Non-aqueous Metal-Oxygen Batteries:
Past, Present, and Future

Maxwell D. Radin and Donald J. Siegel

1 What Is the Motivation for High Energy-Density
Batteries?

A metal-oxygen battery (sometimes referred to as a ‘metal-air’ battery) is a cell
chemistry in which one of the reactants is gaseous oxygen, O,. Oxygen enters the
cell typically in the positive electrode—perhaps after being separated from an
inflow of air—and dissolves in the electrolyte. The negative electrode is typically a
metal monolith or foil. Upon discharge, metal cations present in the electrolyte react
with dissolved oxygen and electrons from the electrode to form a metal-oxide or
metal-hydroxide discharge product. In some chemistries the discharge product
remains dissolved in the electrolyte; in other systems it precipitates out of solution,
forming a solid phase that grows in size as discharge proceeds. In secondary
metal-oxygen batteries the recharge process proceeds via the decomposition of the
discharge phase back to O, and dissolved metal cations. In light of the processes
associated with discharge and charging, reversible metal-oxygen batteries with solid
discharge products are often referred to as precipitation-dissolution systems, a
category that also includes lithium—sulfur batteries.

The interest in metal-oxygen chemistries follows from their very high theoretical
energy densities. Figure 1 summarizes the gravimetric and volumetric energy
densities for several metal-oxygen couples, and compares these to the theoretical
energy density of a conventional lithium-ion battery. On the basis of these energy
densities, it is clear that many metal-oxygen systems hold promise for surpassing
the state-of-the-art Li-ion system.

Achieving this goal, however, remains a significant challenge when factors
beyond energy density are accounted for: cycle life, round-trip efficiency, and cost
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Fig. 1 Theoretical energy densities for several metal-oxygen couples compared to a conventional
Li-ion battery. The abscissa indexes the discharge product(s) associated with each metal
composition

must also be considered. The present chapter serves as a primer for new researchers
interested in tackling these challenges. We begin with a brief history of
metal-oxygen batteries, followed by a deep-dive into arguably the most ambitious
secondary metal-oxygen chemistry, the non-aqueous Li—O, system. The current
status of Li-O, cell performance is summarized which an emphasis on capacity,
rate capability, cycle life, and efficiency. Subsequent sections review (i.) operating
mechanisms, (ii.) challenges and failure modes, and (iii.) novel concepts for
improving performance. We conclude with a brief discussion of non-lithium-based
systems.

2 The History of Metal-Oxygen Batteries

2.1 Overview of Metal-Oxygen Batteries

The long history of metal-oxygen batteries is often unappreciated. To our knowl-
edge, the earliest written description of a metal-oxygen battery is Vergnes’ aqueous
Zn-air battery from 1860 [1]. This design is in some respects remarkably similar to
today’s advanced metal-oxygen cells, which frequently employ porous carbon
positive electrodes and noble-metal catalysts [2]. Figure 2 shows Vergnes’ design,
containing a zinc metal anode and a porous platinized coke positive electrode. The
overall reaction in these cells is Zn 4 {0, — ZnO. Zn-air batteries matured into a
practical energy storage technology in the early 20th century [3], and as of the early
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Fig. 2 Vergnes’ 1860 Zn-air battery design, taken from Ref. [1]
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21st century still remain the most prominent metal-oxygen chemistry. Industrially
produced primary Zn-air cells exhibit high energy densities [4] and are employed in
a number of applications, such as hearing aids.

Over the years, many other metal-oxygen couples have also been considered. In
Tables 1 and 2, we enumerate reports of operating metal-oxygen cells, as well as
oxygen cells based on the oxidation of several non-metals (C, H, and Si). The
references cited in these tables are not intended to capture all of the work done on
each metal-oxygen couple, but rather to highlight reviews and representative
experiments. Table 1 shows cells that employ aqueous electrolytes, including
composite electrolytes (i.e., the combination of a solid electrolyte in addition to an
aqueous electrolyte). Table 2 shows non-aqueous chemistries, which are subdivided
into high- and low-temperature. While all metal-oxygen chemistries can in principle
be mechanically recharged (by replacing the metal anode and/or electrolyte), in
Tables 1 and 2 we denote only those that are electrochemically rechargeable as
‘secondary batteries.” Although Tables 1 and 2 are limited to couples in which a
single element is oxidized, it should be noted that so-called ‘direct’ fuel cells
involve the oxidation of compounds with multiple elements, including sugars [5],
methanol [6], formic acid [7], and borohydrides [8].
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Table 1 Summary of oxygen couples with aqueous electrolytes

Reaction

Type of electrolyte

Non-composite

Composite

H H, +10, — H,O Secondary [4, 6]
Li Li + 10, +1H,0 — LiOH Primary [11] Secondary [15]
Na Na + 10, + {H,O — NaOH Primary [157]
Mg Mg + 10, + H,0 — Mg(OH), Primary [4, 158]
Ca Unknown Primary [159]
\ 4H" + 0, 4+ 4V?*F — 2H,0 + 4V3* Secondary [160]
Mo Mo + 10, + H,O — H,MoO4 Primary [161]

Mo + 30, + 2KOH — K;Mo0O4 + H,0 Primary [161]
Fe Fe + 10, + H,0 — Fe(OH), Secondary [4]

3Fe(OH),+10, + H,O — Fe304 4+ 4H,0 Secondary [4]
Zn Zn +10, — ZnO Secondary [4]
Cd Unknown Secondary [162]
Al Al 430, + 3H,0 — Al(OH), Primary [4, 163] Secondary [164]
Si Si+ O, + 2H,0 — Si(OH), Primary [165]
Sn Sn + O, + 2KOH + 2H,0 — K,Sn(OH), Primary [166]

Table 2 Summary of couples with non-aqueous electrolytes

Reaction

Type of cell demonstrated

Low-temperature

High-temperature

H H, +10, — H;O Secondary [6] Secondary [6]
Li 2Li + O, — Lir O, Secondary [2, 15, 16]
FeSi,Li, + 0, — iLi,O + FeSi, Secondary [12]
Na Na + O, — NaO, Secondary [144, 145]
2Na + O, — Na,O, Secondary [145, 146]
K K+ 0, — KO, Secondary [147]
Mg Mg + 10, — MgO Secondary [148] Primary [167]
Ca 2CaSi + 10, — CaO + CaSi, Secondary [168]
Mo Mo + O; — MoO, Secondary [169]
w W+ 0, — WO, Secondary [170]
Fe Fe +10, — FeO Secondary [171]
3Fe + 20, — Fe30,4
Al Unknown Secondary [150]
C C+ 0, — CO, Primary [172]
Si Si+ Oy — SiOy Primary [173]

Here ‘low-temperature’ refers to cells that operate below 100 °C and ‘high-temperature’ to those
that operate above 100 °C
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2.2 History of Li-O, Technology

The birth of the modern non-aqueous Li—O, battery is generally considered to be
the 1996 demonstration of a room-temperature secondary cell by Abraham and
Jiang [9]. While this development was a breakthrough, the history of earlier Li—O,
batteries is often overlooked. To the best of our knowledge the first investigation of
the Li—O, couple dates back to 1966 [10]. Although this early study also employed
non-aqueous electrolytes—including propylene carbonate, today’s preeminent
Li-ion solvent—the design pursued was a ‘moist’ Li—O, system: the oxygen supply
was saturated with water vapor. Interestingly, even this preliminary study identified
some of the issues that remain critical for modern Li—O, cells, such as the formation
of lithium carbonate and the role of impurities.

Other Li-O, designs emerged later. Primary Li—O, cells with aqueous electrolytes
received considerable attention in the 1970s [11], and moisture-free high-temperature
secondary cells were developed in the 1980s [12]. However, Abraham and Jiang’s
1996 study represents the first demonstration of a moisture-free room temperature
secondary Li—O, cell [9], and is therefore a key development in the history of Li—O,
batteries. An amusing historical note is that the development of this cell was not
intentional, but was instead a serendipitous discovery caused by the leakage of oxygen
from a syringe into a sealed lithium-graphite cell [13].

Since 1996, research on non-aqueous Li—O, cells grown immensely. This has
also led to the development of related chemistries, including true Li-air cells [14]
(i.e., using ambient air rather than pure oxygen) and also reversible aqueous Li—O,
cells [15]. It is not possible to summarize all of the studies performed to date.
Instead, we strive to summarize and unify the key lessons, observations, and
hypotheses that have been presented in the literature. For additional details beyond
those presented here, the reader is encouraged to explore other reviews of the field
[2, 15-20].

3 State of the Art

3.1 Current Status—Current, Capacity, Cycle Life, Efficiency

Much of the research on non-aqueous Li—O, batteries has focused on improving
four critical aspects of performance: rate capability, capacity, voltaic efficiency, and
cycle life. Some state-of-the-art Li—O, cells have been demonstrated to perform
adequately with regard to these measures individually, but none have performed
satisfactorily in all four simultaneously. This is because rate capability, capacity,
voltaic efficiency, and cycle life are highly interdependent, often in surprising ways.
Some interdependencies manifest as tradeoffs in performance; examples include:

1. Higher discharge rates reduce maximum capacity due to electrical passivation
issues and/or oxygen transport limitations, as discussed in Sects. 3.3.1 and 3.3.2.
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Fig. 3 Potential profile from a galvanostatic discharge/charge cycle of a parallel-electrode, aprotic
Li-O, battery with a porous carbon positive electrode, Li metal anode, and LiTFSI/DME
electrolyte at a current of 0.2 mA/cm?. Data courtesy of L. Griffith, Monroe Research Group

2. Curtailing the discharge capacity increases cycle life and voltaic efficiency
[21, 22].

3. Higher discharge rates (at fixed capacity) may improve voltaic efficiency, as the
discharge product morphologies produced at high currents can exhibit lower
charging overpotentials than the morphologies produced at low currents [23].

Figure 3 shows the potential profile from a galvanostatic discharge/charge cycle
of a typical non-aqueous Li—O, cell. Several features shown here are typical for Li—
O, cells. First, discharge proceeds at a constant voltage close to the theoretical cell
potential E° for the formation of Li,O,. Discharge then terminates with a rapid drop
in potential (‘sudden death’), possibly due to oxygen transport limitations or
electrical passivation. The recharge potential profile is more complex and exhibits
several distinct stages with high recharge overpotential 7, resulting in low voltaic
efficiencies.

We next summarize the performance of state-of-the-art Li—O, cells and compare
to performance targets. We note that comparing capacities and currents across
different experiments is non-trivial because different authors adopt different nor-
malization schemes [24, 25]. For example, many studies employing carbon-black
electrodes report capacities normalized to the mass of the carbon black. Underlying
this convention is the notion that the capacity ought to be proportional to the mass
of the carbon black. This can lead to misleading conclusions in cases where the gas
diffusion layer (GDL) or current collector contributes significantly to capacity; one
study found that carbon-black mass normalization can inflate the capacity of a
typical Li—-O, electrode by as much as an order of magnitude [24]. The
carbon-mass-normalization convention can also lead to misleading conclusions in
cases where only a small fraction of the carbon black is utilized due to oxygen
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transport limitations, as discussed in Sect. 3.3.2. Furthermore, this convention does
not allow for meaningful comparison between electrodes where the mass of
the catalyst and binder is significant, or to carbon-free electrodes.

To facilitate meaningful comparisons between experiments and with performance
targets, we recommend the following protocol for reporting currents and capacities:

1. Capacities and currents should be reported normalized both to the mass and to
the positive electrode’s geometric area, because battery pack performance
depends both on the current/capacity per mass and per geometric area. (At a
minimum, one should supply enough data to allow readers to convert between
normalization schemes.)

2. When normalizing to mass, the masses of all positive electrode components that
scale with the loading (e.g., binders and catalysts) should be included because
these contributions to the total mass are important from the perspective of
battery system design.

3. If one excludes the mass of the GDL/current collector from the mass normali-
zation, then one must verify that its contribution to capacity (per area or per cell)
is negligible compared to the contribution from the active materials [23, 24].
Note that it is not sufficient to show that the capacity per mass of the GDL is
small compared to the capacity per mass of the active material, because the mass
of the GDL often greatly exceeds that of the active material.

The tradeoff between current and capacity is illustrated in Fig. 4, which shows
the capacities and rates obtained in various Li—O, cells reported in the literature,
normalized to the geometric area of the electrode. Additionally, the current densities
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Fig. 4 Reported capacities for galvanostatic operation of Li-O, cells from various experiments
[28, 29, 34, 155, 156] during the first discharge (black solid symbols) and in cells which can be
cycled many times (black open symbols). The red symbols indicate the currents and capacities
assumed in hypothetical battery designs [15, 26, 27]. Diagonal lines identify the time required for
discharge (Color figure online)
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and capacities assumed in several hypothetical designs for practical Li—O, batteries
[15, 26, 27] are shown.

One of the fundamental reasons why current cell designs fall short of the areal
performance targets [15, 26, 27] is electrode thickness: while experiments often
consider electrodes of thickness ~ 10 um, proposed battery designs have assumed
much larger thicknesses of 150-300 um. A practical Li—O, battery requires that the
electrode be fairly thick so as to minimize the mass and volume penalties associated
with the inactive components (e.g., separators, electrolyte, current collectors,
packaging). However, the full utilization of thick electrodes is likely limited by
oxygen transport, as discussed in Sect. 3.3.2. Thus the development of a practical
Li-O; battery will require either a solution to the oxygen transport problem within
thick electrodes, or a battery pack design that achieves high system-level perfor-
mance with thin electrodes.

The gap between experiments and targets is smaller on a mass basis. The
mass-specific capacity targets of ~ 1000 mAh/g (including the mass of catalysts and
binders) [26, 27] are routinely achieved at fairly high rates (~1 h discharge),
sometimes even over many cycles [28]. Although mass-capacities significantly
higher than this have been reported [29, 30], from the perspective of system design
there is limited benefit to increasing the gravimetric capacity beyond ~ 1000 mAh/g.
As the capacity increases beyond this value, the gravimetric capacity ultimately
becomes limited by the mass of the discharge product [27]: the theoretical capacity
of the Li-O, couple is 1168 mAh/g;; o, [31].

In the next section, we summarize the key observations and theories regarding the
operating mechanisms of Li—O, cells. Possible origins of these performance limi-
tations are also described. It is important to keep in mind that different mechanisms
may dominate under different operating conditions. For example, it has been shown
that the current density [23], positive electrode material/architecture [32, 33], and
system cleanliness [34—36] can play a significant role in the reaction mechanisms.

3.2 Proposed Mechanisms

3.2.1 The Discharge Product

The first step in understanding the performance of Li—O, batteries is understanding
the discharge product. It is often presumed that the discharge product is bulk
crystalline Li,O,; however, this is probably too simplistic an assumption, as there is
now good evidence that the discharge product can have a complex morphology,
microstructure, and composition.

Morphology. A number of different discharge product morphologies have been
reported, including disks [23, 37], films [37, 38], needles [39], and hollow spheres
[40]. Biconcave disks (similar to red blood cells) are among the most commonly
observed morphologies, as shown in Fig. 5. (This morphology is often referred to as
a ‘toroid’; however, these particles are not strictly speaking toroids because they
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Fig. 5 SEM image of
biconcave Li»O, disks in a
Li-O; cell. From Adams et al.
[23]

lack a hole that runs through the center of the disk.) Figure 6 shows the basic
structure of a typical Li,O, disk, which consists of a stack of relatively flat crys-
tallites. The disks are highly textured (i.e., the misorientation between crystallites is
small), with the {0001} axis being aligned with the central axis of the disk. In some
cases the regions between the plates appear to be filled with components of the
electrolyte [36], but in others it has been suggested that the inter-plate regions
contain a distinct phase or grain boundary region [41]. This second phase could be,
for example, amorphous Li,O, or a lithium-deficient compound such as Li,—,O,.
Note that it can be the case that multiple distinct morphologies appear concurrently
in the positive electrode of a single cell; for example, large biconcave disks and
small particles have been observed simultaneously [37].

The morphology of the discharge product has been suggested to influence dis-
charge capacity and recharge overpotentials [23, 42-44]; therefore an understand-
ing of the factors which control morphology may enable the design of cells with
improved performance. It has been reported that low current densities and high
water concentrations (hundreds to thousands of ppm) both promote the growth of
biconcave disks [23, 37, 45-47]. Similar biconcave disks have also been observed
in the precipitation of silicates [48] and corn starch [49], suggesting that there may
be a common growth mechanism. It has also been reported that the characteristic
size of these particles decreases with increasing current densities, and that at suf-
ficiently high rates the deposit forms a conformal film rather than discrete particles
[23, 37, 45, 47]. However, it has been suggested that the putative conformal films
produced at high currents are in fact carpets of nano-scale needles [39].
Additionally, several experiments have concluded that the support and/or catalyst
can strongly influence discharge product morphology [42—44].

A concrete picture of the discharge product growth mechanism remains elusive.
A continuum-scale growth model has been proposed to explain the transition from
particle to film with increasing current [50], and a separate model has been pro-
posed to explain the increase in disk size with increasing water concentration [36].

Crystallinity. A growing number of experiments have suggested that amorphous
Li,0O, can be present in the discharge product [23, 32, 33, 40]. The formation of an
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Fig. 6 Morphology of a biconcave Li,—O, disk on a carbon nanotube support: a SEM,
b bright-field TEM, c electron diffraction pattern, d schematic of microstructure. From Mitchell
et al. [37]

amorphous deposit is consistent with Ostwald’s rule, which states that unstable
phases tend to precipitate before stable phases [51-53]. It has been reported that
higher discharge rates [23], as well as certain catalysts, can promote the formation
of amorphous Li,O, [32, 33].

Several experimental [23, 32, 33] and computational [32, 54] studies have
suggested that amorphous Li,O, is easier to recharge than amorphous Li,O,,
perhaps due to improved electron or Li-ion transport properties. If correct, this
would suggest that Li—O, electrode designs (or operating conditions) that promote
the formation of amorphous Li,O, may yield superior performance.

Composition. Although the discharge product is primarily thought of as Li,O,,
deviations from this composition have been proposed. One recurring theme is the
occurrence of superoxide ions, O;, in the discharge product [55]. The presence of a
superoxide component perhaps should not be a surprise, given that it is known that
other alkali metals form mixed peroxide-superoxide phases [56]. It remains unclear
where exactly the superoxide component resides in the discharge product. It has
been suggested to represent a surface species [57, 58], an oxygen-rich phase located
in the inter-plate regions [41], or to be associated with the presence of point defects
such as hole polarons [59, 60].



Non-aqueous Metal-Oxygen Batteries: Past, Present, and Future 521

Relatively few studies have found evidence for Li,O in the discharge product
[61, 62]. Although Li,O has a higher theoretical specific energy density than Li,O,
(5200 vs. 3505 Wh/kg [61]), it may not be a desirable discharge product for
secondary Li—O, batteries because the electrochemical oxidation of Li,O is more
difficult than that of Li,O, [63, 64].

It has been recognized that Li—-O compounds are not the only phases present in
the discharge product. Side reactions (i.e., reactions involving decomposition of the
salt, solvent, or positive electrode) have been observed to produce other com-
pounds, such as lithium carbonate, lithium acetate, lithium formate, and lithium
fluoride [65, 66]. The products of these side reactions can comprise a substantial
fraction of the discharge product; one experiment found that in a typical Li—O, cell
with an ethereal solvent, the yield of Li,O, was at best 91 % of the theoretical
amount expected from coulometry [65]. It is important to note that in addition to the
precipitated side reaction products, there may be additional soluble side reaction
products. Side reactions are discussed in more detail in Sect. 3.3.4.

3.2.2 Discharge/Recharge Mechanisms

A number of different discharge and recharge mechanisms have been proposed, as
illustrated in Fig. 7. It is important to keep in mind that different mechanisms may
predominate depending on the experimental conditions (e.g., rate, electrolyte,
electrode/catalyst, temperature, depth of discharge, and cleanliness).

Electrodeposition/ Solution-mediated Partial lithiation/
electrostripping precipitation/ delithiation
dissolution
0, e’
i+
0, © Li P,
_ o
\ e s
Discharge -~ o Lit —»
isc K9
/ w
Li* Li,O, Li,0, Li,_,0,
0, e’
Lit = 7
0,
B
Recharge ™ Lit
it e

e

Li*

Fig. 7 Possible mechanisms for discharge/recharge in a Li—O; cell. As discussed in the text, in the
case of solution-mediated mechanisms, there are many possible intermediate species; the central
column illustrates a scenario where the intermediate species is molecular Li;O,
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Electrodeposition/electrostripping. In some experiments it has been suggested
that the growth/dissolution of a film occurs via the electrochemical
deposition/stripping of Li,O,. In such a mechanism, electron transport presumably
would occur through the growing deposit. It has been suggested that this could
occur via electron tunneling [38, 67] or hole polaron hopping [59, 60, 68].
Limitations associated with charge transport are discussed in Sect. 3.3.1.

Solution-mediated precipitation/dissolution. The growth of large particles has
been proposed to occur via a solution-mediated precipitation process, which would
allow charge-transport limitations through the particles to be bypassed [23, 69-71].
For example, one proposed discharge mechanism is that O, is reduced on the
positive electrode surface to form LiO,: Li* + O, + € — LiO,. The LiO, could
then diffuse in the electrolyte (or perhaps along the positive electrode surface), and
then precipitate out via a disproportionation reaction: 2LiO, — Li,O, + O,. Such a
mechanism requires that there be an intermediate species (be it LiO, or something
else) that is either at least sparingly soluble or capable of rapid surface diffusion.
Additives which solubilize such intermediates have been suggested to play a role in
the dynamics of discharge product precipitation [46, 47].

A solution-mediated process (such as the reverse of the above reactions) could
also occur during recharge. For example, it has been proposed that impurities
present as contaminants or by-products of electrolyte decomposition may serve as
the soluble intermediate species [35]. These impurities in effect function as redox
mediators, or perhaps transform Li»O, into a more soluble species. For example, a
small amount of protons has been suggested to enable a recharge mechanism that
begins with the transformation of Li,O, into H,O, via a single-displacement
reaction, Li,O, + 2H" — H,0, + 2Li* [35]. H,0,, being more soluble than Li,O,,
could then diffuse to the electrode and be electrochemically oxidized via the
reaction H,O, — 2H" + O, + 2e, yielding a net reaction of
Li,O, — 2Li* + O, + 2¢™.

Partial lithiation/delithiation. The partial delithiation of the discharge product
has been suggested to be the first step of recharge [60, 72—74]. This could occur as a
two-phase reaction [72, 74]: Li,O, — Li,—O, + xLi* + xe". The equilibrium
potential for this reaction when x = 1 has been calculated from first-principles
methods to be 0.3-0.4 V above the equilibrium potential for the full oxidation of
Li,O,, Li,O; — O, + 2Li* + 2e” [72]. Partial lithiation/delithiation could also
occur as a solid solution [60, 73]. Although the two-phase pathway is predicted to
be thermodynamically more stable than the solid-solution pathway [72], the fact
that high currents and small particle sizes can suppress phase separation in Li-ion
battery materials [75] suggests that one cannot rule out the solid-solution pathway
for Li—O, based on thermodynamics alone. Note that even if a delithiation process
occurs (either via a two-phase or solid-solution pathway), the intermediate
lithium-deficient phase may not be readily observable if recharge occurs one par-
ticle at a time (i.e., via a ‘domino cascade’ mechanism) [75].
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3.3 Challenges/Failure Modes

3.3.1 Charge Transport Within the Discharge Product

Charge transport through the discharge product has been thought to limit the per-
formance of Li—O, cells in many circumstances [38, 76-79]. The presence of a
passivating layer on the positive electrode would shut down electrochemical
activity, potentially leading to limitations in capacity, voltaic efficiency, and rate
capability. Although the charge-transport mechanism(s) at play are not well
understood, several possibilities have been proposed:

1. Electron tunneling. In thin films (<5 nm), electron tunneling has been suggested
to be the dominant charge-transport mechanism [38, 67]. This mechanism has
been suggested to account for sudden death behavior, which would occur when
the film thickness exceeds the distance over which electron tunneling can readily
occur.

2. Hole polaron hopping. Experiments and first-principles modeling have found
that hole polarons are the dominant electronic charge carrier in Li,O, [59, 60,
80]. Polaron hopping has also been suggested to account for sudden death
behavior. In this scenario, sudden death would occur when the deposit thickness
exceeds the thickness of space-charge layers associated with the Li,O,/elec-
trolyte and Li,O,/electrode interfaces [81].

3. Li-ion vacancy diffusion. Experiments and first-principles modeling have found
that Li-ion vacancies are the dominant Li defect in Li,O, [60, 80]. The role of
Li-ion vacancies is different from that of electronic charge carriers because ionic
defects cannot readily cross the interface between the discharge product and
electrode support [74]. That is, at the Li—O, equilibrium potential, the amount of
Li which can be inserted into (or deinserted from) the positive electrode support
typically represents only a small fraction of the amount of Li in the discharge
product. Thus the support can be thought of as an ion-blocking electrode.

The relative importance of these mechanisms may vary depending on the con-
ditions (discharge product morphology, temperature, current density, etc.). For
example, some studies have speculated that charge transport in LiO, could be
enhanced at extended defects, such as surfaces [57, 58, 82], grain boundaries [83],
amorphous regions [32, 54], or interfaces [81, 84].

3.3.2 Oxygen Transport in the Electrolyte

In many cell designs the low solubility and diffusivity of oxygen in the electrolyte
can limit discharge capacity [25, 76, 85-89]. In this case, only the region of the
positive electrode near the gas inlet is utilized. Sluggish oxygen transport can be
further compounded by pore-clogging, i.e., the obstruction of oxygen-diffusion
pathways by the discharge product [87]. Oxygen transport limitations can lead to a
sudden drop in voltage during a galvanostatic discharge (sudden death) [87—89].
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Improvements in oxygen transport may be required in order to fully utilize the
thick electrodes required to meet performance targets, as discussed in Sect. 3.1.
While tailoring the pore network of the electrode (as discussed in Sect. 3.4.1) can
improve oxygen transport, it cannot overcome the fundamental limits determined
by the solubility and diffusivity (i.e., permeability) of oxygen in the electrolyte [88].
Strategies for extending these fundamental limits are discussed in Sect. 3.4.5.

3.3.3 Kinetics

A number of studies have examined the kinetics of Li—O, cells. Systematic
experiments have found that both the discharge and recharge kinetics are facile
[79]. Several computational studies have explored mechanisms for the
layer-by-layer deposition/stripping of Li,O,. The ‘thermodynamic overpotentials’
associated with layer-by-layer deposition/stripping were found to be small (<0.2 V),
and it was suggested on this basis that kinetics would be fast [90]. (Note, however,
that thermodynamic overpotentials can only be compared qualitatively to the
overpotentials observed in experiments; for example, the thermodynamic overpo-
tentials do not account for the density of reactive sites (e.g., step edges or kinks) or
the exchange currents associated with different reaction steps.) A few other
first-principles studies concluded that the kinetics of layer-by-layering
deposition/stripping was slow, and would limit cell performance [91, 92]. The
differences among conclusions in the literature result primarily not from differences
among atomistic calculations, but rather from differing interpretations of the
computational results—that is, how the energies for various reaction steps relate to
the current-voltage relationship.

3.3.4 Degradation

Most experiments on Li—O, systems prior to 2010 used electrolytes developed for
Li-ion batteries, employing carbonate solvents such as propylene carbonate (PC),
ethylene carbonate (EC), and dimethyl carbonate (DMC). These solvents were
natural choices, as they had been widely successful for Li-ion batteries; some even
refer to PC as ‘the new water’ due to its widespread use for Li-ion electrochemistry
[93]. In 2010 the Li-O, community began to recognize that carbonate solvents are
in fact highly unstable in Li—O, cells [94-96]. Therefore, studies prior to 2010 must
be regarded with caution, since electrolyte degradation, rather than Li—O electro-
chemistry, is thought to dominate carbonate-containing Li—O, cells.

It is now recognized that solvent stability is a critical issue for Li—O, batteries [2,
15, 97], and furthermore it has been observed that the salt [98—100], carbon support
[101, 102], and binder [103] can also react irreversibly. Side reactions can lead to
poor cyclability due to the loss of electrolyte and accumulation of side-reaction
products [97, 102, 104]. Furthermore, the oxidation of side-reaction products during
recharge can result in high charging overpotentials [101, 102].
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Quantitative measurements [e.g., via differential electrochemical mass spec-
troscopy (DEMS)] are critical for distinguishing reversible cycling from parasitic
processes [97]. This is demonstrated in Fig. 8, which shows the cycling of a typical
Li-O; cell. Figure 8a shows that the cell is cyclable; in fact the capacity increases
during the first few cycles. However, the cycling does not represent the reversible
formation of Li,O,. Figure 8b and ¢ show that the amount of oxygen released
during discharge is less than the amount consumed during discharge. Furthermore,
Fig. 8d shows that the ratio of electrons transferred to oxygen released during
recharge deviates dramatically from the value which would be expected for the
oxidation of Li,O,, 2e /O,. Thus despite the apparent cycability of this cell, the
chemistry is dominated by side reactions.

Much work presently is being done to design Li—O, cells with sufficient stability
for a practical battery. The stability of the solvent, salt, and support/catalyst are
interdependent [102, 105]; thus the challenge is to find a combination of these that
are sufficiently stable. Carbonate solvents have been abandoned in favor of ethers,
ionic liquids, and other solvent classes [19, 106]. Although an improvement over
carbonates, even these solvents exhibit some degree of degradation [65, 66]. For
example, a typical ethereal electrolyte with a carbon positive electrode was found to
exhibit an Li,O, yield of at most 91 % [65]. Improved stability has been reported
for certain combinations, such as LiClO,/DMSO with a nanoporous gold positive
electrode [105].

Since the number of possible salt/solvent/electrode combinations is large, a
mechanistic understanding of degradation processes will be important for
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Fig. 8 a Potential profiles for five discharge/charge cycles of a Li—O, cell with Li-TFSI/DME
electrolyte. b Oxygen consumption/evolution during discharge/charge. ¢ Ratio of the amount of
oxygen and CO, released during charge to the amount of oxygen consumed during discharge.
d Ratio of the number of electrons transferred at the positive electrode to number of oxygen
molecules consumed/evolved during discharge/charge. From McCloskey et al. [97]
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identifying combinations with high stability. A summary of some of the solvent
degradation processes that have been proposed is presented below. (Less effort has
been invested in a mechanistic understanding of salt [99, 107], support, and binder
stability, although these are clearly critical issues.)

1. Chemical attack by electrochemical intermediates. Chemical attack by inter-
mediates of the oxygen reduction reaction during discharge can cause sub-
stantial degradation in some solvents. In particular, attack by superoxide (O, )
radicals is thought to be the main source of decomposition in carbonate solvents
[108]. Others have suggested that oxidation intermediates could also lead to
solvent degradation during recharge. In particular, ‘nascent’ oxygen evolved
during recharge has been speculated to attack the solvent [97, 109]. Here
‘nascent’ refers to oxygen released in a highly reactive form, such as atomic
oxygen or O, molecules in the singlet state.

2. Auto-oxidation. Organic solvents can undergo auto-oxidation (chemical reaction
with molecular O,). This has been hypothesized to contribute to solvent deg-
radation in Li—O, cells [110, 111]. The importance of auto-oxidation may not be
visible in typical experiments, whose time scales (days) are much shorter than
those required for a practical automotive battery (years).

3. Chemical attack by the discharge product. Another solvent degradation
mechanism is the chemical reaction between the solvent and the discharge
product. A few experiments have sought to probe this [97, 100], and atomistic
studies have examined solvent degradation on Li,O, clusters [112] and surfaces
[113].

4. Electrochemical oxidation. In addition to the chemical degradation processes
listed above, electrochemical processes can also lead to solvent degradation.
Many common solvents exhibit minimal oxidation up to ~4 V versus Li/Li* on
carbon electrodes. However, it has been suggested that solvent oxidation is
enhanced by Li,O, [97]. Additionally, some oxygen-reduction catalysts used in
Li—O, cells also catalyze solvent oxidation [114, 115].

3.3.5 Impurities

The presence of even small amounts of impurities have been suggested to have a
substantial effect on cell performance [34, 35, 46, 47, 116-118]. We focus on H,0,
as this appears to be the most problematic and well-documented contaminant. It has
been observed that even small amounts of water can influence Li-O, cells in
complex ways:

1. The presence of water at concentrations as low as a few hundred ppm can
significantly increase discharge capacity [21, 34, 47, 116].

2. Water can influence the discharge product morphology [21, 46, 47], and it has
been found that concentrations of water in the hundreds to thousands of ppm can
promote the formation of biconcave disks; see Sect. 3.2.1.
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3. Water can significantly reduce the cyclability of Li—O, cell [21, 116].
4. The presence of water can result in the formation of LiOH, instead of, or in
addition to, Li,O, [14, 21].

The mechanisms by which water interacts with cell operation are not well
understood. Water can react with Li metal in the negative electrode, as discussed in
Sect. 3.3.6 [116]. Furthermore, water has been suggested to act as a mediator or
solubilizing agent during discharge and/or recharge [35, 46, 47], as discussed in
Sect. 3.2.2.

The minimization of water contamination in a Li—O, cell is non-trivial task
[116], and it may be impractical to reduce the water concentration below ~ 10 ppm.
However, it is not clear whether the complete elimination of water is necessary, or
even desirable, for a practical Li—O, battery [46].

The effects of contamination by CO, have also been explored. It has been
observed that CO, will react with the discharge product to form Li,CO; [118].
Because of the high potentials required to oxidize Li,COj5; (and accompanying
electrolyte decomposition), exposure to CO, should be minimized in secondary Li—
O, cells. Unsaturated oxygenated hydrocarbons present as impurities in industrially
produced ethers have also been found to be reactive in Li—O, cells [117].

3.3.6 Negative Electrode

Although graphite is the negative electrode of choice for commercial Li-ion bat-
teries, the full benefit of the high specific capacity of the Li—O, positive electrode
can only be realized when it is paired with a high specific capacity negative elec-
trode. For this reason, nearly all Li—O, experiments to date have employed Li-metal
negative electrodes [119]. Consequently, we focus in the remainder of this section
of Li-metal negative electrodes. Of course, practical Li—O, cells could also take
advantage of alternative negative electrodes, such as Si alloys [119].

We can divide challenges for Li-metal negative electrodes in Li—O, batteries into
two categories: (i) challenges that are intrinsic to Li-metal electrodes (and which
arise regardless of what positive electrode is used), and (ii) challenges that are
specific to Li—O, systems. Among the intrinsic challenges for Li-metal electrodes,
dendrite formation and coulombic efficiency are perhaps the most prominent.
Intrinsic challenges for Li-metal electrodes will not be discussed here, as these have
been reviewed elsewhere [4, 120].

Regarding challenges that are specific to Li—O, batteries, it has been recognized
that the crossover of molecular oxygen, contaminants, and/or soluble side reaction
products from the positive electrode may have a deleterious effect [116, 121, 122];
however, one study found that the presence of O, can promote the formation of a
stable solid-electrolyte interphase (SEI) in DMSO [123]. The high reactivity of Li
metal may require that the negative electrode of a practical Li—O, battery be pro-
tected with a solid electrolyte or SEIL
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Note that most Li—O, experiments do not distinguish between limitations of the
positive and negative electrodes, and in some cases it has been found that the
Li-metal negative electrode contributes significantly to cyclability limitations and
cell impedance [116, 124, 125]. A few studies have used LiFePO, instead of
Li metal [126, 127]. This configuration would not be used in a practical battery
because the equilibrium potential for the lithiation of Li,FePO, is above the
equilibrium Li-O, potential; however, the use of a highly stable electrode such as
Li,FePO, can allow one to isolate the phenomena specific to the O, electrode [126,
127].

3.4 Novel Concepts

Numerous new designs and materials have been developed in the years since
Abraham and Jiang’s development of the modern non-aqueous Li—O, battery. It is
not possible to discuss them all here; rather we highlight a few novel concepts.

3.4.1 Advanced Positive Electrodes

While a ‘baseline’ Li—O, positive electrode consists of carbon black and binder,
gains in performance have been reported using more advanced designs. Many
studies have sought to modify the structure of the carbon at the nano-, micro-, or
macro-scale [17, 18, 128]. Some experiments have explored carbon-free electrodes.
Nanoporous gold [105] and titanium carbide [126] electrodes with DMSO-based
electrolytes have been shown to have improved performance over carbon elec-
trodes. The addition of new materials such as oxides and transition metals [2, 17,
18] has also been examined. These additions are frequently referred to as ‘cata-
lysts’, but this terminology is misleading given these materials most likely do not
function as conventional electrocatalysts. The term ‘promoter’ has been suggested
as a more general term to describe materials which improve performance [42, 129].

3.4.2 Redox Mediators

The use of redox mediators has been shown to reduce charging overpotentials,
presumably by bypassing charge transport limitations in the discharge product [127,
130]. The idea is that a soluble species that undergoes a reversible redox reaction at
a potential near the Li—O, redox potential would be able to ferry electrons from the
electrode to the discharge product. This mechanism assumes facile charge transfer
from the mediator to the electrode. Such a mechanism may be incompatible with
achieving high capacities: electron transfer will be blocked if the (insulating) dis-
charge product covers the cathode support.
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3.4.3 All Solid-State Designs

A somewhat different approach to the Li—-O, chemistry is the all solid-state design.
In this case the positive electrode is a porous material with the ability to support
both lithium-ion and electron transport. Lithium and oxygen would react to form
solid Li,O, or Li,O in the pores. Solid-state Li—O, cells have been demonstrated
using composite cathodes comprised of carbon and LAGP, a fast ion conductor [15,
131]. Potential advantages of a solid-state design include improved safety and
cyclability by avoiding the need for a liquid electrolyte that could degrade.

3.4.4 Hybrid Li-Ion/Li-O, Insertion Electrodes

A novel type of Li—O, battery has been suggested in which both Li and O are
accommodated into a transition metal oxide host [132, 133]. This has been referred
to as a ‘hybrid’ Li-ion/Li—O, battery because it contains elements of both chem-
istries: Li* ion insertion into a host as well as the reduction of oxygen. One example
of this chemistry is the reaction LiFeO, + 4Li* + 4e~ + O, — LisFeQ,, which can
be thought of as the addition of Li,O to Fe,O;. Although the presence of the
transition metal oxide lowers the maximum theoretical energy density compared to
a ‘traditional’ Li—O, battery that forms Li,O,, some hybrid Li-ion/Li—O, chemis-
tries have been predicted to a have an energy density competitive with Li,O,.
A recent high-throughput computational study identified several candidate hybrid
Li-ion/Li—O, chemistries based on capacity, voltage, and band gap [134].

3.4.5 Other Concepts

Metal-oxygen batteries bear a resemblance to some biological systems, where the
reduction of oxygen is used as an energy source. Some of the challenges of non-
aqueous Li—O, batteries have also been encountered by nature, including ‘oxidative
stress’ (deleterious reactions involving reactive species such as superoxide radicals,
peroxides, and singlet oxygen [135]) and the sluggish transport of O, in fluids.

Nature’s solutions to these challenges may inspire improvements in Li—O, cell
design. For example, biological systems mitigate oxidative stress by antioxidants:
molecules that scavenge reactive species [136]. One study applied this concept to
Li—O, cells, and found that synthetic melanin additives led to improved cyclability
[137]. Oxygen transport limitations are addressed in nature via the use of
oxygen-binding proteins (e.g., hemoglobin) that improve O, solubility and also
forced convection through the cardiovascular system [135]. These concepts can be
applied to Li—O, cells: one study found that oxygen-binding perfluorinated addi-
tives improved discharge capacity [138]. No reports, to the best of our knowledge,
have employed forced convection in Li—O, cells; however, continuum-scale models
have predicted that the use of forced convection could significantly improve Li—O,
discharge capacity [139].
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Other approaches for improving oxygen transport in Li—O, cells have also been
explored. The conceptually simplest approach is simply to increase the partial
pressure of oxygen gas, which has been demonstrated to increase capacity signif-
icantly [140, 141]. Another concept for improving oxygen transport is the use of
two immiscible liquids: one that facilitates Li-ion transport, and another that
facilitates oxygen transport. A recent study demonstrated that the use of perfluo-
rinated carbon liquids in this manner can significantly improve the capacity of Li—
O, cells [142]. A similar concept is the use of additives to improve the solubility of
Li,O, and reaction intermediates [143].

4 Other Metal-Oxygen Chemistries

At this point our discussion has focused primarily on the Li—O, system, as among
non-aqueous metal-oxygen chemistries, this system has received by far the most
attention in the literature. A few recent studies, however, have begun to examine
secondary room-temperature non-aqueous systems based on other alkali and
alkaline-earth metals such as sodium [144-146], potassium [147], magnesium [148,
149], and aluminum [150], as shown in Table 2. The high abundance of these
elements is often provided as a motivation for these systems, although projections
indicate that the worldwide supply of Li is adequate for the next century [151].
Below we discuss some other potential advantages and disadvantages of these
systems compared to Li—O,.

Although necessarily sacrificing some gravimetric performance, the heavier Na-
and K-based systems are noteworthy for two reasons: First, under some operating
conditions, they appear to form a superoxide (NaO, or KO,) discharge product,
rather than peroxide. Second, the overpotentials observed during charging of these
superoxides are very small in comparison to those for Li,O, or Na,O,. One may
therefore argue that what these cells lack in specific capacity is partially compen-
sated for by an increase in voltaic efficiency. More importantly, if the formation of a
superoxide discharge product is indeed responsible for higher efficiency, then a
potential pathway for improving the Li—O, system may be at hand: by stabilizing a
lithium superoxide (LiO,) discharge phase one may realize high capacity and
efficiency (i.e., low recharge overpotentials) simultaneously. However, such an
approach may be challenging: although a superoxide component has been observed
in the Li—O, discharge product, bulk LiO, is apparently unstable under ambient
temperatures and pressures [152, 153]. The fact that NaO, and KO, are more stable
than LiO, has been attributed to the smaller size of the Li* cation [56].

In addition to alkali-metal-based systems, recent studies have recently reported
secondary non-aqueous metal-oxygen cells using magnesium [148, 149] and alu-
minum [150] negative electrodes. These chemistries are noteworthy because the
theoretical gravimetric and volumetric energy densities of cells that discharges to
MgO or Al,Oj3 surpass the energy densities of a cell that discharges to Li,O,, Fig. 1.
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However, further quantitative measurements will be required to definitively deter-
mine to what extent MgO/Al,O5; formation occurs in these cells. Furthermore, the
challenges facing these systems appear to be even greater than for Li—O, because of
the difficulties in finding electrolytes compatible with a Mg- or Al-metal negative
electrode [154].

5 Concluding Remarks

Metal-oxygen batteries have been known for more than 150 years. Despite this long
history, new twists on this well-known chemistry have continued to emerge up to
the present day. Arguably the most exciting and rapid developments have occurred
in only the past five years, coinciding with the demonstration of non-aqueous,
reversible systems that in some cases exhibit extremely high energy densities in a
laboratory setting. In particular, research into the Li—O, chemistry has progressed
rapidly, and has been successful in pinpointing the primary challenges that must be
overcome for a reversible Li—O, battery to become commercially viable. Key
amongst these are: electrolyte stability, efficient transport (of oxygen within the
electrolyte and electronic charge carriers within the discharge product), and
implementing a high-capacity metal negative electrode. Although breakthroughs
are needed in all three areas, a prudent strategy would be to focus first on realizing a
reversible metal negative electrode. Such a technology could also be translated
(perhaps with minimal additional development) to other, more mature systems such
as those based on conventional Li-ion or lithium—sulfur technology, potentially
‘killing several birds with one stone.” Success in this area will likely hinge upon
development of a solid electrolyte capable of suppressing dendrite formation, while
allowing for high ionic conductivity.

Should these cell-level challenges be overcome, another set of challenges for
non-aqueous metal-oxygen batteries loom at the system level. These include the
engineering of an efficient balance of plant that would either store oxygen on board
(in a closed system), or separate it from an incoming flow of air (open system).
Table 3 summarizes projected energy densities at the system level for an automotive
scale Li—O, battery from three recent studies. While there is a wide range in the
projected values, it is clear that the mass and volume associated with the system

Table 3 Projected system-level energy densities for non-aqueous Li—O, batteries

Institution Gravimetric energy density (Wh/kg) Volumetric energy density (Wh/L)
JCESR [26] 200-500 300450

Bosch [15] 650-850 550-950

Ford [27] 640 600
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incur a large penalty based on the much higher theoretical densities reported in

Fig.

1. Minimizing these penalties will require novel engineering solutions.
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