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The Frequency Domain

by Dennis S. Bernstein

This article Is dedicated fo Edwin Howard Armsirong,
virttioso of the frequency domain and true Revo to the engineering profession.

“Any tune, Any key."
— Milt Bernstein, jazz musician

In Search of Poles

hen 1 was young there were many newsstand

hohby magazines that published monthiy plans

for building some kind of electronics project. My
favorite was Radio-I'V Experimenter which, sadly, disap-
peared and was replaced by the modernized Popolar Flec-
tronics. Unfortunately, the plans in Popular Electronics were
much too sophisticated for me. A typical project such as a
tlo-it-yourself electronic organ required a mere 200 compao-
nents, exotic [Cs, and printed circuit boards—a rather
daunting project for a 13-year-old.

Nevertheless, | was fascinated by the jargon in Popular
Flectronics, although [ had virtually no idea what any of it
meant. One mysterious word that appeared [rom time to
time was pofe. As far as I could tell, filters had poles, and the
more pales a filter had, the hettor and more expensive it
was. | knew that filters somehow separated radio stations
that crowded each other, so it madce sense that better filters
with more poles oughtto cost more. But what on carth was a
“pole,” anyway? | had absolutely no idea.

Only much later did [ learn what a pole js, but [ had to go
to college ta find out. In this article, I'd like to give you some
idlea of what a pole is and why it is a significant concept. To
do this, T will give you a little tour of the mysterious world
that control engineers call the frequency domain. This article
is intended as a conceptual preview for undergraduate stu-
dents and assumes minimal technical background; [ hope
that instructors will recommend this article to their intro-
ductory classes.

The frequency domain is a kind of hidden companion io
our everyday world of time, We describe what happens in
the time domain as temporel and in the frequency domain as
spectral. Roughly speaking, in the time domain we measure
how long something takes, whercas in the frequency do-
main we meastire how fast or slow it is. If you think these
sound like the same thing you're essentially right, since
these are two ways of viewing the same thing. So why do
control enginocrs like the frequency domain so much? In a
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nutshell, the reasan is this: Most signals and processes in-
volve both fast and slow components happening at the same
time. Frequency domain analysis separates these compo-
nents and helps to keep track of them.

Vibrations and Musical Scales

Let's start by talking about something you've heard a lot
about but may not have thought much ahout: sound and mu-
sic, lirst, it’s helpful to remember that each key on a piano
causes a string (and as many as three identical strings for
the higher sounds) to vibrate. The low-sounding strings,
which are longer, thicker, and less taut, vibrate more slowly
than the high-sounding strings, which are shorter, thinner,
and more taut. llach string vibrates at a pitch, or frequency,
determined by its length, mass per unit length, and tension.
The frequency of vibration of a string, which measures how
fust the string vibrates, Is simply the number of times it un-
dergoes a cycle of motion in one second. The central piteh
on the piano, middle C, has a frequency of /, = 261.625 cps
(cycles per second), or Hz (Hertz), named after Heiurich
Hertz (1857-1894), This frequency is set by tradition and var-
ics slightly among musical groups,

An octave is a frequency interval that extends from one
frequency to twice that frequency. Pitches that are an ac-
tave apart have {frequencies that are related by a factor of 2,
Going up one octave from middie C yields the piteh €, which
has the frequency £ = 2/, =52325 Hz. Likewise, two octaves
comprise a frequency Interval of four, three octaves com-
prise a frequency interval of eight, and so on. [t’s interesting
that the ear perceives two pitches an octave aparl as essen-
tially the same pitch. Vor a vocalist, an octave is a fairly large
interval, and it tends to have a dramatic effect. In the song
“Over the Rainbow” from The Wizard of Oz, the two notes in
the first word “Somewhere” span an octave, as do the first
two notes in the word “wherever” in the theme song “My
Heart Will Go On” from the movie Tianic,

The factor-of-2 interval is so fundamental to hearing that
most Western music (from classical to jazz to pop) is based
an it, Move precisely, this music is based on the diatonic
scale, which partitions the octave into eight notes (counting
both the first and the last), which explains the “oct” in oc-
tave. To confirm this, you can see that the key pattern on a
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piano repeats over and over, and each
complete pattern has eight white
keys. The frequency range of a piano
extends from 27.5 to 4186.0 Hz, which
corresponds to a frequency interval of
4186,0/27.5 = 152,22, This intervai

{9/8)(10/N(L6/15)(9/8)
(L0/939/83(16/15)=2
All of this appears to be a hit arbitrary,

but it is a neat and tidy construction in
the frequency domain involving only the

spans morc than seven octaves {a fre-

| ‘ ! " . ain | et
—= AlLE l frequency intervals 948, 1049, and 16/15.

quency interval of 128) but fewer than

9/B | 10{9 61’15' 8/8 ) 104‘3' 9/8 '16!15'

g e =40y

eight octaves {a frequency interval of 544 | B/ ' : Just and Equal

256). Although humans can hear . 473 o 3}2 b Temperament Tuning

sounds that are either higher or lower o s So far so good, but now the plot thick-
than the range of a piano, it’s difficult r T T 1 ens a little. Unfortunately, when these
to identify the pitches of these b 573 4 6f5 J intervals arc combined successively,
sounds, Below the range of human : 15/8 1615} problems arise. For examiple, suppose
hearing arc the infrasonic frequencies ! 2 : that you go up by four fifths and then

down by two octaves and, finally,

uscd by whales and elephants, and
ahove it are the uffrasonic frequencies
useful in medical applications and for
calling dogs.

The eight notes of the diatonic scale are partly deter-
mined hy seven aesthetically pleasing frequency ratios as
defined hy the Ancient Greeks. From smallest to largest,
these “true” frequency intervals are 6/5 (minor third), 5/4
(major third}, 4/3 (fourth), 3/2 (fifth), 8/5 (minor sixth), 5/3
{major sixth}, and, of course, 2 {octave). Fig, 1 shows the
span of cach of thesc intervals in the context of one octave
on the piano keyboard. It can he seen that these frequency
intervals divide the octave in four different ways, namely,

(6/5)(5/3)=(5/4)(8/5)
= (4/3)(3/2)
= (3/2/3)
=2

piano mning

These divisions fix four notes of the diatonic scale hetween
Cand ', namely, E, F, (5, and A, whose pitches are
f=(/Df, K=(4/3).
fo=CHD, £ =00/

Two pltches, namely D and B, remain to be fixed. To fix 1, start
with C, go up twa fifths and then down one octave to obtain

=7 (3/2E /D =(9/ 8},

and, to fix B, start with C, go up onefifth and then up one ma-
jor third to obtain

h=(6/DE/2f =(15/83.

The intervals 9/8 and 15/8 are the second and seventh, ro-
spectively.

Putting all these ratios together, we see that the diatonic
scale CDEFGABC' is a partition of the octave into seven inter-
vals whose product is precisely two, that is,
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Figure 1, Frequency intervals for just

down by a major third. Your resulting
frequency ratio is then (5/4)" (2)
(372" = 81/80 = 1.0125. Although this
frecuency ratio is close to unity, it differs by enough to pro-
duce an unpleasant dissonance. Another example is: go up
eight fifths, go up one major third, and, finally, go down five
octaves, vielding a frequency ratio of (2)_S (5/4) (3{2)8 =
32,805/32,768 = 1.0011. Thus a few aesthetically pleasing fre-
guencyintervals quickly give rise to lots ofunpleasant ones,

(One solution to this problem is to somehow approximate
by a uniform interval the frequency intervals 9/8, 10/9, and
16/15 that comprise the diatonic seale. To do this, you nead
to first notice that 10/9=1,1111 and 9/8 = 1,125 arc very close,
and both of these arc also close to the square of the ratio
16/15= 10667, which is (16/15) a 256/225 ~ 1.1378. Therefare,
we can approximate 10/9, 9/8, anel 16/15 by using a single, uni-
form frequency ratio, the semtitore. This approximation uses
one semitone for each interval of size 16/15 and two semi-
tones for each interval of size 10/9 or 9/8. Hence, altogether
there are 12 semitones in one octave, which implies that a
semitone is equal to 2% = 1.0595. In addition to the eight
pitches inone octave of the diatonic scale, the semitone gives
rise to five additional pitches, ar accidfentals, which aceount
for the five black keys on the piana. An accidental is repre-
sented by a sharp (5) or a flat (), which indicates an increasc
or decrease, respectively, of the base frequency by a semi-
tone. The five accidentals arising from the use of the semi-
tone are Cf = Db, Di = Bb, T = Gb, G = Ab, and A = B

True ratios constifute just funing for the diatonic scale,
whereas the use of the semitone as the uniform frequency
interval constitutes equal-temperainent tuning. As [ already
suggested, just tuning is not practical since it gives rise to
additional pitches that are not present inthe diatonic scale,
On the other hand, equal-temperament tuning solves many
of the prablems associated with just tuning, but it is imper-
fect since it makes some intervals too large and others too
small, For example, the major third 5/4 is approximated by
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four semitones, yielding (2" 1“!)" = 1.2599 (too large), whereas
the fifth 3/2 is approximated by scven semitones yielding
(2"'%7 = 1.4983 (too small). With equal-tempcrament tuning,
note that seven octaves are exactly the same frequency in-
terval as 12 equal-temperament fifths since 27 - (27‘”2 )'z =
128, On the other hand, 12 true fifths yield a frequency inter-
val of (3/2)' = 129.7463. Hence stretching some fifths to he
true requires that others be shrunk even maore,

Musicians who play instruments that have infinitely vari-
able tuning, such as fretless string instruments and the
trombone, as well as vocalists, have the freedom to stretch
or shrink intervals to attain just tuning ot any other tuning
scheme. However, a pianist is forced to play with the one
temperament set by the plane tuner,

There arc smaller intervals than the semitone, but the pi-
ano can't play them unless it is deliberately tuned that way.
The American composer Charles Ives wrote for a piano
tuned in quarter tones, so that two notes could be as clase
as 21 = 1,0293. Quarter tones are common in Egyptian mu-
sic, which isn't confined to the occidental accidentals.

The ultimate advantage of equal- (or approximately
e(ual-) temperament tuning over just tuning is the ability to
shift the diatonic scale up or down so that it can begin on
any semitone. There are thus 12 such shiftings of the dia-
tonic scale, or keys. For example, thekey of Fis based on the
diatonic scale FGABCDEF, whereas the key of D is based on
the diatonic scale DERIGABCID', The key of C is the only dia-
tonic scale that has no accidentals.

Since a given melody can be played in any of the 12 keys,
it is useful to be able to refer to the notes independently of
the key. This is done yy means of solfége, which uses the syl-
lables do, re, mi, fa, sol, 1a, ti, do {(pronounced doe, ray, me,
fah, sole, Jah, tea, doe, which may be familiar from The Sound
of Music). Toillustrate solfege, the melody of the theme song
from the Wizard of Oz can be described as: do, do, ti, s0l, la,
ti, do, do, la, sol, 1a, fa, mi, do, re, mi, fa, re, ti, do, re, mi, do.
Note that these syllables do not refer to absolute pitches,
since “do” can be moved to any of the 12 distinet pitches in
an octave.

With the diatonic seale structure based on the semitone in-
terval, composers have the flexibility to transpose or shift the
music into any one of the 12 keys, and transitions from one key
to another are commonplace within a single composition, Be-
cause of the sizing of musical instruments, however, different
keys tend to retain a distinctive character. For certain kinds of
music, such as jazz, the choice of keyis largely irrelevant, and
the musician is more concerned with the relative pitch values
determined by the melody and chord structure rather than the
absolute pitch values associated with any particular key. For
this purpose, solfége with movable “do” allows a musician to
focus on the melody and harmony independently of the key,
just as, in statics and dynamics, vectors can he defined inde-
pendently of a coordinate (rame,
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Harmonics

Music is bhoth a temporal and spectral art, since the com-
poscr is in cantrel of the frequency content and how it
changes from instant to instant, This kind of art is extremely
rich, since the ear can hear many frequencies at the same
time, making it possihle to hear low instruments an< high in-
struments simultaneously.

As mentioned eartier, middle C on a piano vibrates at £ =
261.625 Hz. Actually, the sounds of musical instruments are
more complicated than that. When a musical instrument
such as the piane or guitar sounds middle C, you hear not
only that frequency, that is, the fundamentai at 261.625 Hz,
but you also hear many other frequencics at the same time.
Usually these freguencies are fharmonics, or integer multi-
ples, of the fundamental. For example, the harmonics of C
are 2f. (an octave above C), 3£ (an octave and a fifth above
(), 4f; (two octaves ahove (), and 50 on. Although you can't
hear the individual harmonics, their relative strength
blends together in such a way that a plano sounds like a pi-
ang and a trumpet sounds like a trumpet.

Harmonics are present because the plano strings (not to
mention the rest of the piano) are actually vibrating at nu-
merous frequencies at the same time. These frequencies are
the imaginary parts of the elgenvalues of a matrix approxi-
mation of the string dynamics. The motion of the string is a
linear combination of the matrix eigenvectors, which corre-
spond to mode shapes of the string vibrating simulta-
neously, each at its assigned frequency. If you change the
relative strengths of the harmonics slightly, the piano might
sound like another instrument, such as a frumpet or a flute,
where the expansion and compression of air along a duct of
variable length replaces the vibration of a string. Electronic
synthesizers can imitate virtvally any musical instrument
by producing signals with prescribed harmonic content.

Most musical Instruments are based on strings and ducts
so that the spectral content of the sounds is harmenic, at
least jdeally. No real string is ideal, however, and thus the
small amount of bending stiffness in a real piano string con-
tributes to its sound character. In fact, for piano tuning, the
octaves are stretched slightly to avoid dissonance with the
slightly raised “first harmonic” of the string tuned to a pitch
one octave helow. A musical instrument based solely on a
bending heam would be nonharmonic, but few instruments
are designed this way. An exception is the xylophone, but
even in this case the wooden blocks are shaped to render
their response more harmonic.

If you want to determine the spectral content of a periodic
signal, which repeats over and over, you can decompose the
signal into a Fourier series, which is a sum of harmonically re-
lated sinusoids. [f the signal is not periodic, however, you
can think of it as a periodic signal with an infinite pertod,
and the Fourier series becomes the Fourier fransform. Both
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the Fourier scrics and the Fourier trans-

form give you information about the spec-
tral content of the signal,

In any case, what you hecar is the re-
sponse of the musical instrument to some
kind of forcing or excitation. Sometimes this
forcing is short lived, as in the case of a pi-
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tent of the excitation, An impudsive input can
excite vibrations at all frequencics, as does a
whife noise input, which is a persistent sig-
nai that has equal spectral content at all frequencies. White
noise is a pleasant sound generated by flowing water, rain,
and wind.

Rotational Motion and Units

Vibrational motion is closely related to rotational motion,
which can also he measured in terms of frequency. The sec-
ond hand of a clock has a rotational frequency of 1/60 =
0.01667 Hz, but this 18 better expressed as 1 rpm {revolution
per minute), theunit preferred by mechanical engineers. Simi-
larly, the 7-inch~liameter vinyl recards with the large hale in
the center spin at 45 rpm, the 12-inch-diameter vinyl records
with the small hole in the center spin at 33-1/3 rpm, and audio
CDs spin at 200 to 500 rpm depending an which track is being
played, Similarly, a dentist's drill turns at 400,000 ypm, a
2-foot-diameter tire on a car traveling at 60 mph spins at 810
rpm, and the earth rotates at 0,00069 rpm, Although the rota-
tion rate of the earth seems slow, it corresponds to approxi-
mately 1000 miles per hour at the equator, where you would
weigh 0.35% less than you would at the poles.

On the other hand, control engineers preter radians per
second over rpm. Hence 1 Hz, which is exactly 60 rpin, is 2=
0.28 rad/sec. Just remember that of these three units, [1z is
the largest, rpm is the smallest {one-sixtieth of a 1z}, and
rad/sec lies in between (about a sixth of a Hz and about 10
rpm). All these units have the dimensions 1/time hecause
cycle, raclian, and revolution are dimensionless ratios of arc
length to radius.

Since the unil rad/sec is so widely used in control engi-
neering, we really should have a special name for it
Actually, the name Steinmedz has been mentioned in JEEE
Spectrtn from time to time. Its abbreviation Sz has a nice
symmetry with Hz and restores to Charles Proteus
Steinmetz (1865-1923) the hanor that was his before the cps
was renamed Hz,

Returning to frequency intervals, although the semitone,
third, fifth, actave, and others are useful in music, the only
musical interval that engineers use is the actave, mostly for
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Figure 2. Mechanical specirum.

acoustic applications. For larger frequency ranges, control
engineers use the decade, which is an interval of ten. Note
that a decadeis a little more than three octaves, lig, 2 gives
the frequencies and frequency ranges for various mechani-
cal motions. Notice that human hearing spans about three
decades, or about ten octaves.

Electromagnetic Spectral Content

All the frequency domain examples [ have discusscd so far
concern mechanical motion; however, electromagnetic of-
fects can be described in the frequency domain as well. Elec-
romagnetic waves travel at the speed of light ¢, which
depends an the medium. The speed of propagation is fastest
in a vacuum and slower in other media, such as air, water,
and glass. The frequency of vibration fdepends on the wave-
length X of the electromagnetic phenomenon and the speed
of propagation ¢ of the medium according to £ = ¢/A.

Long-wavelength clectromagnetic waves are radio
waves, an¢l their frequencies can range from a few kHz (#ilo-
hertz) to 300 GHz (1 Gllz, or gisaheriz, is 10° Hz). Highor fre-
quencies are emitted by thermal motion, which we call
infrared radlation, whereas the frequencies of visible light
range from 440 THz (red light} to 730 THz (violet light),
where | THz, or terafiertz, is 10% 11z, Thus the spectrum of
visible light spans slightly less than one octave.

Humans perccive different frequencies within the visible
light spectrum as different colors. Unlike the ear, the eye has
a nondinear response to combinations of frequencies, 'or ex-
ample, the combination of green and yellow is perceived as
blue, even though no blue frequencies are present. [f alf fre-
quencies are prescnt, then no colors at all are perceived and
the image appears white. Fig. 3 gives the frequencies and fre-
quency ranges for varicus electromagnetic phenomena,

Poles and Rell-Off

Now back to poles. Roughly speaking, a pole is a complex
number that gives an indication of how a linear dynamical
system, which can be described by a linear differential equa-
tion, reacts to inputs at various frequencies. Why a complex
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Figure 3. klectromagnelic spectrum.

number? First of all, the output response of a stable system
to a sinusoidal, ar tonal, input is eventually {after a tran-
sienf) sinusoidal. In general, this tonal output will have an
amplitude and phase that are different from the amplitude
and phase of the input tone. Complex numbers keep track of
these difierences. The magnitude of the complex humber de-
termines the ratio of the tonal amplitucles (asymptotic out-
put amplitude divided by input amplitude}, whereas the
angle of the complex number determines the tonal phase
difference (phasec of the asymptotic output relative to the
phase of the sinusoidal input).

The complex numbers that relate the amplitude and
phase of the sinusoldal input and output of a linear dynami-
cal system are determined by the transfer function of the sys-
tem, which comes from the Laplace transform of the
differential cquation of the system. At agiven tonal input fre-
quency, the magnitude of the transfer function is the gain of
the transier function and its phase angle is the phase shift of
the transfer function. (The Laplace transform and the Fou-
rier transform are closely rolated. The Laplace transform is
used to represent general signals and transfer functions,
whereas the Fourier transform Is used to determine the re-
sponse to tonal or random inputs.)

The transfer function of a dynamical system may have
bath pales and zeras. Specifically, each derivative of the
state corresponds to one pole, and each derivative of the in-
put corresponds to one zero, Loosely speaking, poles are re-
lated to integration and 2eros correspond to differentiation.

A dynamical system acts like a fifter since it reacts differ-
ently to tones at different frequencies. The simplest filter,
which has one integrator and thus one pole, passes, and pos-
sihly amplifies, low-lrequency tones but is less responsive to
higher frequency tones, which are attenuated. For a periodic
or nonperiodic input signal with spectral content at varicus
frequencies, the low-frequency components are left largely
along, whereas the amplitudes of the high-irequency compo-
nents are aticnuated. A one-pole filter rolfs off at high fre-
quency, and thus it is Jow pass, More elaborate filters can be
designed by using mote integrators and thus more poles, in
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at higher frequencics. Roll-up is achieved
with zeros. A bandpass filter, which allows
an intermediate range of frequencies (o
pass, can be designed by combining low-pass and high-pass
filters.

A bandpass filter is useful for separating one radio sta-
tion from another on a crowded «ial. For example, to broad-
cast its signal, sach AM station in the United States is
allocated a irequency range of handwidth 10 kHz within the
clectromagnetic spectrum 535 to 1605 kHz. For amplitude
medulatien, the radio station modulates the amplitude of a
carrier frequency at the center of its 10-kHz frequency
range. For example, radio station WAAM in Ann Arhor, M],
modulates the carrier frequency 1600 kHz, which is located
at the center of its frequency range of 1595 to 1605 kliz. Since
amplitude modulation is cssentially a linear process, this
electromagnetlc bandwidth allows transmission of acoustic
frequencies up to 5 kHz. Consequently, AM radio stations
cannot broadcast high-fidelity music.

On the other hand, FM radio stations are allocated 150
kHz of electromagnetic spectrum bandwidth. This larger al-
location is possible because the electromagnetic spectrum
devoted to I'M radio is 87.925 to 108.075 MHz (megaferiz or
10°Hz), which is almost 20 times as much bandwidth as the
AM radio spectrum, Frequency modulation is a highly non-
linear process that uses the allocated 150-kHz bandwidth to
transmit acoustic frequencies up to 15 kHz. Altheugh ampi-
tude madulation would use only 30 kHz to transmit the same
acoustic frequency range, frequency medulation is able te
use this wider bandwidth advantageously to suppress the
effects of noise,

To be useful, arcceiver must he sure to allow only the sig-
nal from vne station to pass through the circuit (whether it's
an AM or FM signal). A bandpass filter is used to pass the fre-
quencics of the desired station while attenuating the signals
from all other stations, which may be transmitted at higher
or lower frequencies than the signal of the desired station.
The more poles and zeros a filter has, the sharper the roll-up
and rofl-off are, and thus the better the ability of the radio to
capture one station and reject the others.

Theroll-off of a single-pole filter is proportional to the re-
ciprocal of frequency at asymptotically high frequency.
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Therefore, at high frequency, the gain of a single-pole filter
decreases by a factor of 2 per octave and a factor of 10 per
decade. For convenicence, filter roll-off is expressed in dB
(decibels) per frequency interval, which is calculated as 20
times the basc-10 logarithm ol the ratio of gains of the filter
transfer function at the enclpoints of the frequency interval.
At asymptotically high frequencies, one pole thus rolls off at
20log 2 = 6.0206 = 6 dB per octave or 20log10a 20 dB per de-
cade. A filter with twa poles rolls off asymptotically at 40 d3
per decade or 12 dB per octave. Not ta slight the other musi-
cal intervals, a single-pole filter rolls off asymptotically at
20log2'%y = 0.5017 = 1/2 dR per semitone or 20lag(3/2) ~
3.522 dB per fifth.

If these roll-off rates are hard to remember, you might
prefer to work with a frequency interval that is chosen so
that a single-pole filter rolls off asymptotically by exactly 1
dB over the span ¢f the interval. Thespan of such aninterval
is 1017 1.1220¢, which is slightly less thavn a tfrue musical
secand 9/8 = 1.125 or two semitones (274 - 21611225, An
appropriate name for the frequency interval 104 s the
Armstrong, after Edwin ., Armstrong (1890-1954), who in-
vented a positive-feadback oscillator that was critical to the
development of radio. Armstrong later invented the supet-
heterodyne radio circuit, which survived the transition
from tubes to transistors, a vemarkable testament to an in-
novative idea.

To compute asymptotic (high-frequency) roll-off rates,
simply note that one pole rolls off at exactly 20 dB per de-
cade or approximately 6 dB per octave or exactly 1 dB per
Armstrong. For more poles, simply multiply these numbers
by the number of poles. Finally, to compute the interval
I(f £, of the frequency range £ to £, in these various dimen-
sions, you can use the formulas

(4 H)=log,, -E-dccadcs

1

I,
=log, Loctaves
f

=20log,, %/\rmstmngs.
I

For example, the FM broadceast hand, which occupies 20.150
MHz of the electromagnetic spectrum, represents an inter-
val of 20log(108.075/87.925) ~ 1.79 Armstrongs, Hence a
faur-pole filter asymptotically rolls off 7.17 dB over a fre-
guency interval as wide as the FM broadcast band.
Armstrong was also the inventor of high-fidelity FM ra-
dio. In fact, the U.S. Federal Communications Commission
(FCC) established the frequency range 42 to 50 MHz for FM
radio reception, and Armstrong designed receivers and de-
velopod FM radic stations in the 1940s, Unfortunately, his
work was so threatening to the AM radio industry that, in
1945, the FCC was persuaded to reassign the FM frequency
allocation to the fledgling television industry. (Hlowever, no
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television channel was ever cstablished there, which is why
there 1s no Channel 1. Check any TV to confirm this.) Conse-
quently, the half million owners of FM radios that Armstrong
designed had nothing to listen to, and the 50 I'M radio sta-
tions in operation had no one to broadeast to. T'o add insult
to injury, RCA, the lcading developer of TV {and owner of
many AM radio stations), infringed on Armstrong’s 'V pat-
ents as it adopted I'M for the sound transmission system for
television. Armstrong was vindicated posthumously in liti-
gation that continued until 1967,

Control Engineering and the Frequency Domain
The frequency domain provides a powerful setting for ana-
lyzing the stahility and performance of fecdback control
systems. A feedback controller is cssentially a filter whose
gain and phasc are chosen to modify the response of the
controlled system. Large gains are desirable to reduce sen-
sitivity to system uncertainty and to help the system rcject
disturbances. But there is a danger in the use of feedback,
namely, instability, which is the fault of excessive gain or in-
correct controller phase. Instability occurs when at least
one pote of the closed-loop system is in the wrong place and
the closed-loop system has, in effect, infinite gain, A com-
mon example of instability is the squeal that occurs when a
microphone is placerd near a speaker. The acoustic path
from speaker to microphone closes a fecdback loop that in-
volves a delay, or phase shift, which destabilizes the
clesed-loop system.

Conclusion

When you hear music and see color, you are experiencing
the frequency domain, It is all around yvou, just like the time
domain, With this guide to the frequency demain, [hope you
will find it a less mysterious and more exciting place,
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Author’s Note

As control engineers, we have a special stake in the fre-
quency domain. It is hard to imagine contro! system analy-
sis confined to the time domain. In this article, [ have
attempted to show that the frequency domain plays an im-
portant role in numerous areas of scichce and technolegy,
from music to raclio to vision. I came from a musical family,
and [ spent a tot of time learning to play a musical instrument
(the clarinet). But my fascination with mathematics and
technology and the desire to know frow things work led me
1o a career in engineering. Like musicians, engineers en-
hanece the quality of life in innumerable ways, and it is unfor-
tunate that engincering is taken for granted and remains
invisible to society as a whole. This is something to think
about the next time you listen to jazz on FM.
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