATHWAYS 
 
 During a TAD simulation, for every detected transition, the initial and final states are 
tabulated and the activation energy is calculated using the nudged elastic band method.  
Thus, once a TAD simulation completes the escape from the fcc state into an icosahedral 
state, the event list includes all the saddles and minima along the fcc-icosahedral reaction 
path.  Figures 5 and 6 show examples of such paths.  The paths we display have been 
modified (making them "reduced paths") by deleting all path segments in which the 
system starts in a given state, makes a number of transitions, and then returns to the same 
given state before continuing.  These segments are deleted because it is not necessary that 
they be traversed to allow the escape from the fcc state to the icosahedral superbasin.  We 
are interested in low temperature escape paths, so we look for paths with the "lowest 
highest barrier".   
 Figure 5 plots one complete path from the fcc state to an icosahedral state. This 
particular run was selected because it shows isomerization by a path having the "lowest 
highest barrier" found using TAD.  This path has a lower highest barrier (at 4.219 energy 
units) than any path previously described in the literature.3  Fig. 5 distinguishes the 
saddles and minima explicitly visited in TAD from the additional ones that were ignored 
due to the low-reverse-barrier approximation. 
 Figure 6 plots the details of twelve different escape paths obtained at kBT/ε=0.088, 
selected to illustrate the nature of the path having relatively low highest barriers.  All 
these paths were generated using the nudged elastic band method after the TAD 
simulations were complete, as discussed in Section II.  Fig. 6 shows the details of a 
number of paths seen in TAD runs at kBT/ε=0.088.  These paths were selected because 
they represent the two mechanisms with the lowest activation barriers for isomerization.  
The paths shown in red reach the icosahedral basin after crossing a highest barrier at 
4.219.  The paths shown in blue reach the icosahedral basin after crossing a highest 
barrier at 4.272.  This second type of low barrier path has been described in reference 3. 
The common features shared by all the paths in figure 6 have been emphasized by 
shifting the paths along the x-axis so that the 4.219 barrier is at the zero of hyperdistance. 
 In addition to mapping the paths with relatively low activation energies, we also 
investigated the contribution of various paths to the overall isomerization rate from fcc to 
icosahedral.   In order to obtain adequate statistics,104 runs at kBT/ε=0.088 were initiated 
in the fcc state.  Of these runs, 94 reached the icosahedral basin before the runs were 
terminated.  Fig. 7 presents a histogram of the highest barriers for these 94 escapes.  The 
highest barrier for 13 of these paths was 4.219, while the highest barrier for 12 of the 
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paths was 4.272.  There were also substantial numbers of paths which escaped over these 
barriers (4.219 or 4.272) but then went over slightly higher barriers (>4.219 or >4.272) in 
the icosahedral funnel before reaching a low lying state in the icosahedral.  We found 32 
paths which passed over the 4.219 barrier and then passed over a somewhat higher 
barrier.  We found 15 paths which passed over the 4.272 (and the 4.219) barrier and then 
passed over a somewhat higher barrier.  The remainder of the escapes, 22 in number, 
followed higher energy pathways which involved a range of other barriers and were less 
easily categorized.   
 A major motivation for analysis of these isomerization pathways was to understand 
the mechanisms responsible for the observed rate discrepancies between our MD and 
TAD runs and previous studies using DPS or ME approaches.  The reaction pathways 
discussed above show that about half of the total rate can be attributed to paths which 
reach the icosahedral basin by passing over a highest barrier of EA=4.219.   These paths 
were probably not included in the DPS or ME approaches.  The fact that it, and perhaps 
other paths as well, were missed is probably one reason our rates are higher than those 
reported previously.  
 In this regard, it is worth discussing the difference between the two basic approaches 
to determining isomerization rates in a system like this. Using a master equation approach 
or discrete path sampling, as were employed for the prior work on this LJ38 system, the 
goal is to discover all (or all relevant) paths through state space that connect the desired 
initial and final states.  This path information (e.g., all minima and saddles and their 
connectivity) can then be converted to a rate constant at any temperature of interest for 
the overall isomerization process.  The advantage of this path-based approach is that even 
when the overall rate constant is extremely low, the rate can be determined if the paths 
can be found.  The disadvantage of this approach is that it can be hard to know whether 
all paths have been found.  The rate constant will be in error (i.e., will be reduced) by 
each missing path contribution.   
 An alternative approach, the one we have explored here for the LJ38 system, is to use 
direct dynamical simulation to obtain the rate constants.  The advantage of this dynamical 
approach is that not all the paths need to be found.  Instead, dynamical evolution of the 
system automatically samples the paths in the correct proportion and the rate constant is a 
directly observable property of the dynamical simulation.  If many simulations of the 
isomerization process are performed, all the important paths will be seen.  However, an 
estimate of the rate can be made even if only a few simulations are performed and many 
important paths are never observed.  The rate estimate will have larger statistical error 
bars, but it will be an unbiased estimate.  There is a major disadvantage of this approach, 
however, which is that if the rate is too low, no rate can be estimated because no 
isomerization event will be observed on the time scale of the simulation.  For systems in 
this category, only the path-based approach is viable.  The LJ38 system has been 
generally assumed to be in this low-rate-constant category, which is why the pioneering 
path-based studies on this complex system2,3,5 have been so valuable.  
 
VI.  CORRELATED EVENTS 
 
 We conclude with a brief discussion of correlated events and their effect on the 
calculated escape rates from the fcc superbasin to the icosahedral superbasin.  In our 
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simulations, correlated events manifest themselves as small rate discrepancies between 
TAD and MDSDQ runs.  They are also responsible for a portion of the discrepancy seen 
in Fig. 2 between MDSDQ and DPS.  In order to understand these rate discrepancies we 
examined the distribution of residence times in the fcc ground state in MDSDQ runs.  
The residence time in the ground state was defined as the elapsed time between the 
system entering the fcc ground state and the system moving to the first low lying fcc 
excited state at 2.0728 energy units.  (This state is the metastable state adjacent to the 
zero energy fcc state at the left side of figs. 5 and 6.)  The distribution of residence times 
measured at two different temperatures is plotted as a histogram for simulation 
temperatures of kT/ε=0.138 and kT/ε=0.163 and clearly shows a bimodal distribution.   
At these temperatures roughly a quarter of the hops out of the fcc basin have residence 
times on the order of 0.3 time units, independent of temperature (this residence time is 
comparable to the time associated with the phonon vibrations of the cluster).  The 
remainder of the residence times are  ~10,000 time units at kT/ε=0.163 and  ~1,000,000 
time units at kT/ε=0.138.  The long residence time events are well characterized by 
transition state theory, which assumes that the system equilibrates (rethermalizes) in a 
given basin and later escapes with a rate determined by an Arrhenius equation.  The short 
residence times occur when the system starts in an excited state, falls into the stable fcc 
state, and then immediately continues to another excited state with symmetry equivalence 
to the initial excited state.    This process, which occurs repeatedly in these molecular 
dynamics runs, boosts the overall escape rate from the fcc basin.  As such correlated 
events are not considered in transition rate theory, and they cannot contribute to the 
calculated rate in TAD or DPS.  Consequently both TAD and DPS underestimate the 
escape rate from the fcc to the icosahedral basin.  In the present case DPS underestimates 
the escape rate by a factor of about 7, whereas TAD underestimates the escape rate by a 
factor of about 2.  We attribute the TAD error to correlated events, whereas the DPS error 
is due both to correlated events and to the computational omission of some low energy 
pathways for LJ38. 
 
 
 
VII.  SUMMARY 

 
 Contrary to expectation, we have found it possible to use molecular dynamics 
(monitored via steepest descent quenches) to find the global minimum for LJ38.  
Furthermore, we were able to determine isomerization rates using this technique.  Our 
success in using MDSDQ is due in part to the fact that the isomerization rates are 
somewhat higher than previously estimated.  Needless to say, the ever increasing power 
of today’s computers played a role as well.  
 We have also shown that temperature accelerated dynamics can play a very useful 
role in the study of such systems.  Because TAD allows simulations of very long times at 
very low temperatures, we can extend rate simulations over a much wider range of 
temperatures than are possible with MD alone.  Simulations at such low temperatures are 
of particular interest in mapping out fast pathways for reactions.  TAD turns out to be an 
excellent approach to finding the “lowest highest barriers” for these complex reactions.  
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In particular, for LJ38, we have discovered a new low-barrier pathway for isomerization 
that makes a significant contribution to the rate at very low temperatures.   
 We note that when using either MDSDQ or TAD to study isomerization rates, there is 
no need to find every possible pathway between the initial and final states.  Rather, 
because these two methods follow the dynamical evolution of the system from state to 
state, the ensemble of dynamically important pathways is automatically sampled 
correctly and the isomerization rate is directly observable.   Finally we note that missing 
pathways and missing correlated hops lead to errors in rate calculations based on 
transition state theory. 
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FIG. 1: Two isomers of the Lennard-Jones 38 atom cluster.  The fcc cluster is a truncated 
octahedron and has the lowest energy of all the isomers.  There are also a number of 
metastable icosahedral clusters, one of which is shown on the right.  Because the fcc and 
icosahedral structures are so different, it is difficult for the cluster to make a transition 
between these two structures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fcc                             icosahedral  
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FIG. 2:  Plot of energy vs. time for typical LJ38 MDSDQ run at temperature kBT/ε = 
0.138.  The energies (units ε) are for the quenched states. The time unit is εσ2m .  In 
these energy units, the states at E = 0.0 are the fcc state (global minimum).  The states at 
0.67 < E < 2.33 are icosahedral states.  The highest energy states are liquid-like.  The 
system moves back and forth between the fcc and icosahedral funnels several times 
during the course of this run.  
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FIG. 3:  (color online) Isomerization rates as a function of reciprocal temperature 
determined using molecular dynamics with steepest descent quenching (MDSDQ) 
compared with discrete path sampling (DPS) results.3  Rate units are

€ 

ε mσ2 .  The solid 
lines give the escape rates from the fcc basin into the icosahedral basin.  The dashed lines 
give the return rate to the fcc basin.  The (red) points with error bars represent our 
MDSDQ results and the circular (blue) points represent DPS results.3  The error bars on 
the MDSDQ points represent one standard deviation. 
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FIG. 4: (color online) Fcc-to-icosahedral isomerization rates determined using MDSDQ 
and temperature accelerated dynamics (TAD).  Rate units are  

€ 

ε mσ2 .  The rates for 
ε/kBT<7.8 were determined using MDSDQ.  The rates for ε/kBT>7.0 were determined 
using TAD.  (TAD and MDSDQ were both used for ε/kBT≈7.2)  The solid line is a single 
exponential fit to the data from both methods.  The activation energy obtained from this 
exponential fit is 4.35, which is in reasonable agreement with the activation barriers 
extracted from TAD runs as shown in figures 5, 6, and 7.  Previous DPS results are 
shown by the dashed line. 
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FIG. 5 (color online):  A complete isomerization path having the "lowest  highest barrier" 
from the fcc state to the icosahedral basin is shown.  The temperature for this run was 
kBT/ε=0.088. The initial fcc state is at hyperdistance zero.  The final icosahedral state is 
at hyperdistance of about 29.  The highest barrier on this past occurs at hyperdistance of 
about 11 and energy of 4.219.  The small (blue) dots show energies along the minimum 
energy path determined using the nudged elastic band procedure.  The large dots (red) 
show which minima and saddles were explicitly considered in the TAD simulation.  
Peaks and valleys without a large dot are those stationary points that were ignored due to 
the small reverse-barrier criterion imposed during the TAD runs. 
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FIG. 6:  (color online) Energy as a function of hyperdistance along two types of 
minimum-energy paths from TAD simulations at kBT/ε=0.088.  These paths represent 
reaction paths for isomerization from fcc to icosahedral structures.  The energy is in units 
of ε and the hyperdistance is in units of σ.  Labeled high points correspond to energy 
barriers relative to the stable fcc structure.  The top (red) curves show the lowest 
activation energy path, having EA=4.219, discovered using TAD.  The lower (blue) 
curves have a slightly higher activation energy, EA=4.272, corresponding to the lowest 
energy path known previously.3  In order to emphasize the features which all these paths 
have in common, the curves have been shifted along the x-axis so that the 4.219 barrier is 
at the zero of hyperdistance.  Two of the paths shown, passed over the 4.186 or the 4.272 
barrier, but later passed over slightly higher barriers.   
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FIG. 7:  Histogram of the highest barriers encountered for  all 84 escape pathways from 
fcc observed using TAD at kBT/ε=0.088.  Because these are very low temperature 
simulations, all these paths have relatively low highest barriers.  The lowest highest 
barrier observed in all these runs is EA=4.219.  The paths with EA=4.272 correspond to 
the lowest barrier previously known for this system.  The stacked bars serve to 
distinguish between runs which began by going over the lowest highest barrier of 4.219, 
runs which began by going over the lowest highest barrier of 4.272, and runs which 
followed other pathways involving higher barriers which were not easily characterized.  
It is clear that paths starting by going over the 4.219 initial barrier make a substantial 
contribution to the overall rate of isomerization. 
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FIG. 8 (color online):  Distribution of residence times in the fcc ground state.  This is a 
histogram showing the relative probability of finding residence times ranging from 10-3 to 
108 time units (note log scale).  The peaks on the left represent times of the magnitude of 
a period of a phonon vibration.  The peaks on the right represent times of the magnitude 
predicted by an Arrhenius rate law.  The correlated hops with residence times less than 
one time unit increase the population of the excited state substantially with respect to a 
Boltzmann distribution, thereby increasing the escape rate well over that predicted by 
transition state theory. 
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