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SUMMARY

The H2 capacities of a diverse set of 918,734metal-organic frameworks (MOFs) sourced from 19 databases is
predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with
the potential to exceed the capacities of state-of-the-art materials. The identified MOFs are predominantly
hypothetical compounds having low densities (<0.31 g cm!3) in combination with high surface areas
(>5,300 m2 g!1), void fractions ("0.90), and pore volumes (>3.3 cm3 g!1). The relative importance of the input
features are characterized, and dependencies on the ML algorithm and training set size are quantified. The
most important features for predicting H2 uptake are pore volume (for gravimetric capacity) and void fraction
(for volumetric capacity). TheMLmodels are available on theweb, allowing for rapid and accurate predictions
of the hydrogen capacities of MOFs from limited structural data; the simplest models require only a single
crystallographic feature.

INTRODUCTION

Hydrogen (H2) is considered to be a future automotive fuel.1–6

This potential reflects its high specific energy compared with
competing fuels, such as natural gas and gasoline, and the ability
of H2 to be produced renewably and consumed without CO2

emissions.2,7 Nevertheless, the adoption of hydrogen in mobile
applications, such as fuel cell (FC) vehicles has been limited by
its low volumetric energy density.2,6,7 Consequently, the design

of low-cost H2 storage systems that overcome these volumetric
limitations has been the focus of recent research.4,8–12 At pre-
sent, FC vehicles employ storage systems based on gaseous
H2 compressed to pressures up to 700 bar.13 This approach is
costly and can incur limitations in driving range.7,11,13,14

Storage based on adsorption in porous hosts is an alternative
to high-pressure compression.15 Due to their high gravimetric
densities, fast kinetics, and reversibility, metal-organic frame-
works (MOFs) have emerged as one of the most promising

THE BIGGER PICTURE The efficient storage of hydrogen fuel remains a barrier to the adoption of fuel cell
vehicles. Although many storage technologies have been proposed, adsorptive storage in metal-organic
frameworks (MOFs) holds promise due to the low operating pressures, fast kinetics, reversibility, and
high gravimetric densities typical of MOFs. Nevertheless, the volumetric storage densities of known
MOFs are generally low; hence, new MOFs with improved volumetric performance are desired. Identifying
optimal MOFs remains a challenge, however, because relatively fewMOFs have been characterized exper-
imentally, and the building-block structure of MOFs suggests that the number of possible materials is lim-
itless. To accelerate the discovery process, this study develops machine learning models that predict the
hydrogen capacity of MOFs. The models identify promising materials, clarify structure-property relations,
and can be used—on the web or through an API—to predict the performance of new MOFs.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
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classes of hydrogen sorbents.2,7 MOFs are crystalline materials
formed by the self-assembly of inorganic metal clusters and
organic linkers.16–22 By virtue of their building-block structure
and the large number of potential components, the number of
MOFs is potentially limitless.21–25 Further modifications to MOF
chemistry can be achieved by introducing functional groups,
substituting different metals, and by mixing metals and/or
linkers.26–28

Despite these many possibilities, a relatively small fraction of
MOFs have been synthesized.29,30 While the crystal structures
of these ‘‘real’’ MOFs are available in the Cambridge Structural
Database (CSD),29,30 many exhibit disorder, missing atoms, or
have negligible porosity; consequently, these materials are not
immediately amenable to assessment via computational
modeling.29,31–35

One way to bypass these complications is through computa-
tional design. To date, nearly a million ‘‘hypothetical’’ MOFs have
been reported,1,36–46 and it is reasonable to expect that many
more materials will be proposed.47–51 High-throughput screening
using Grand Canonical Monte Carlo (GCMC)52–56 has been suc-
cessful in identifying promising candidates with superior gas stor-
age capacities on sub-sets of these catalogs.36,38,39,46,50,57–60

Nevertheless, given the large number of possibilities, a systematic
search across all of these materials is challenging even with high-
throughput techniques.1,61 Furthermore, differences in the imple-
mentation (i.e., use of different temperature/pressure conditions
or interatomic potentials) can complicate comparisons between
screening studies. Thus, more efficient and consistent screening
approachesare desirable for predicting thegas storageproperties
of MOFs in existing and future databases.

Machine learning (ML) could provide a path forward.62–65 For
ML to be helpful, access to high-quality training data is essential.

Unfortunately, training on experimental H2 storage data in MOFs
is non-trivial1,2,6,66–68: experimental uptake data are generally
restricted to a relatively small number of MOFs, and can depend
sensitively upon the experimental conditions and the purity of the
sample.2,67,69 Employing a dataset based on a consistent set of
computational predictions may be a better choice.62,63

Earlier work has demonstrated that accurate isotherms for H2

uptake in MOFs can be predicted using the pseudo-Feynman-
Hibbs potential (to describe H2) combined with general inter-
atomic potentials to describe the MOF.1,2,6,68 This approach
was used to screen a database of 5,309 real MOFs, from which
IRMOF-20 was identified and experimentally demonstrated to
have a favorable balance of high gravimetric and volumetric H2

density.2 In a follow-on study, a larger database of 495,305
MOFs was compiled from several publicly available databases
(see Table S1 for details).1,29,31,33,36–40,45 Following a pre-screen
based on crystallographic properties and empirical correlations,
the H2 capacities of a subset of 43,777MOFswere evaluated us-
ing GCMC. Three additional MOFs—SNU-70, UMCM-9, and
PCN-610/NU-100—were identified and shown experimentally
to out-perform the leading MOF candidate, IRMOF-20.1

The database of MOF properties70 generated in these previ-
ous studies presents an opportunity to develop ML models
that can predict H2 uptake across even larger MOF datasets.1,70

Table 1 summarizes previous ML studies of H2 storage in MOFs.
(Reports employing ML for other adsorbates, such as CH4,

71,72

CO2,
73,74 and N2

73,74 are summarized in Table S2.) To the best
of our knowledge, MLwas first used to predict H2 uptake in com-
pounds from the Nanoporous Materials Genome.75 A neural
network (NN)76 was used to predict usable capacities on a test
set of "1,000 compounds, including MOFs.61 In the same
year, Borboudakis et al.63 predicated H2 capacities in 100

Table 1. Summary of recent studies that use machine learning to predict H2 adsorption in MOFs

Study ML features ML method Properties predicted Accuracy

Anderson et al.43 epsilon, temperature,

pressure, rcrys, vf,

vsa, mpd, lcd,

alchemical

catecholate site

density, unit cell

volume

neural network76 total volumetric H2 for

pressures 0.1, 1, 5,

35, 65, and 100 bar at

77, 160, and 295 K

AUE = 0.75–2.93 g-

H2 L
!1

Bucior et al.80 energetics of MOF-

guest interactions

multilinear regression

with LASSO76

deliverable H2

storage capacity

between 2 and

100 bar at 77 K

R2 = 0.96; AUE = 1.4–

3.4 g-H2 L
!1; RMSE =

3.1–4.4 g-H2 L
!1

Borboudakis et al.63 92 binary features

based on linker, metal

cluster, and 12

functional groups

ridge linear

regression and

support vector

machine with

polynomial/Gaussian

kernel76–78

total H2 storage

capacity at 1 bar and

77 K

AUE = 0.47 (ridge

regression), 0.50

(SVM) g-H2 g
!1-MOF

Thornton et al.61 adsorption energy,

rcrys, vf, gsa, vsa, lcd

neural network76 net H2 capacity for

pressure swing

between 1 and

100 bar at 77 and

298 K

R2 = 0.88; RMSE =

3.6 g-H2 L
!1

rcrys, vf, vsa, mpd, lcd represent single-crystal density, void fraction, volumetric surface area, maximum pore diameter, and largest cavity diameter,

respectively. R2, AUE, and RMSE represent the coefficient of determination, average unsigned error, and root-mean-square error, respectively.
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MOFs using 92 binary features related to a MOF’s linker, metal
cluster, and functional group(s). Ridge linear regression (RR)76–78

and support vector machine (SVM)76,79 algorithms were used to
predict gravimetric capacity. Later, Bucior et al80 predicted the
H2 capacities of 54,776 MOFs extracted from the CSD using mul-
tilinear regression (MLR).76 The models were trained using the
energetics of H2-MOF interactions and the usable volumetric
capacities predicted by GCMC. More recently, ML was used to
predict H2 storage capacities in 105 hypothetical MOFs con-
structed from 17 different topologies, 4 distinct metal clusters,
and 5 unique organic linkers.43 NN76 models employing 11 fea-
tures were trained to predict total volumetric uptake at various
temperatures and pressures.43

Expanding upon these previous reports, this study applies ML
to explore a large database of 918,734 known and proposed
MOFs. The database was assembled from a diverse collection
of publicly available MOF repositories,1,29,31,33,34,36–45,81,82 and
allows for a wide-ranging and consistent assessment of H2 up-
take in MOFs.
Here, the extremely randomized trees (ERT)76,83 algorithmwas

identified as the most accurate ML model for predicting H2 up-

take. A training set comprising 24,674 MOFs was sufficient to
enable accurate predictions of usable capacities across
820,039 unseen compounds.70 These predictions were made
using a small set of seven crystallographic features as input: sin-
gle-crystal density, pore volume, gravimetric and volumetric sur-
face area, void fraction, largest cavity diameter, and pore limiting
diameter. Importantly, ML identified 8,282 MOFs—8,187 appro-
priate for pressure swing (PS) operation and 95 for temperature-
PS (TPS) use—with the potential to exceed both the gravimetric
and volumetric capacities of state-of-the-art materials. These
compounds are comprised predominantly of hypothetical
MOFs, and exhibit low densities (<0.31 g cm!3) in combination
with high surface areas (>5,300 m2 g!1), void fractions ("0.90),
and pore volumes (>3.3 cm3 g!1). In addition to identifying
high-capacity MOFs, the relative importance of the input fea-
tures is quantified; dependencies on the ML algorithm and
training set size and are also assessed. The most important fea-
tures for predicting H2 uptake are pore volume (for gravimetric
capacity) and void fraction (for volumetric capacity). A simplified
model using only two input features is demonstrated to predict
capacities with high accuracy—within 0.2 wt % and 1.4 g-H2

L!1 of more expensiveMonte Carlo calculations. TheMLmodels
are available for use via the web,84 allowing for rapid and accu-
rate predictions of hydrogen capacities with only a small amount
of structural data required as input.

Methods
MOF database
A database of crystal structures for 918,734 MOFs was created
by combining 19 existing databases.1,29,31,33,34,36–45,81,82 Table
2 summarizes the source databases and the number of MOFs
contained in each. Out of these 19 databases, only the UM,31

CSD,29,30 and CoRE33,34 databases contain data on MOFs that
have been previously synthesized. (MOFs listed in these data-
sets are referred to as ‘‘real’’ MOFs.) The remaining databases
contain data for proposed, or ‘‘hypothetical’’, MOFs. The seven
crystallographic properties for all MOFs in the database were
calculated using the zeo++ code25,47 with a probe radius of
1.86 Å. These data are available at the HyMARC data hub.70

Additional details can be found in our previous work.1 These
properties include: single-crystal density (d), pore volume (pv),
gravimetric surface area (gsa), volumetric surface area (vsa),
void fraction (vf), largest cavity diameter (lcd), and pore limiting
diameter (pld).
A previous study examined a subset of the present database,

wherein the hydrogen uptake in 495,305 MOFs was estimated
using the Chahine rule.1,2,70 Subsequently, usable uptake in a
portion of this subset comprising 43,777 MOFs predicted to
be promising based on the Chahine rule was evaluated using
GCMC. This GCMC-evaluated dataset contained a mix of real
and hypothetical MOFs: 15,235 real MOFs were sourced from
the UM,31 CoRE,33 and CSD,29,30 and 28,542 hypothetical
MOFs were extracted from the mail-order,38 in silico deliver-
able,46 in silico surface,39 MOF-74 analogs,40 ToBaCCo,59

Zr-MOFs,45 Northwestern,36 University of Ottawa,37,85,86 and
in-house1 hypothetical MOF databases (see Ahmed et al.1 or
Table S1 for details).1,29,31,33,36–40 Hydrogen uptake isotherms
for two operating conditions were predicted: for an isothermal
PS at T = 77 K between 5 and 100 bar, and for a combined

Table 2. MOF datasets employed in this study

Source

Database

identity No. of MOFs

Goldsmith et al.,31

Chung et al.,33

Moghadam et al.,29

Groom et al.30

real MOFs:

UM31+CoRE33+CSD29,30

15,235

Chung et al.34 CoRE 201934 14,142

Moghadam et al.,29

Groom et al.30

aCSD 2017

additional29,30
48,696

Martin et al.38 mail-order38 112

Bao et al.46 in silico

deliverable46
2,816

Bao et al.39 in silico surface39 8,885

Witman et al.40 MOF-74 analogs40 61

Colón et al.59 ToBaCCo59 13,512

Gomez-Gualdron et al.45 Zr-MOFs45 204

Wilmer et al.36 Northwestern36 137,000

Aghaji et al.,37

Boyd et al.85,86

bUniv. of Ottawa37,85,86 317,462

Lan et al.81 BJT MOFs81 303,793

Chung et al.41,87 cR-WLLFHS41,87 51,163

Li et al.82 MTV82 11,555

Anderson et al.42 CSM-2018-I42 117

Anderson et al.43 CSM-2018-II43 32

Anderson et al.44 CSM-2019-I44 99

Ahmed et al.1 in-house1 18

total 918,734
aA subset of the CSD 2017 MOF dataset29,30 whose crystallographic

properties were found to exhibit extremely low values (e.g., GSA ~0) in

a previous study.
bA recent version of this database is available publicly;85,86 however, this

study employs an earlier version37 that was shared privately.
cA curated subset of the Northwestern36 database.
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TPS between 77 K/100 bar (filled state) and 160 K/5 bar (empty
state). UG and UV capacities were then calculated based on
the isotherm data.

In addition to the 43,777 MOFs examined in Ahmed et al.,1 in
this study GCMC isotherms were evaluated for an additional
54,918MOFs (see Ahmed et al.1 and Table S1 for further details).
These additional MOFs were selected at random from the
495,305-entry HyMARC database and therefore represent a
more diverse sampling of the MOF property space. To this data-
set, 423,429 additional compounds were added from 7 addi-
tional datasets: BJT (Beijing, Jiangsu, Tianjin) MOFs,81 R-
WLLFHS,41,87 MTV,82 CSM-2018-I,42 CSM-2018-II,43 and
CSM-2019-I,44 and selected MOFs from the CSD 2017 data-
set.29,30 Subsequently, the capacities of the MOFs from these
additional datasets were predicted by theMLmodels without re-
training (i.e., noMOFs from these datasets were used for training
or testing, and none of their isothermswere evaluated in advance
with GCMC). In total, the dataset employed in this study contains
H2 uptake data for 98,695 MOFs70 and crystallographic property
data for 918,734 MOFs.

The present dataset includes approximately 74,000 MOFs
having open metal sites (OMS), comprising roughly 8% of the
total dataset. As the interatomic potential used in our GCMC
calculations is not tuned to capture the unique aspects of the
H2-OMS interaction, it is possible that the calculated capacities
for this class of MOFs will be less accurate. Figure S1 and Ta-
ble S3 compare experiments and the present GCMC calcula-
tions of H2 capacities across a benchmark set of OMS MOFs
discussed by Garcia-Holley et al.88 and in our previous work.1

These data show that GCMC calculations using the pseudo-
Feynman-Hibbs potential are in good agreement with experi-
mental data for these OMS MOFs. The good agreement be-
tween theory and experiments is a consequence of the low
temperature operating conditions used in our study, combined
with the relatively low density of OMS in these MOFs.

ML models
The No Free Lunch Theorem89 implies that the optimal choice of
ML algorithm is problem specific. The differing performance of
the algorithms summarized in Tables 1 and S2 is consistent
with this notion. Identifying the best algorithm for a given dataset
requires comparing multiple ML methods, each with optimized
hyperparameters. Unfortunately, few comparisons of ML
methods for gas adsorption exist; although dozens of ML algo-
rithms are available,76–79,83,90–104 only RR,76–78 MLR,76

SVM,76,79 and NN76 have been examined for predicting H2

storage.43,61,63,80,103 This study casts a wider net by compara-
tively assessing 14 ML algorithms (Table 3).76–79,83,90–104

The crystallographic properties of MOFs are known to corre-
late with H2 capacities.2,31,88,105–108 The ML models developed
here exploit these correlations by adopting only crystallographic
properties as input features. Moreover, the number of features
was restricted to a small set comprising seven properties: d,
pv, gsa, vsa, vf, lcd, and pld. These are the same properties em-
ployed in our previous work.1,2,47,109 Figure S2 shows the distri-
bution of crystallographic properties for the training, test, and
unseen datasets. Also, Table S4 summarizes five descriptive
(minimum, maximum, mean, median, and percent of 0’s) and
two distribution statistics (skew and kurtosis) of all crystallo-
graphic features for the training, test, and unseen datasets.
(The details regarding these statistics and the definitions of
skew and kurtosis can be found in Table S4.) The maxima and
minima of the features in the training set establish the validity
ranges of the ML models developed here.
The goal of the ML models is to predict four output properties:

UG and UV for each of PS and TPS operating conditions. This
was accomplished by developing separate ML models for
each of the four targeted capacities. Figure S3 illustrates the
overall work flow.
The existing dataset of 98,695 MOFs (for which both crystallo-

graphic and capacity data are available)70 was initially split into
training and test sets of 74,201 and 24,674 MOFs, respectively,
after shuffling the entire dataset.104 ML algorithms90,93,94,104 (Ta-
ble 3) were implemented using the Scikit-learn library.104 Both
scaled and unscaled features were used in training ML models.
Ten-fold cross-validation was used to optimize the hyperpara-
meters of each model. The performance of the ML algorithms
was assessed by comparing the predicted H2 capacities with
the capacity predicted by GCMC for the MOFs in the test set.
The metrics used for the performance assessment of MLmodels
were the R2, AUE, RMSE, MAE, and t. Additional details
regarding these calculations can be found in supplemental
note S2 of the supplemental information.
Dataset size
An obstacle to wider adoption of ML in materials science is the
availability of sufficient quantities of high-quality training
data.110,111 Unfortunately, it is not yet clear how much data are
needed to construct a useful ML model for a given system. Fer-
nandez et al.72 found that a reasonable balance between accu-
racy (R2 " 0.85–0.93) and computational expense for predicting
methane storage in MOFs was achieved for a training set con-
taining data on 10,000MOFswith 3 features. In contrast, Fanour-
gakis et al.112 showed that a much smaller training set of"1,000
MOFs was sufficient to predict methane uptake when using six
crystallographic features and four fictitious features. The

Table 3. Machine learning regression algorithms employed in
this work

Machine learning algorithm Abbreviation

Extremely randomized trees76,83,103,104 ERT

Boosted decision trees76,92,102–104 BDT

Bagging with decision trees76,90,93,103,104 B/DT

Random forest76,90,94,103,104 RF

Bagging with random forest76,93,94,103,104 B/RF

Gradient boosting76,92,95,102–104 GB

Decision trees76,90,103,104 DT

Nu-support vector machine with radial

basis function (RBF)

kernel76,79,90,96,98,103,104

Nu-SVM/RBF-K

Support vector machine RBF

kernel76,79,90,97,98,103,104
SVM/RBF-K

Support vector machine with linear

kernel76,79,96,99,103,104
SVM/L-K

Linear regression76–78,99,100,103,104 LR

Ridge regression76–78,99,100,103,104 RR

K-nearest neighbors76,90,101,103,104 K-NN

AdaBoost76,92,102–104 AB
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different training set sizes required in these previous studies
arise from the differing numbers and types of features used.
This study explores this issue further by systematically exam-

ining the effect of training set size, and the training set to test set
ratio, onML accuracy. For each of the four targeted capacity out-
puts, 100 independent ML models were developed by varying
the size of the training set between 100 and 74,000 MOFs (see
Table S5 for a list of the training set sizes). The four best-perform-
ing ERT ML algorithms identified earlier were used with 10-fold
cross-validation. The resulting models were assessed using a
common test set of 24,674 MOFs.
Feature importance/selection
The well-known Chahine rule proposes a linear correlation be-
tween gravimetric surface area and excess gravimetric H2 ca-
pacity in adsorbents.113,114 Nevertheless, the Chahine rule over-
predicts H2 capacities for MOFs with high surface areas,114 and
has not been extended to predict usable capacities.1,2,6 Hence,
a model for predicting H2 uptake that is more general than the
Chahine rule, yet requires limited input data, would be very help-
ful. In principle, ML could be used to generate such a predictive
model if the features that are themost important for predicting H2

uptake could be identified. Along these lines, Pardakhti et al. re-
ported improved accuracy in predicting CH4 adsorption when
using a combination of (7) crystallographic and (19) chemical fea-
tures.71 Recently, Moosavi et al. explored feature importance in
predicting the synthesis of MOFs.115

This study determines the minimum number and optimal com-
bination of crystallographic features necessary to achieve a
specified accuracy in predicting H2 uptake. The relative impor-
tance of the input features was assessed for all possible univar-
iate and multivariate feature combinations using ERT ML
models. The number of multivariate feature combinations, M, is
given by: Mðntot; nsubÞ = ntot !

nsub !ðntot!nsubÞ!, where ntot = 7 is the total
number of available features, and 1 % nsub % 7 is the number
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Figure 1. Comparison of ML algorithms for
predicting hydrogen uptake in MOFs
(A and C) Left and (B and D) right panels report

performance for PS and TPS conditions, respec-

tively. (A and B) Top and (C and D) bottom panels

report performance for usable gravimetric and

volumetric capacities, respectively. The abbrevia-

tions for the ML methods are defined in Table 3.

of features used as input to a given ML
model. A total of 127 feature combinations
are possible. ML models were developed
for each of these feature combinations for
each of the 4 output capacities, resulting
in a total of 508 distinct ML models. All
models were trained using a dataset of
74,021 MOFs and tested on a common
set of 24,674MOFs. Ten-fold cross-valida-
tion was used for tuning and validating the
models using only the training set. Univar-
iate feature importance was further as-
sessed using (1) Pearson’s correlation co-
efficient (r),116–118 (2), Breiman and
Friedman’s tree-based algorithm as imple-

mented in Scikit-learn,90,104 and (3) the permutation importance
method as implemented in rfpimp package.119 Additional details
regarding these methods can be found in Figure S7.

RESULTS

Evaluating ML algorithms
Tables S6–S9 illustrate the effect of several feature scaling
methods on the performance of the ML algorithms examined
here. Only the SVM family of models (SVM/L-K, SVM/RBF-K,
and Nu-SVM/RBF-K)76,90,96,98,99,104 were impacted by the
choice of scaling method.
Figure 1 compares the accuracy of the ML algorithms for pre-

dicting hydrogen uptake in MOFs. Coefficient of determination
(R2) and average unsigned error (AUE) were used as perfor-
mance metrics. SVM variants were trained using min-max
feature scaling; unscaled features were used in training the re-
maining models. The performance of the algorithms as
measured by four additional metrics—root-mean-square
error (RMSE), explained variance (EV), median absolute error
(MAE), and Kendall rank correlation coefficient (t)—is reported
in Tables S6–S9.
Overall, these data indicate that the tree-based ensemble

methods are superior to the other methods examined. In partic-
ular, the ERT76,83,104 algorithm exhibited the best performance
overall. Boosted decision trees,76,90–92,102,104 random for-
est,76,94,104 and Bagging algorithm variants76,93,104,120,121 (with
tree-based base estimators) are nearly as accurate. The R2

values for ERT predictions exceed 0.997 for gravimetric capac-
ities, which are equivalent to errors of "0.14 wt %. Volumetri-
cally, the accuracy of the ERT algorithm is slightly worse than
its gravimetric performance: R2 = 0.967–0.984, equivalent to er-
rors of"1.1 g-H2 L

!1 on average. In general, the worst-perform-
ing algorithms were linear regression, ridge regression, and SVM
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with linear kernel. For these algorithms R2 varies between 0.913
and 0.992 depending on the conditions (i.e., gravimetric/volu-
metric and PS/TPS). As expected, the linear nature of these algo-
rithms fails to fully capture the nonlinear dependence of output
capacities on the multiple input features.

Figure 1 also shows that all the algorithms tested yield more
accurate predictions of usable gravimetric (UG) capacities
compared with those for usable volumetric (UV) capacities. Like-
wise, all algorithms more accurately predict usable capacities
under PS conditions than under TPS conditions. This reflects
the fact that the functional relationships between output capac-
ities (UG/UV) and input features under PS and TPS conditions
are likely different, as was observed in previously reported struc-
ture(feature)-property(capacity) relationships.1,6,122 Table 4
summarizes the performance of the ERT algorithm in further
detail. A comparison of Tables 1 and 4 indicates that the accu-
racy of the present ML models surpass previously reported
models for H2 uptake. Furthermore, the present models also
appear to be an improvement over earlier models that aim to pre-
dict the adsorption capacities of MOFs for any gas species, Ta-
ble S2. This improved performance can be attributed to the
exploration and optimization of multiple ML algorithms, use of
an appropriate feature set, and the relatively large size of the pre-
sent training set.

Figure 2 illustrates the degree of agreement between ERT ML
predictions and GCMC calculations of usable H2 capacities un-
der PS conditions as a function of MOF source database (Fig-
ure S4 shows similar data for TPS conditions; see also Table
4). Asmentioned above, the present MLmodels more accurately
predict UG capacities than UV capacities. The largest differ-
ences between ML and GCMC capacities (Figures 2C, 2F,
S4C, and S4F) primarily occur for the real MOF dataset. In prin-
ciple, these differences may arise either from ML overfitting or
from inaccurate GCMC predictions caused by non-ideal/incom-
plete MOF crystal structure data (i.e., missing atoms, disorder,
etc.), as mentioned in previous studies.1,32,35,123–125 ERT algo-
rithms are fairly robust against overfitting.83 To examine the pos-
sibility for overfitting, test set errors were compared with training
set errors, as shown in Figure S5 and Table 4. These data sug-
gest that the outliers are not a consequence of over fitting;
hence, inaccuracies in the crystal structure data are proposed
as the most likely source of this disagreement.1,32,35,123–125

Effect of training set size
Figure 3 illustrates the impact of training set size on the accuracy
of the ERTMLmodels, as quantified using R2 and AUE (Table S5
summarizes the dataset sizes used in these plots). For training

sets containing more than 5,000 MOFs, R2 and AUE vary slowly
and in a monotonic fashion, with AUE decreasing and R2

increasing. The accuracy of the models is more sensitive to the
size of the training set for smaller training sets containing roughly
5,000 or fewer MOFs. Figure S6 highlights the variation in perfor-
mance for these smaller training sets.
The trends AUE as a function of training set size can be fit to

a power law expression of the form AUE(m) = amb + g, wherem
represents the size of the training set and b is the power law
exponent. Fitting this model to the data shown in Figure 3 re-
veals that the AUE for UG converges faster with training set
size (b = !0.37 and !0.43) than it does for UV (b = !0.16
and !0.23). A full tabulation of the power law parameters is
given in Table S10. Based on these power law expressions,
one can determine the necessary size of the training set to
achieve a desired level of accuracy. For example, assuming
PS operation, to achieve an AUE of approximately 0.25 wt %
and 1.5 g-H2 L!1 requires training set sizes (for UG and UV)
of less than 300 MOFs randomly selected from the diverse da-
tasets used here.

Univariate feature importance
Figure 4 illustrates the relative importance of the seven crystallo-
graphic features in predicting usable hydrogen uptake in MOFs.
Feature importance was determined by developing ERT models
for each single feature individually. Additional details for these
models are provided in the supplemental information. Based
on thesemodels, it is evident that pore volume (pv) and void frac-
tion (vf) are the dominant features in predicting H2 capacity;
these two properties appear as the first- or second-most impor-
tant single features regardless of operating condition or capacity
type. The importance of these features can be rationalized by
two factors. First, based on the empirical Chahine rule, the
pore volume of an MOF correlates with its excess uptake.113

Second, pore volume and void fraction are related (since
pv = vf d!1)—MOFswith larger pv have larger vf, and vice versa.1

Conversely, the largest cavity diameter (lcd) and volumetric
surface area (vsa) are the single features whose MLmodels yield
the lowest accuracy. The relative importance of the individual
features for predicting UG capacities is: pv > d > vf > gsa > pld
> lcd > vsa. This ordering is the same for PS and TPS conditions.
In contrast, the importance ordering for UV capacities differs
based on the operating condition. Nevertheless, vf and pv
remain the two most important single features for both UV con-
ditions, in that order (Figure 4).
Despite their limited input, the single-feature ML models illus-

trated in Figure 4 achieve high accuracy. For example, any of the

Table 4. Performance of the extremely randomized trees ML algorithm in predicting UG and UV H2 capacities of MOFs under PS and
TPS conditions

H2 capacity type R2 AUE (capacity units) RMSE (capacity units) Kendall t MAE (capacity units)

UG at PS (wt %) 0.997 0.14 0.18 0.961 0.10

UV at PS (g-H2 L
!1) 0.984 0.97 1.40 0.922 0.69

UG at TPS (wt %) 0.997 0.16 0.23 0.966 0.10

UV at TPS (g-H2 L
!1) 0.967 1.32 1.92 0.819 0.91

R2, AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error,

respectively.
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three independent models for UG-PS based only on pv, d, or vf
can predict capacities with R2 > 0.95 and with AUE of less than
0.5 wt %. The accuracy and simplicity of the univariate ML
models suggest that they can be used to quickly screen new
MOFs for their utility in hydrogen storage. To that end, optimized
single-feature ML models for the four categories of usable ca-
pacities considered here have been made available for use on
the web with an interactive web form or with a python API.84

Furthermore, the MLmodels can be downloaded via figshare.126

These models take as input either pv (for UG predictions) or vf
(for UV predictions) of a given MOF. These input data can be
quickly calculated from a MOF’s crystal structure using modern
structure analysis codes.25,47,127–130 As shown in Figure 4, these
models can predict UG with an average error of less than 0.4
wt %, and UV with errors less than 2.2 g-H2 L

!1.
Figure S7 compares the single-feature importance assess-

ments based on ERT ML models (as reported in Figure 4) with
three popular methods for determining feature importance:
Pearson’s correlation coefficient (r),116–118 Breiman and Fried-
man’s tree-based algorithm as implemented in Scikit-learn,90,104

and the permutation importance method as implemented in the
rfpimp package.119 It is clear that the feature importance
methods do not reproduce in detail the rank ordering of feature
importance that is suggested by our ERT ML models. Neverthe-
less, good agreement is evident more broadly. For example, in
the case of UG (Figures S7A and S7C), the three feature impor-
tance methods suggest that in aggregate pv is the most impor-
tant feature, while vsa is the least, in agreement with the ERT
models (Figures 4A and 4B). Similarly, for UV, the importance
methods suggest that vf and lcd are among the most and least

important features, respectively. This is the same trend found
in the univariate ERT models (Figures 4C and 4D).

Multivariate feature importance
Figure 5 illustrates how the accuracy of the ML models varies
with the number and combination of features. Assuming 7 fea-
tures, 27 – 1 = 127 possible combinations exist. For a given
number of features, Figure 5 plots the combination of features
resulting in the highest accuracy model. (The supplementary
file [Table S11] summarizes the performance for all 508
possible feature combinations and capacity/operating condi-
tion types.) As expected, Figure 5 shows that ML accuracy
generally increases as the number of input features increases.
As previously discussed, when limited to a single feature, vf
yields the best accuracy for predicting UV, while pv is the
best choice for UG. When the feature set is extended to 2 fea-
tures, the combination of d and pv is the optimal choice

among the

!
7
2

"
= 21 possible pairs regardless of the capacity

(UG versus UV) or operating condition (PS versus TPS). For
larger numbers of features, the optimal feature combination
depends upon the operating condition and the capacity
type. Based on the AUE, whose value tends to plateau as
more features are added, highly accurate ML models can be
generated using only 5 input features (Table 5). These data
lend further support to the notion that the accuracy of a given
ML model depends on both the number and identity of the
input features. As a slightly more accurate alternative to the
univariate web models described above, a subset of the
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Figure 2. Performance of the ERT algorithm with respect to GCMC calculations for predicting usable H2 capacities in MOFs
Data were collected at 77 K for a pressure swing (PS) between 100 and 5 bar on a test set of 24,674MOFs. Different colors represent different categories ofMOFs.

(A–C) Top and (D–F) bottom panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (A and D) Agreement between ML and

GCMC predictions. (B and E) Difference betweenML and GCMC as a function of GCMC capacity. (C and F) Distribution of differences in predictions betweenML

and GCMC.
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present multivariate ML models that use 4, 5, and 7 input fea-
tures are also available on the web using an interactive web
form and via a python API.84 The ML models can also be
downloaded via figshare.126

H2 uptake in unseen MOFs
Figure 6 illustrates the H2 storage capacities of 820,039MOFs as
predicted by the 7-feature ERTMLmodels developed here. (This
dataset is publicly accessible via HyMARC data hub.70) These
MOFs are referred to as ‘‘unseen’’, in that they have not been
included in the training or test sets used to develop the models.
Figures 6A and 6B show UV capacities as functions of UG ca-
pacities under PS and TPS conditions, respectively. Both plots
exhibit a rapid increase in UV at low values of UG, and reach a
maximum in UV at UG values of approximately 9 wt %. Beyond
the maximum, UV decreases relatively slowly with increasing
UG. These trends are consistent with our earlier findings derived
from GCMC calculations on smaller datasets.1,2,6

In the case of PS operation, the maximum UV across the
MOFs in the dataset is 37.4 g-H2 L!1; for TPS operation the

maximum UV is 48.5 g-H2 L
!1. In the case of UG, the maximum

value predicted is 39 wt% for PS operation and 42wt% for TPS.
These values can be placed in context by comparing against the
Department of Environment hydrogen storage targets, which
stipulate system-level hydrogen densities of 5.5 wt % and 40
g-H2 L

!1 by 2025 and 6.5 wt %/50 g-H2 L
!1 longer-term (‘‘Ulti-

mate target’’).6 Given that the tank and balance-of-plant for the
storage system have non-zero mass and volume, the MOFs
examined here cannot meet the Ultimate target for UV, regard-
less of operating condition.12 More optimism exists, however,
for meeting the gravimetric targets given the high UG exhibited
by these systems on a MOF-only basis. Of course, an additional
challenge is to identify MOFs that excel both gravimetrically and
volumetrically.1,2,6,31,131

It is also helpful to compare the performance predictions in
Figures 6A and 6B with that of state-of-the-art materials. In
the case of PS operation, our previous study demonstrated
that PCN-610 (NU-100) exhibits a hydrogen capacity of 10.1
wt % and 35.5 g-H2 L!1,1 which, to our knowledge, is the
best combination of gravimetric and volumetric capacities
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Figure 3. ML performance versus training set
size
Performance of ERT ML models for predicting us-

able (A) gravimetric and (B) volumetric H2 capacity

as a function of training set size and the ratio of

training to test set size. One hundred different

training sets, ranging in size between 100 and

74,021 MOFs were examined. A common set of

24,674 MOFs was used for testing. Performance is

quantified using R2 (left axis, black) and the AUE

(right axis, blue and red for UG and UV, respec-

tively). Lines represent a power law fit to the data.
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Figure 4. Univariate feature importance in
predicting usable H2 capacities in MOFs
Feature importance was determined by developing

distinct ERT models for each individual feature. The

accuracy of the resulting models was assessed

using R2 (left axis; black dataset) and AUE (right

axis; red dataset). Models were trained on a dataset

of 74,201 MOFs and tested on a set of 24,674

MOFs. pv, pore volume; d, density; vf, void fraction;

gsa, gravimetric surface area; pld, pore limiting

diameter; lcd, largest cavity diameter; vsa, volu-

metric surface area.
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reported for any MOF under these conditions. The data in Fig-
ure 6A reveal that 16,345 MOFs can, in principle, exceed this
capacity on both a UG and UV basis. In the case of TPS oper-
ation (Figure 6B), MOF-5 remains the benchmark, which a
measured capacity of 7.8 wt % and 51.9 g-H2 L!1.2 Figure
6D shows that only 21 MOFs out-perform MOF-5 under these
conditions.
Regarding the accuracy of the present ML predictions, Table 4

shows that the AUEof thesemodels are on the order of 0.15wt%
and1.3g-H2L

!1.Although theseerrors are small, amore rigorous
validation of the ML can be achieved with GCMC calculations.
Thus, GCMC calculations were performed on a subset of MOFs
that ML predicted to exhibit high UV and UG capacities. These
MOFs fall within the rectangular regions shown in Figures 6A
and 6B, and exhibit capacities that meet or exceed 36 g-H2 L

!1

and 7.5 wt% for PS conditions and 48 g-H2 L
!1 and 7.5 wt% un-

der TPS conditions. In total, 21,700 compounds were re-exam-
ined with GCMC based on their ML-predicted PS capacities,
and another 7,901 were re-examined for TPS.
Figure 6C compares ML and GCMC predictions for usable ca-

pacities for 21,700 high-capacity MOFs under PS conditions.
The strong overlap in the two datasets further highlights the ac-
curacy of the ML models. A total of 8,187 MOFs were predicted
by GCMC to out-perform PCN-610/NU-100 under these condi-
tions. A summary of the 10 highest-capacity MOFs, sorted
based on their GCMC capacities, is provided in Table 6 (a
more extensive listing is provided in Table S12). The highest-ca-
pacity MOFs are all hypothetical compounds: five originate from
the ToBaCCo database,59 two are from the University of Ottawa
database,37 and the remainder are from the Northwestern36

database. These MOFs all exhibit high surface areas (average =
5,746, range = 4,346–7,835 m2 g!1) and large void fractions of
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Figure 5. Multivariate feature importance in
predicting usable H2 capacities in MOFs
The accuracy of ERT ML models, as determined by

R2 and AUE, was determined as a function of the

number and combination of input features. Each

data point represents the most accurate feature

combination for a given number of features. ERT

models were trained on a dataset of 74,201 MOFs.

R2 and AUE were calculated using a test of

24,674 MOFs. Feature abbreviations are defined in

Figure 4.

0.89, on average. The range of these prop-
erty values are consistent with those re-
ported in an earlier study,1,132,133 and sug-
gest that maximizing the surface area is an
important design guideline for PS opera-
tion. The highest-capacity MOF,
mof_7642,59 is predicted to exhibit capac-
ities of 11.1 wt % and 40.5 g-H2 L

!1, sur-
passing that of PCN-610/NU-100, the re-
cord-holder under PS conditions. The
crystal structure of mof_7642 is shown in
Figure 7A.
A search in the CCDC134 was performed

to identify MOFs that have been synthe-
sized that are similar to the high-capacity compounds identified
here. The existence of similar MOFs may suggest synthetic pro-
cedures that could be adapted to the present systems. The top 5
MOFs under PS conditions contain relatively long tritopic linkers.
In the case of mof_7642, this search identified the interpene-
trated MOF RANCEQ135 as having a similar index of 0.82. Inter-
penetration is fairly common in MOFs (such as mof_7642) with
longer linkers, and is generally undesirable for achieving high up-
take. Nevertheless, several examples of successful synthesis of
MOFswith long, multi-topic linkers that do not undergo interpen-
etration, have been reported. These include MOF-180 andMOF-
200,136 the PCN-6X series,137 and NOTT-112.138 The next four
PS candidates in Table 6 exhibit pillared Zn paddlewheel clusters
with long ditopic linkers. Karagiaridi et al.139 demonstrated the
feasibility of synthesizing pillared paddlewheel MOFs with long
linkers; the SALEM-X series are examples.139 Finally,
str_m3_o5_o20_f0_nbo.sym.1.out is based on a Zn paddlewheel
cluster and a ditopic linker. HOFSUS (CSD Refcode) is an
example of such a MOF.140

Figure 6D provides a similar comparison between ML pre-
dictions and GCMC calculations for MOFs expected to
exhibit high capacities under TPS conditions. Under these
conditions, only 95 MOFs were predicted by GCMC to
out-perform MOF-5. A summary of the 10 highest-capacity
MOFs, sorted by their GCMC capacities, is provided in Ta-
ble 6 (see Table S13 for a more extensive tabulation). As
found for PS operation, all of the top performing candidates
are hypothetical compounds. One difference with the PS
case is that all of these MOFs originate from the University
of Ottawa database.37 Furthermore, none of the highest-ca-
pacity MOFs identified for PS operation appear as top can-
didates for TPS. Comparing the highest-capacity MOFs for
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both operating conditions, it can be seen that the high-ca-
pacity TPS MOFs systematically exhibit lower surface areas
(average = 4,073 m2 g!1), smaller void fractions (average =
0.83), and higher densities. Hence, the categories of MOFs
that maximize uptake under PS and TPS conditions exhibit
distinct properties. These differences suggest that maxi-
mizing the surface area—which, as discussed above, is
desirable for maximizing PS capacity—is not advantageous
for TPS operation. This behavior can be explained by trends
in total capacities,6 which the TPS capacities reported here
approximate. More specifically, it is known that total volu-
metric capacities are maximized for intermediate values of
the surface area; for larger surface areas the volumetric ca-
pacity decreases.

Returning to the list of promising MOFs for TPS operation, Ta-
ble 6 reports that the highest-capacity MOF,
str_m1_o1_o11_f0_pcu.sym.102.out, has a GCMC-predicted
capacity of 10.4 wt % and 53.1 g-H2 L!1. This capacity sur-
passes that of MOF-5, which, to our knowledge, holds the ca-
pacity record under these conditions. The crystal structure of
this MOF is shown in Figure 7B.

The top 10 MOFs under TPS conditions contain the same Zn
metal cluster and terephthalic acid linkers, where the linkers
have been modified with varying functional groups. The slight
differences in the capacities of these MOFs can be traced to

differences in the functional groups. A similarity search based
on str_m1_o1_o11_f0_pcu.sym.117.out identified 40 similar
MOFs. Approximately 30 of these (for example, HIFTOG, MIB-
QAR, UNIGEE, VUSJUP, and ZELROZ) contain Zn metal clus-
ters and linkers based on variants of terephthalic acid.
Figures S8 and S9 and Table S14 quantify the differences

between ML and GCMC predictions on the subset of high-ca-
pacity MOFs shown in Figures 6C and 6D. For PS operation,
the AUE of ML relative to GCMC is 0.24 wt % and 0.66 g-
H2 L!1, while for TPS the AUE is 0.24 wt % and 1.28 g-H2

L!1. Both sets of errors are comparable with the errors re-
ported in Table 4 for the original test set of MOFs. Figures
S8C and S8F and S9(c,f) plot the frequency distribution of
the differences between GCMC and ML. These distribution
plots suggest that the largest differences occur for predictions
involving real MOFs and for hypothetical MOFs extracted from
databases other than those from Northwestern,36 University of
Ottawa,37 and BJT.81 (These MOFs are referred to as ‘‘other
hypothetical MOFs’’ in Figure 6). These MOFs, along with
the real compounds, exhibit higher structural diversity than
those contained in the other databases. For example, the di-
versity of the topologies used in the ToBaCCo59 and Zr-
MOFs45 databases and in the linkers used in MTV-MOF82

database are larger than what is found in the databases
from Northwestern,36 University of Ottawa,37 and BJT.81

Table 5. Optimal combinations of features for predicting UG and UV H2 storage capacities at PS and TPS conditions

Condition Feature combination No. of features R2 AUE RMSE Kendall t

UG at PS gsa, vf, pv, lcd, pld 5 0.997 0.14 wt % 0.19 wt % 0.959

UG at TPS d, vsa, pv, lcd, pld 5 0.996 0.18 wt % 0.25 wt % 0.959

UV at PS vsa, vf, pv, lcd, pld 5 0.983 1.01 g-H2 L
!1 1.45 g-H2 L

!1 0.920

UV at TPS vsa, vf, pv, lcd, pld 5 0.961 1.41 g-H2 L
!1 2.10 g-H2 L

!1 0.814
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Figure 6. ML predictions of H2 capacities for
820,093 unseen MOFs
Predicted capacities for (A) PS and (B)

temperature + PS operation. Colors indicate the

originating database for a given MOF. (C and D)

Validation of ML-predicted capacities for the high-

est-capacity MOFs identified by ML; shown in the

rectangular regions in (C and D) using GCMC sim-

ulations. For comparison, the capacities of PCN-

610/NU-100 (PS: 10.1 wt %, 35.5 g-H2 L!1) and

MOF-5 (TPS: 7.8 wt %, 51.9 g -H2 L
!1) are shown.1
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DISCUSSION

Limitations of this study
As described previously, some of the high-capacity MOFs identi-
fied here may prove difficult to synthesize. Although this limitation
applies primarily to the hypothetical MOFs, in some cases real
MOFs are also known to undergo framework collapse during acti-
vation, which would reduce capacity.1,2 Nevertheless, future im-
provements to synthesis techniques may overcome these limita-
tions—what is difficult to make today may be possible in the
future. Secondly, our models do not distinguish between realistic
MOFs having non-defective crystal structures and those for which
the structures are defective/unrealistic. Unrealistic structures can
result from incomplete or imperfect virtual solvent removal and
the presence of partial occupancies or symmetry disorder in the
crystal structure.31 Consequently, a defective/unrealistic MOF
could be erroneously predicted to be a promising candidate.
Follow-up calculations using GCMC and visual inspection of the
crystal structure are recommended for all promising candidates
identified by ML. Finally, the ML models developed here are
non-interpretable, ‘‘black-box’’ models. Although these models
are demonstrated to be highly accurate, additional effort is
required to assess the relative importance of their input data.
(The approach demonstrated here for evaluating feature impor-
tance involved the development of multiple models with varying
numbers and combinations of features.) Alternatively, interpret-
able white-box ML models could be developed to provide more
insight into feature importance. However, our experience sug-
gests that white-box models generate less accurate predictions.

Concluding remarks
The H2 storage capacities of nearly a million MOFs have been
predicted via ML. The predictions span a diverse collection of
MOFs sourced from 19 databases and reveal performance un-
der two operating conditions: PS and temperature + PS. More
than a dozen ML algorithms were benchmarked, with the ERT
method found to be the most accurate. The resulting ML models
are accessible on the web at the HyMARC data hub.84 These
models allow for accurate, rapid screening of the hydrogen stor-

A B

mof_7642 str_m1_o1_o11_f0_pcu.sym.102

C N O Zn F Figure 7. Crystal structures of high-capacity
MOFs
Highest-capacity MOFs under (A) PS and (B)

temperature + PS conditions. TheseMOFs originate

from the ToBaCCo59 and University of Ottawa37

databases, respectively.

age properties of newMOFs using minimal
structural data as input; only a single
feature is needed for the simplest models.

The accuracy of the ML models was
characterized as a function of training set
size and the number/combination of input
features. Regarding the dependence on
the training set, the accuracy of themodels
can be well described using a simple po-
wer law function of the training set size.
The dependence on the number and com-
bination of input features was determined

by evaluating 508 independent ML models generated from all
possible combinations of the seven features. Themost important
features for predicting H2 uptake are pore volume (for gravi-
metric capacity) and void fraction (for volumetric capacity).
Using these models, 8,282 MOFs are identified that have the

potential to exceed the capacities of state-of-the-art materials
under usable conditions. The identified MOFs are predominantly
hypothetical compounds, which (for PS operation) exhibit low
densities (<0.31 g cm!3) in combination with high surface areas
(>5,300 m2 g!1), void fractions ("0.90), and pore volumes
(>3.3 cm3 g!1). These MOFs are suggested as targets for exper-
imental synthesis.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact

Prof. Donald Siegel, djsiege@umich.edu.

Materials availability

This study did not generate new reagents.

Data and code availability

d Original data have been deposited to HyMARC Data Hub: https://

datahub.hymarc.org/dataset/computational-prediction-of-hydrogen-

storage-capacities-in-mofs

d Interactive ML models: https://sorbent-ml.hymarc.org/

d Python API: https://sorbent-ml.hymarc.org/

d Downloadable ML models and instructions: https://doi.org/10.6084/

m9.figshare.14173520.v1

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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41. Chung, Y.G., Gómez-gualdrón, D.A., Li, P., Leperi, K.T., Deria, P., Zhang,

H., Vermeulen, N.A., Stoddart, J.F., You, F., Hupp, J.T., et al. (2016). In

Silico Discovery of Metal-Organic Frameworks for Precombustion CO2

Capture Using a Genetic Algorithm. Sci. Adv. 2, e1600909.

42. Anderson, R., Rodgers, J., Argueta, E., Biong, A., and Go, D.A. (2018).

Role of pore chemistry and topology in the CO2 capture capabilities of

MOFs: from molecular simulation to machine learning. Chem. Mater.

30, 11.

43. Anderson, G., Schweitzer, B., Anderson, R., and Gómez-Gualdrón, D.A.
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