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Why Do Grain Boundaries Exhibit Finite Facet Lengths?
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Uniform finite facets are frequently observed at grain boundaries (GBs) and are usually attributed to
equilibrium stabilization by GB stress. We report calculations for an aluminum twin GB using density
functional theory, the embedded-atom method, and continuum elasticity theory. These methods show
that GB stress is much too small to stabilize finite facets, suggesting that the usual explanation is
incorrect.
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FIG. 1. Sketch of the GB used for the continuum elasticity

we first use continuum elasticity calculations to show that calculations.
High-energy grain boundaries (GBs) commonly
undergo faceting to reduce their total energy. In many
cases, the facets are observed to have uniform finite
lengths, and the GB shows a sawtooth profile [1]. This
self-organization of GB facets is important in determin-
ing mechanical properties of polycrystalline materials
and in understanding the mechanisms of GB defaceting.

A particularly well-studied GB is the aluminum twin
boundary with average �110� orientation, which separates
two grains related to each other by a 180� rotation about a
shared �111� axis. The faceting of this GB has been
previously studied experimentally using transmission
electron microscopy (TEM) [2]. At room temperature,
this boundary spontaneously facets into regular
�3f112g-type facets with lengths of about 100 nm.

The equilibrium theory commonly invoked [1] to ex-
plain the finite facets is based on the premise that there
exists a balance between attractive and repulsive forces
between facet junctions. This is similar to the theory of
stress domains on surfaces [3], where the energy cost of
forming facet junctions is balanced by strain energy
relief. As discussed below, for the GB, the repulsive force
is due to the presence of dislocations at the facet junctions
while the attractive force is due to GB stress. [We empha-
size that GB stress is an interfacial stress (units of
force=distance) not a bulk stress (units of force=area)].

There appear to be two reasons why a quantitative
validation of the accepted theoretical explanation is still
lacking. Experimentally, there are very few measure-
ments of GB stress. (Recent x-ray diffraction measure-
ments [4] have been used to estimate high-angle GB stress
in Pd nanocrystals, but this is not a routine measurement).
Theoretically, an explicit analytical expression for the
energy of the faceted GB has not yet been presented,
and atomistic calculations have not yet been performed
to address this issue.

Here we combine continuum elasticity theory, density-
functional theory (DFT), and embedded-atom method
(EAM) calculations to show that the conventional ener-
getic argument cannot possibly account for the experi-
mental observations of finite facet lengths for the above
aluminum GB with average �110� orientation. To do this,
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stabilization of finite facets arises when the GB stress
exceeds a threshold value; for stresses below the threshold
value, the energy is minimized by facets of infinite
length. Using DFT and EAM, we show that the actual
stress for the aluminum GB is much smaller than the
threshold value, causing the equilibrium facet length to
tend to infinity. Finally, this is confirmed by EAM calcu-
lations of the total energy as a function of facet length for
the aluminum bicrystal with multiple GB facets.

We begin by discussing a planar GB to establish the key
concepts of translation vector and GB stress. In general,
GBs are characterized by a lower atomic density, which
alters the equilibrium bond lengths compared to the bulk
and induces a discontinuity in the spacing of lattice
planes at the GB. The subset of lattice points forming a
nearly continuous lattice across the GB is known as the
coincident site lattice (CSL); the translation vector t
measures the discontinuity in the CSL at the GB [5].
The lower atomic density at the GB also changes equi-
librium bond lengths in the plane of the GB; however, this
relaxation is only partial because of the coupling to the
bulk lattice. Hence, the GB is in a state of stress [1], with a
constant stress tensor component � in the GB plane.

This description of the GB in terms of a translation
vector and interfacial stress allows us to develop a sim-
plified model of the faceted GB that is amenable to
continuum elasticity calculations. Figure 1 shows a sche-
matic of the faceted GB. When two GBs meet at an angle
to form a facet junction, the translation vectors on the
right, tright, and on the left, tleft, are different, leading to a
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Burger’s vector b � tright � tleft at the facet junction [5].
At a junction between two facets, there is also a disconti-
nuity of the stress tensor, leading to a line force pn �
�2� sin��	x� xn
�	y� yn
j, where 	xn; yn
 is the posi-
tion of the facet junction, � is the GB angle, and the top
(bottom) sign corresponds to a valley (crest). With this
model of the faceted GB, we can now calculate its energy
as a function of facet length L using isotropic continuum
elasticity.

The energy of the GB per unit area can be written as

E � Ed�d � Elf�lf � Ed�lf; (1)

where Ed�d is the interaction energy between the dislo-
cations, Elf�lf is the interaction energy between the line
forces, and Ed�lf is the interaction energy between the
dislocations and the line forces (all of which include self-
interactions). The three components of the energy can be
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calculated from
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where �;� � d or lf, repeated indices imply summation,
and A is the area of the unfaceted GB. Here, fm�i 	r
 and
um�i 	r
 are the force and elastic displacement caused by
the mth dislocation or line force, in the i � x; y or z
direction. The displacements umdi 	r
 are given in standard
elasticity references [6] while umlfi 	r
 can be calculated
from

umlfi 	r
 �
Z
Gil	r�r0
pm

l 	r
0
; (3)

where Gil	r
 is the Green’s function for an infinite iso-
tropic elastic medium [6].

From the expressions above, we find that the energy is
of the form E	L
 � 	A=L
 lnL� B=L with
A �
b2�2 � 2	3� 4�
	1� �
�2sin2�� 4�b� sin�	1� 2�


4��	1� �
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; (4)
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FIG. 2. Spacing of 	121
 CSL planes in Al with two 	121

twin boundaries calculated from DFT (open triangles) and
EAM (solid circles). Simulation supercell (replicated four
times in the �101� direction) is shown below the figure, with
black circles representing atoms forming the CSL.
and B is a constant that is unimportant for our purposes.
Here � is the Poisson ratio and � is the shear modulus.
From the functional form E	L
 � 	A=L
 lnL� B=L, one
can show that finite facets will be stabilized when A < 0,
leading to the condition

� >
b�	1� 2��

������������������������������
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2	1� �
	3� 4�
 sin�
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Hence, for finite facet lengths to be energetically favor-
able, the GB stress must exceed a threshold value ��.

Based on the above theory, the conventional explana-
tion for the finite facet size observed at the Al twin
boundary with average �110� orientation is that the GB
stress � is larger than ��. However, no experimental or
theoretical values for � or �� are available for this GB,
making validation of the conventional model difficult.

In order to investigate this issue, we used DFT and
EAM to calculate � and �� for an Al �3 	121
 twin
boundary. Our basic approach to obtain � is to use a
planar GB representing a facet and calculate the stress
of this GB. To obtain ��, we calculate the translation
vector t of this GB, obtain b � tright � tleft and substitute
in Eq. (5). We used a bulk slab with a small rectangular
cross section and a long length in the �121� crystallo-
graphic direction. Periodic boundary conditions were
used in all three directions. In order to ensure a com-
pletely stress-free bulk slab, the periodic lengths were
relaxed in all three directions. Next, two equally spaced
GBs were introduced with normals in the long �121�
direction, as shown in Fig. 2. The slab periodic length,
L121, in the direction normal to the GBs was then relaxed
to allow for the excess volume of the GBs and the differ-
ing atomic density in the vicinity of the GBs. The trans-
lational vector t was calculated from the new periodic
length in this long direction. Finally, we found the desired
component of the GB stress by calculating the total
system energy as a function of the appropriate periodic
length, L101, of the GB plane, while holding the other two
periodic lengths fixed. A more complete description of
these calculations follows.

Voter-Chen potentials for aluminum were used for the
EAM calculations [7]. Our density-functional [8,9] cal-
culations were performed with the Vienna ab initio simu-
lation package (VASP) [10], which uses a plane-wave
basis for expansion of the electronic wave functions com-
bined with the generalized gradient approximation [11]
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FIG. 3. Energy of the grain boundary of Fig. 2 as a function
of the change in L101 from its bulk stress-free value, calculated
from DFT (solid circles) and EAM (open squares). The solid
and dashed lines are quadratic fits. The dotted line is the energy
calculated from Eqs. (7) and (8).
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for the exchange-correlation energy. Ultrasoft pseudopo-
tentials [12,13], including partial core corrections [14],
were used to model the computationally expensive core-
valence interaction. Brillouin zone sampling was per-
formed using a Monkhorst-Pack grid [15], and electronic
occupancies were determined according to a Methfessel-
Paxton scheme [16] with an energy smearing of 0.15 eV.
The number of k points was chosen to ensure that the
elastic constants were converged to within 10% of the
experimental values for bulk Al. This required the use of
a very dense k grid (40� 20� 2), resulting in 400 irre-
ducible k points. The plane-wave cutoff energy was set to
180 eV, which was sufficient to converge total energies to
within 1–2 meV=atom.

For our DFT calculations, we started with a 72 atom
GB-free bulk Al slab with periodic lengths L101, L111, and
L121 in the three orthogonal slab directions. After careful
relaxation of these periodic lengths to better than �0:1%
tolerance, we found L101 � 2:864 �A, L111 � 7:005 �A, and
L121 � 59:376 �A. In order to form two GBs, the central
section of the unit cell was subjected to a reflection
operation about a [111] mirror plane and two atoms
were removed to create a 70-atom slab (shown relaxed
and replicated in Fig. 2). The lengths L101 and L111 were
fixed at the bulk stress-free values and L121 was varied to
minimize the total energy, thus allowing for the lower
atomic density and the excess volume of the GB. Similar
methods were used for the EAM calculations.

Figure 2 shows the spacing of the CSL planes in the
presence of the GBs. Clearly, the CSL is contracted at the
GBs compared to the bulk system; as explained above,
the contraction occurs because the atomic density is lower
at the GBs, leading to a decrease in the average coordi-
nation of each atom and slightly shorter bonds. As Fig. 2
clearly shows, we obtain excellent agreement between the
DFT and EAM calculations, with a total contraction of
the simulation cell in the �121� direction of 0:54 �A per GB
for DFT and 0:51 �A for EAM [17]. Thus, taking the DFT
result, the magnitude of the Burger’s vector that enters in
Eq. (5) is 0:54 �A. Our calculations are in good agreement
with experiment [5] and previous calculations [5,18,19].

With this value for the Burger’s vector and published
values for the elastic constants of aluminum [20], we find
from Eq. (5) that, for this particular GB, �� �
99 meV= �A2. The remaining question is whether the ac-
tual stress � is above or below this value.

For the calculation of the GB stress, we used the slab
from the previous calculation (shown in Fig. 2). L111 and
L121 were fixed at their bulk stress-free values and the
total energy was calculated as a function of L101. The re-
sult of this calculation is plotted in Fig. 3, where the
energy reference has been adjusted so the minimum of
energy is at zero. As can be seen in the figure, the energy
minimum is displaced from the bulk stress-free value
because the GB stress has the effect of contracting the
slab slightly in the �101� direction. The GB stress is
given by
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(The partial derivative is evaluated at the periodic length
of the stress-free bulk slab). Using this method, we cal-
culate a grain boundary stress of 21 meV= �A2 using DFT
and 29 meV= �A2 using EAM. Given the uncertainties in
the DFTand EAM calculations, these values agree within
anticipated errors. The important point here is that both of
these stresses are much smaller than the value �� �
99 meV= �A2 calculated above.

This large difference between the actual stress � and
the threshold stress �� can be further highlighted by
comparing the DFT and EAM curves of Fig. 3 with a
continuum elasticity calculation for a slab with two GBs
having the threshold stress �� � 99 meV= �A2.Within con-
tinuum elasticity, the energy to deform the bulk slab
(without the GB) is

Ebulk �
V0
4
	C11 � C12 � 2C44


�
 L101
L101

�
2
; (7)

where V0 is the undeformed slab volume and the Cij are
the elastic constants. Adding the two GBs costs an addi-
tional energy,

EGB � 2L111�� L101: (8)

The energy Ebulk � EGB is plotted as a dotted line in
Fig. 3. Comparison of the DFT, EAM, and continuum
elasticity curves shows agreement in the curvature, dem-
onstrating that the atomistic calculations give the correct
values for the bulk elastic constants. More importantly,
the slope of the atomistic curves and the continuum
elasticity curve are very different at  L101 � 0. This
reemphasizes that � calculated from the atomistic calcu-
lations is much smaller than ��, demonstrating clearly
that finite facets are not stabilized by GB stress at this
grain boundary.
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FIG. 4. Energy per unit area calculated by EAM for the Al
GB with average �110� orientation faceted into �3 f112g-type
boundaries, as a function of facet length. The points are fit by
the function 	A=L
 ln	L=1 �A
 � B=L. The insets show sche-
matically the geometries used for some of the calculated points.
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This conclusion can be directly verified by EAM cal-
culations of the energy of a faceted Al boundary as a
function of facet size using a geometry that replicates the
experimental TEM observations. Figure 4 shows a sche-
matic representation of a portion of this geometry. We
modeled a 397 �A thick slab with two free �110� surfaces
and a single GB with average �110� orientation in the
center. The periodic boundary lengths in the �111� and
�112� directions were 7.01 and 158:7 �A, respectively.
These boundary conditions were selected to allow mod-
eling fairly long facets while avoiding interference of the
GB strain field with the slab surface. For this bicrystal, we
calculated the total relaxed energy with n facets of length
183:3 �A=n (n � 2, 4, 8, 16, and 32). All of these configu-
rations contained the same number of atoms, the same
area of free surface, and the same total GB area; thus, the
changes in total energy directly reflect the GB energy as a
function of facet length.

Figure 4 shows the calculated energy as a function of
facet length L. The plotted points are well fit by a curve of
the form 	A=L
 ln�L=	1 �A
� � B=L. Least squares fitting
to the total EAM energies gives A � 4:96 meV= �A and
B � 1:54 meV= �A. Since A is positive, there is no local
minimum in the energy and no finite equilibrium facet
length. The curve fit confirms what the plotted points
suggest: The equilibrium GB facet length for the EAM
calculation tends toward infinity, confirming the predic-
tions from the continuum elasticity calculation.

As a final check of the above calculations and deriva-
tion, we can compare the values of A calculated from
the EAM and the prediction from the elasticity calcula-
tion. From Eq. (4) and the values for b and � from EAM,
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we find A � 6:5 meV= �A in good agreement with the
EAM result A � 4:96 meV= �A. This is a strong check of
the EAM calculations and of the continuum elasticity
derivation.

The work presented here shows that finite facets are not
equilibrium features of this GB. While the obvious alter-
native is kinetics, the actual atomistic kinetic mechanism
remains to be explored, as does the generalization of the
conclusion to other GBs.

We thank Norm Bartelt and Doug Medlin for useful
discussions. This work was supported by the Office of
Basic Energy Sciences, Division of Materials Sciences,
U.S. Department of Energy under Contract No. DE-
AC04-94AL85000. Part of I. D.’s work was supported
by the OTKA Grant No. T037212.
*Present address: Department of Theoretical Physics,
University of Debrecen, P.O. Box 5, H-4010, Debrecen,
Hungary.

[1] A. P. Sutton and R.W. Balluffi, Interfaces in Crystalline
Materials (Oxford University Press, New York, 1996).

[2] T. E. Hsieh and R.W. Balluffi, Acta Metall. 37, 2133
(1989).

[3] V. I. Marchenko, Sov. Phys. JETP 54, 605 (1981).
[4] R. Birringer, M. Hoffmann, and P. Zimmer, Phys. Rev.

Lett. 88, 206104 (2002).
[5] R. C. Pond and V.Vitek, Proc. R. Soc. London, Ser. A 357,

453 (1977).
[6] L. D. Landau and E. M. Lifshitz, Theory of Elasticity

(Butterworth-Heinemann, Stoneham, MA, 1995) 3rd ed.
[7] A. F. Voter and S. P. Chen, in Characterization of Defects

in Materials, edited by R.W. Siegel, J. R. Weertman, and
R. Sinclair (Materials Research Society, Pitttsburgh, PA,
1987), pp. 175–180.

[8] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[9] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[10] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).

[11] J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992).
[12] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[13] G. Kresse and J. Hafner, J. Phys. Condens. Matter 6, 8245

(1994).
[14] S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26,

1738 (1982).
[15] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188

(1976).
[16] M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616

(1989).
[17] There is also a CSL shift of 0:7 �A in the [111] direction at

the GB. This shift cancels when subtracting the two facet
translation vectors to get the Burger’s vector for a GB
facet junction.

[18] D. C. Medlin et al., MRS Symp. Proc. 295, 91 (1993).
[19] A. F. Wright and S. R. Atlas, Phys. Rev. B 50, 15 248

(1994).
[20] J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger,

Malabar, FL, 1992), 2nd ed.
246102-4


