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A transmissibility is a relationship between signals of the same type, where the input and
the output of the transmissibility are outputs of the underlying system. Transmissibility
estimates are traditionally obtained using frequency-domain methods, which are based
on the assumption that the input and output signals are stationary, and thus initial

framework for SISO and MIMO transmissibilities that accounts for nonzero initial
conditions for both force-driven and displacement-driven structures. We show that
transmissibilities in force-driven and displacement-driven structures are equal when
the locations of the forces and prescribed displacements are identical. We present three
examples to illustrate this equality.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Structural vibration is most commonly modeled as the displacement, velocity, or acceleration response to a force input.
Assuming that the dynamics are linear, lumped models of structural vibration with multiple degrees of freedom typically
have the form of matrix differential equations with inertia, damping, and stiffness coefficients [1]. In the frequency domain,
these force-driven outputs are modeled by compliance, admittance, and inertance transfer functions. Alternatively,
a transfer function can relate displacements at different locations on a structure. The resulting transfer function is called
a motion transmissibility [2,3]. Velocity and acceleration signals can also be considered instead of displacements. These
concepts extend directly to rotational variables, where “torque” replaces “force.”

It is also possible to define a force transmissibility, and the relationship between force and motion transmissibilities is
discussed in [4,5]. In the present paper, force transmissibility is not considered, and the term “transmissibility” refers to
motion transmissibility.

In the most common setup, the transmissibility involves the motion of the point at which the force is prescribed. A more
general notion of transmissibility arises in the case where neither of the displacement measurements coincides with the
location of the applied force. This situation is of interest in applications where the applied force is unknown. Except for the
case where one of the measurements is located at a node of a mode, the resulting transmissibility captures information
about only the zeros (anti-resonances) in the structural response, and thus information about the modal resonances is not
included in the model.
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The potential usefulness of transmissibilities for applications such as damage detection [6–9] has led to increased interest
in their properties. In [10–12], transmissibilities are used to update modal models, while computation and identification of
transmissibilities is discussed in [13–15]. Transmissibilities are used in [16] to analyze the effects of structural coupling.
Multi-input, multi-output (MIMO) transmissibilities are considered in [17], while the effect of distributed forces is analyzed
in [15]. Finally, transmissibilities play a role in “operational modal analysis” [10,18], which assumes stationary excitation.

A common feature of the treatment of transmissibilities in [1–3,5,6,9–13,17] is that these models are expressed in the
frequency-domain. For identification purposes, these transfer functions can be estimated by computing the Fourier
transforms of the measured signals, and thus the effect of nonzero initial conditions is ignored. To account for initial
conditions, the present paper focuses on time-domain transmissibility models [19–22,24]. These models provide the
foundation for time-domain identification methods.

The development of time-domain transmissibility models requires special attention to the cancellation of poles in the
underlying structural model as well as the role of the initial conditions. The resulting model is not an input–output model
in the usual sense, and therefore the notions of free and forced response do not apply. These issues were considered in
[19–21,24] in terms of “pseudo transfer functions.”

Unlike the discrete-time models given in [19–21], the results in the present paper are developed in continuous time.
This setting facilitates the analysis of transmissibilities of structures. Furthermore, the present paper also considers
transmissibilities arising from displacement-driven structures and shows that the force- and displacement-driven
transmissibilities are equal when the locations of the force and prescribed displacement are identical. Together, these
developments provide the foundation for a time-domain framework for transmissibilities that accounts for nonzero initial
conditions.

The contents of the paper are as follows. In Section 2 we show a numerical comparison between time-domain and
frequency-domain identification methods under nonzero initial conditions. In Section 3 and Section 4 we derive SISO and
MIMO time-domain models for transmissibility operators in force-driven structures, respectively. In Section 5 we consider
displacement-driven structures, while in Section 6 and Section 7 we derive SISO and MIMO time-domain models for
transmissibility operators in displacement-driven structures, respectively. In Section 8 we show the equality of transmis-
sibilities of force-driven and displacement-driven structures with identical inputs and outputs when the force and the
prescribed motion are applied to the same location. We introduce examples in Section 9. Finally, we present conclusions and
future research in Section 10.

2. Effects of nonzero initial conditions on estimating frequency response functions

Transmissibility estimates are traditionally obtained using frequency-domain methods [2,3,5,6,9–13,17], which are based
on the assumption that the response of the system consists entirely of the forced response and thus the free response is
zero. For asymptotically stable systems, the free response decays exponentially, which suggests that measurements of the
forced response can be obtained by using only data obtained after the free response is approximately zero. However, as
shown in the following example, at the time at which data collection begins, there is a possibly nonzero initial condition,
which can degrade the accuracy of frequency-domain identification.

Example 1. Consider the discrete-time asymptotically stable system S with the state-space realization

A¼ �0:5 0:2
0 0:7

� �
; B¼ 4

1

� �
; C ¼ ½1:25 �3�; D¼ 0: (1)

Let xðkÞAR2 be the state vector and thus xð0Þ is the initial state. Let u0AR1�N be a realization of a stationary white random
process with the Gaussian distribution N ð0;1Þ: Define the input u9 ½u0 u0�AR1�2N ; that is, u is formed by repeating u0.
Consider zero initial conditions, that is, xð0Þ ¼ 0; and define yðkÞ9CxðkÞ: If we split yAR1�2N into two halves, then the first
half of y is the response of S due to the input u0 and the zero initial condition xð0Þ, while the second half of y is the response
of S due to the input u0 and the possibly nonzero initial condition xðNÞ. Fig. 1 shows a plot of the difference yðkÞ�yðkþNÞ;
where k¼ 0;…;N�1 and N¼500 time steps for a given realization u0. Note that despite the initial condition xð0Þ ¼ 0, the
difference yðkÞ�yðkþNÞ is not zero due to the fact that x(N), which is the initial state when data collection begins at time
k¼N, is not zero.
Next, define YN;L9 ½yðNÞ⋯yðNþL�1Þ�AR1�L and UN;L9 ½uðNÞ⋯uðNþL�1Þ�AR1�L; and define ML92p; where p is the

smallest integer such that 2pZL: For all j¼ 1;…;ML; let SðeEθj Þ be the frequency response of S at frequency θj where
E9

ffiffiffiffiffiffiffiffi
�1

p
. Moreover, for all j¼ 1;…;ML; let

ŜN;L eEθj
� �

9
1
r

Xr

i ¼ 1

ŜN;L;i eEθj
� �

; (2)

where r is the number of runs and ŜN;L;iðeEθj Þ is the estimated value of SðeEθj Þ obtained from the ith run using either
frequency-domain or time-domain identification. For frequency-domain identification, ŜN;L;iðeEθj Þ is obtained by finding the
ratio of the cross power spectral density of YN;L and UN;L to the power spectral density of UN;L for the ith run. For time-
domain identification, ŜN;L;iðeEθj Þ is obtained by finding the frequency response of the estimated model obtained using least



Fig. 1. Plot of the difference yðkÞ�yðkþNÞ for the system S with the realization Eq. (1), where k¼ 0;…;50; N¼500, u¼ ½u0 u0� is the input, and xð0Þ ¼ 0 is
the initial state. This plot shows that the difference yðkÞ�yðkþNÞ is not zero due to the fact that x(N), which is the initial state of the system when we start
collecting data at time k¼N, is not zero.
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squares identification with the time-domain data UN;L and YN;L: Define the error

eN;L9
XML

j ¼ 1

jSðeEθj Þj�jŜN;LðeEθj Þj
� �2

0
@

1
A

1=2

: (3)

Fig. 2 shows a plot of eN;L when using time-domain identification with L¼10,000 time steps and N varies from 1 to 1000.
Moreover, Fig. 2 shows a plot of eN;L when using frequency-domain identification with L¼10,000 and L¼100,000 time steps
and N varies from 1 to 1000. The initial condition is x(0) ¼ [1000 1000]T. Note from Fig. 2 that the FRF estimates obtained
using time-domain identification are much better than the FRF estimates obtained using frequency-domain identification.
Moreover, although we are using noise-free data, Fig. 2 shows that waiting for the free response to decay does not help the
FRF estimates obtained using frequency-domain identification to converge to the true values. This is partly due to the
nonzero initial condition xðNÞ; which occurs at the instant that data collection begins, and thus corrupts the estimates when
using finite data sets. On the other hand, Fig. 2 shows that the FRF estimates obtained using time-domain identification are
not affected by the nonzero initial conditions. It can be seen that the significance of the transients depends on the
magnitude of the initial state relative to the magnitude of the state under stationary conditions.

Another issue with frequency-domain identification techniques is leakage errors, which are unavoidable in the case of
aperiodic random excitations [23]. Theorem 2.6 in [23] shows that leakage errors decrease as the number of samples
increases, but it is not guaranteed that the leakage errors are small for finite data sets. Example 2.7 in [23] shows that
leakage errors can be interpreted as a transient effect, that is, as the effect of a nonzero initial condition. Leakage errors can
be avoided by using periodic excitation and measurements of an integer number of periods, which cannot be achieved if the
excitation signal cannot be specified.

Motivated by the advantages of time-domain identification techniques over frequency-domain identification techniques,
in the following we develop a time-domain framework for SISO and MIMO transmissibilities that accounts for nonzero
initial conditions for both force-driven and displacement-driven structures.

3. SISO transmissibilities in force-driven structures

Consider a lumped force-driven structure (FDS) consisting of masses m1;…;mn connected by springs modeled by

M €qðtÞþKqðtÞ ¼ f bðtÞ; (4)

where M9diagðm1;…;mnÞARn�n is the positive-definite mass matrix, KARn�n is the positive-definite stiffness matrix,
qðtÞ9 q1ðtÞ ⋯ qnðtÞ

� �TARn is the vector of mass displacements, and f bðtÞ9buðtÞ ¼ f 1ðtÞ ⋯ f nðtÞ
� �TARn is the vector of forces,

where bARn is a nonzero vector, u(t) is a scalar force, and fi(t) is the force applied to the ith mass. Let cAR1�n be nonzero
and consider the scalar output

qcjbu9cq; (5)

where qcjbu denotes the output cq with the driving force bu. Note that qeTi;n jbu ¼ eTi;nq¼ qi, where ei;nARn is the ith unit vector.
Next, let wi;woAR1�n and define

yi9qwijbu ¼wiq; (6)

yo9qwojbu ¼woq: (7)



Fig. 2. Plot of eN;L using time-domain identification with L¼10,000 time steps and frequency-domain identification with L¼10,000 and L¼100,000 time
steps, N varies from 1 to 1000, and r¼100 runs. The initial condition is xð0Þ ¼ ½1000 1000�T : Note that the FRF estimates obtained using time-domain
identification are much better than the FRF estimates obtained using frequency-domain identification. Moreover, waiting for the free response to decay
does not help the FRF estimates obtained using frequency-domain identification to converge to the true values, whereas the FRF estimates obtained using
time-domain identification are not affected by the nonzero initial conditions.
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The goal is to obtain a transmissibility function relating yi and yo that is independent of the initial conditions qð0Þ and _qð0Þ as
well as the input u. As a first attempt at obtaining such a function, transforming Eq. (4) to the Laplace domain yields

ðs2MþKÞq̂ðsÞ�sMqð0Þ�M _qð0Þ ¼ bûðsÞ; (8)

where q̂ðsÞ and ûðsÞ are the Laplace transforms of q(t) and u(t), respectively. Therefore,

q̂ðsÞ ¼ ðs2MþKÞ�1bûðsÞþðs2MþKÞ�1Mðsqð0Þþ _qð0ÞÞ: (9)

It follows from Eqs. (6), (7) and (9) that the Laplace transforms of yi and yo are given by

ŷiðsÞ ¼wiðs2MþKÞ�1bûðsÞþwiðs2MþKÞ�1Mðsqð0Þþ _qð0ÞÞ; (10)

ŷoðsÞ ¼woðs2MþKÞ�1bûðsÞþwoðs2MþKÞ�1Mðsqð0Þþ _qð0ÞÞ; (11)

respectively, and thus

ŷoðsÞ
ŷiðsÞ

¼woðs2MþKÞ�1bûðsÞþwoðs2MþKÞ�1Mðsqð0Þþ _qð0ÞÞ
wiðs2MþKÞ�1bûðsÞþwiðs2MþKÞ�1Mðsqð0Þþ _qð0ÞÞ

: (12)

Note that, if qð0Þ and _qð0Þ are zero, then ûðsÞ can be cancelled in Eq. (12), and ŷoðsÞ and ŷiðsÞ are related by a transmissibility
that is independent of the input. However, if either qð0Þ or _qð0Þ is not zero, then ûðsÞ cannot be canceled in Eq. (12), and an
input-independent transmissibility cannot be obtained.

Alternatively, we consider a time-domain analysis using the differentiation operator p¼ d=dt instead of the Laplace
variable s. It follows that Eq. (4) can be written as

ðp2MþKÞqðtÞ ¼ buðtÞ: (13)

Multiplying Eq. (6) by the polynomial δðpÞ9detðp2MþKÞ and using the fact that

δðpÞIn ¼ adjðp2MþKÞðp2MþKÞ (14)

yields the differential equation

δðpÞyiðtÞ ¼wiδðpÞInqðtÞ
¼wiadjðp2MþKÞðp2MþKÞqðtÞ
¼wiadjðp2MþKÞðM €qðtÞþKqðtÞÞ

¼wiadjðp2MþKÞbuðtÞ: (15)

Similarly,

δðpÞyoðtÞ ¼woadjðp2MþKÞbuðtÞ: (16)

For convenience, we define the notation

Gwi ;bðpÞ9wiðp2MþKÞ�1b; (17)
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Gwo ;bðpÞ9woðp2MþKÞ�1b: (18)

Using Eqs. (17) and (18) we can rewrite Eqs. (15) and (16) as

yiðtÞ ¼ Gwi ;bðpÞuðtÞ; (19)

yoðtÞ ¼ Gwo ;bðpÞuðtÞ; (20)

respectively. Note that Eqs. (19) and (20) are interpreted as the differential equations Eqs. (15) and (16), respectively.
Note that Eqs. (10), (11), (19), and (20) include the free response due to qð0Þ and _qð0Þ as well as the forced response due to

u. In the subsequent analysis, we omit the argument “t” where no ambiguity can arise.
Define the polynomials

ηoðpÞ9wo adjðp2MþKÞb; (21)

ηiðpÞ9wi adjðp2MþKÞb: (22)

If Gwi ;b and Gwo ;b are obtained from minimal state-space realizations, then δðpÞ is coprime relative to both ηiðpÞ and ηoðpÞ.
Moreover, it follows from Eqs. (17) to (20) that

yi ¼ Gwi ;b pð Þu¼ ηiðpÞ
δðpÞu; (23)

yo ¼ Gwo ;b pð Þu¼ ηoðpÞ
δðpÞ u: (24)

Next, it follows from Eqs. (23) and (24) that

ηoðpÞδðpÞyi ¼ ηoðpÞηiðpÞu;

ηiðpÞδðpÞyo ¼ ηiðpÞηoðpÞu;
and thus

ηiðpÞδðpÞyo ¼ ηoðpÞδðpÞyi: (25)

Definition 1. The transmissibility operator from yi to yo is the operator

T F
wo ;wi jb pð Þ9δðpÞηoðpÞ

δðpÞηiðpÞ
: (26)

Hence, Eq. (25) can be written as

yo ¼ T F
wo ;wi jbðpÞyi: (27)

Note that Eq. (26) is independent of the input u. Because (26) is expressed in terms of the differentiation operator p and not
the complex number s, it is a time-domain model of the differential equation (25) and thus it accounts for nonzero initial
conditions. However, Eq. (26) is not a transfer function. In the case qð0Þ ¼ 0 and _qð0Þ ¼ 0, it follows from Eq. (12) that p in
Eq. (27) can be replaced by s to obtain

ŷoðsÞ ¼ T F
wo ;wijbðsÞŷiðsÞ; (28)

where T F
wo ;wijbðsÞ is a possibly improper rational function. However, if qð0Þ or _qð0Þ is not zero, then p cannot be replaced by s

in Eq. (27).
Unlike common factors in the complex number s, common factors in the differentiation operator p cannot always be

cancelled, as shown in the following example.

Example 2. Consider the signals yiðtÞ ¼ 1 and yoðtÞ ¼ 1þe� t : Operating on yi(t) and yo(t) with pþ1 yields
ðpþ1ÞyiðtÞ ¼ _yiðtÞþyiðtÞ ¼ 1¼ _yoðtÞþyoðtÞ ¼ ðpþ1ÞyoðtÞ. Hence ðpþ1Þyi ¼ ðpþ1Þyo. However, yiayo.

Despite Example 2, the following theorem shows that the common factor δðpÞ in (26) can be cancelled without excluding
any solutions of Eq. (25).

Theorem 1. yi and yo satisfy

yo ¼
ηoðpÞ
ηiðpÞ

yi: (29)

Proof. See [24]. □
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It follows from Theorem 1 that

yo ¼ T F
wo ;wijbðpÞyi; (30)

where the transmissibility operator in Eq. (26) is redefined as

T F
wo ;wijb pð Þ9ηoðpÞ

ηiðpÞ
¼wo adjðp2MþKÞb

wi adjðp2MþKÞb : (31)

Note that T F
wo ;wijbðpÞ is not necessarily proper, and the polynomials wo adjðp2MþKÞb and wi adjðp2MþKÞb are not

necessarily coprime.

4. MIMO transmissibilities in force-driven structures

Consider the lumped MIMO force-driven structure

M €qðtÞþKqðtÞ ¼ FBðtÞ; (32)

where M;K , and q are as defined in Eq. (4), and

FB9BuðtÞ; (33)

where

B9 ½b1 ⋯ bm�; uðtÞ9 ½u1ðtÞ ⋯ umðtÞ�T; (34)

and, for all iAf1;…;mg; biARn and ui is a scalar force.
Consider p outputs for Eq. (32). Let WiARm�n;WoARðp�mÞ�n and define

yi9qWi jbu ¼WiqARm; (35)

yo9qWojbu ¼WoqARp�m: (36)

The goal is to obtain a transmissibility function relating yi and yo that is independent of both the initial conditions qð0Þ and
_qð0Þ, as well as the input u.

Multiplying Eqs. (35) and (36) by δðpÞ and following the procedure used to derive Eqs. (15) and (16) yields

δðpÞyi ¼Wi adjðp2MþKÞBu; (37)

δðpÞyo ¼Wo adjðp2MþKÞBu: (38)

For convenience, we define

GWi ;BðpÞ9Wiðp2MþKÞ�1B; (39)

GWo ;BðpÞ9Woðp2MþKÞ�1B; (40)

and rewrite Eqs. (37) and (38) as

yi ¼ GWi ;BðpÞu; yo ¼ GWo ;BðpÞu; (41)

respectively, which are interpreted as the differential Eqs. (37) and (38), respectively. Note that Eq. (41) includes the free
response due to qð0Þ and _qð0Þ as well as the forced response due to u.

Defining the polynomial matrices

ΓiðpÞ9Wi adjðp2MþKÞBARm�m½p�; (42)

ΓoðpÞ9Wo adjðp2MþKÞBARðp�mÞ�m½p�; (43)

we can rewrite Eqs. (37) and (38) as

δðpÞyi ¼ΓiðpÞu; (44)

δðpÞyo ¼ΓoðpÞu; (45)

respectively. Multiplying Eq. (44) by adj ΓiðpÞ from the left yields

δðpÞ adj ΓiðpÞyi ¼ ½adj ΓiðpÞ�ΓiðpÞu¼ detΓiðpÞu: (46)

Next, multiplying Eq. (45) by det ΓiðpÞ yields

½det ΓiðpÞ�δðpÞyo ¼ ½detΓiðpÞ�ΓoðpÞu: (47)
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Substituting the left hand side of Eq. (46) in Eq. (47) yields

δðpÞdet ΓiðpÞyo ¼ δðpÞΓoðpÞadj ΓiðpÞyi: (48)

Definition 2. Assume that det ΓiðpÞ is not the zero polynomial. Then, the transmissibility operator from yi to yo is the
operator

T F
Wo ;WijB pð Þ9 δðpÞ

δðpÞdet ΓiðpÞ
Γo pð Þadj Γi pð Þ ¼ δðpÞ

δðpÞΓo pð ÞΓ�1
i pð Þ: (49)

Note that Eq. (49) is independent of the input u and the initial condition qð0Þ and _qð0Þ. Using Eq. (49), the differential
Eq. (48) can be written as

yo ¼ T F
Wo ;Wi jBðpÞyi: (50)

The following theorem shows that the common factor δðpÞ in Eq. (49) can be cancelled without excluding any solutions
of Eq. (48).

Theorem 2. Assume that det ΓiðpÞ is not the zero polynomial. Then, yi and yo satisfy

yo ¼
1

det ΓiðpÞ
Γo pð Þ adj Γi pð Þ� �

yi ¼Γo pð ÞΓ�1
i pð Þyi: (51)

Proof. See [24]. □

It follows from Theorem 2 that

yo ¼ T F
Wo ;Wi jBðpÞyi; (52)

where the transmissibility operator Eq. (49) is redefined as

T F
Wo ;Wi jBðpÞ9ΓoðpÞΓ�1

i ðpÞ: (53)

Note that each entry of T F
Wo ;WijBðpÞ is a rational operator that is not necessarily proper and whose numerator and

denominator are not necessarily coprime.

5. Modeling displacement-driven structures

Consider a displacement-driven structure (DDS), where mk is the driven mass, and thus

qkðtÞ ¼ qk;dðtÞ; (54)

where qk;dðtÞ is the prescribed motion ofmk. This prescribed motion requires applying a suitable force as in Eq. (4). Removing
the kth equation from Eq. (4) yields

M½k;�� €qðtÞþK ½k;��qðtÞ ¼ 0; (55)

whereM½k;��ARðn�1Þ�n and K ½k;��ARðn�1Þ�n areM and K, respectively, with the kth row removed. It follows that Eq. (55) can be
written as

M½k;k� €q ½k� þK ½k;k�q½k� ¼ �K ½k;��ek;nqk;d; (56)

whereM½k;k�ARðn�1Þ�ðn�1Þ and K ½k;k�ARðn�1Þ�ðn�1Þ are M and K, respectively, with both the kth row and kth column removed,
and q½k� is q with the kth row removed. Writing Eq. (56) in terms of the differentiation operator p yields

p2M½k;k� þK ½k;k�
	 


q½k� ¼ �K ½k;��ek;nqk;d: (57)

Suppose now that d masses are displacement-driven, where 1rdrn�2; and let D9fk1;…; kdg be the set of
displacement-driven masses. Then, using the same procedure used to obtain Eq. (56) we obtain

p2M½D;D� þK ½D;D�
	 


q½D� ¼ �K ½D;��½ek1 ;n ⋯ ekd ;n�
qk1 ;d
⋮

qkd ;d

2
64

3
75; (58)

whereM½D;D�ARðn�dÞ�ðn�dÞ and K ½D;D�ARðn�dÞ�ðn�dÞ are M and K with rows k1;…; kd removed and columns k1;…; kd removed,
K ½D;�� is K with rows k1;…; kd removed, and q½D� is q with rows k1;…; kd removed.
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6. SISO transmissibilities in displacement-driven structures

Define the output

qd;cjek;n 9cIn½�;k�q½k�; (59)

where In½�;k� ARn�ðn�1Þ is the identity matrix InARn�n with the kth column removed. Thus, qd;cjek;n is a linear combination of all
position states qi; i¼ 1;…;n; iak, assuming that the kth mass is displacement-driven. Let wi;woAR1�n and define

yi;d9qd;wijek;n ¼wiIn½�;k�q½k�; (60)

yo;d9qd;wojek;n ¼woIn½�;k�q½k�: (61)

Following the procedure used to derive Eqs. (15) and (16) we can show that

δdðpÞyi;d ¼ �wiIn½�;k�adj p2M½k;k� þK ½k;k�
	 


K ½k;��ek;nqk;d; (62)

δdðpÞyo;d ¼ �woIn½�;k�adj p2M½k;k� þK ½k;k�
	 


K ½k;��ek;nqk;d; (63)

where δdðpÞ9 det p2M½k;k� þK ½k;k�
	 


. For convenience, we define the notation

Gd;wi ;ek;n ðpÞ9�wiIn½�;k� p2M½k;k� þK ½k;k�
	 
�1

K ½k;��ek;n; (64)

Gd;wo ;ek;n ðpÞ9�woIn½�;k� p2M½k;k� þK ½k;k�
	 
�1

K ½k;��ek;n: (65)

Using Eqs. (64) and (65) we can rewrite Eqs. (62) and (63) as

yi;d ¼ Gd;wi ;ek;n pð Þqk;d ¼
ηi;dðpÞ
δdðpÞ

qk;d; (66)

yo;d ¼ Gd;wo ;ek;n pð Þqk;d ¼
ηo;dðpÞ
δdðpÞ

qk;d; (67)

respectively, where

ηi;dðpÞ9�wiIn½�;k�adj p
2M½k;k� þK ½k;k�

	 

K ½k;��ek;n; (68)

ηo;dðpÞ9�woIn½�;k�adj p2M½k;k� þK ½k;k�
	 


K ½k;��ek;n; (69)

are polynomials in p. It follows from (66) and (67) that

ηo;dðpÞδdðpÞyi;d ¼ ηo;dðpÞηi;dðpÞqk;d;

ηi;dðpÞδdðpÞyo;d ¼ ηi;dðpÞηo;dðpÞqk;d;

and thus

ηi;dðpÞδdðpÞyo;d ¼ ηo;dðpÞδdðpÞyi;d: (70)

Definition 3. The transmissibility operator from yi;d to yo;d is the operator

T D
wo ;wi jek;n pð Þ9δdðpÞηo;dðpÞ

δdðpÞηi;dðpÞ
:

Hence, Eq. (70) can be written as

yo;d ¼ T D
wo ;wijek;n ðpÞyi;d: (71)

As in Section 3, it can be shown that δdðpÞ can be cancelled without excluding any solutions of Eq. (70), that is,
T D

wo ;wi jek;n ðpÞ in Eq. (71) can be redefined as

T D
wo ;wi jek;n pð Þ9ηo;dðpÞ

ηi;dðpÞ
¼woIn½�;k�adj p2M½k;k� þK ½k;k�

	 

K ½k;��ek;n

wiIn½�;k�adj p2M½k;k� þK ½k;k�
	 


K ½k;��ek;n
: (72)

Note that T D
wo ;wi jek;n ðpÞ is not necessarily proper, and the polynomials ηo;dðpÞ and ηi;dðpÞ are not necessarily coprime.
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7. MIMO transmissibilities in displacement-driven structures

Consider a DDS, where mk1 ;…;mkd are the displacement-driven masses, 1rdrn�2. Define the output qd;CjeD;n ARp by

qd;CjeD;n 9CIn½�;k�q½D�; (73)

where CARp�n, D9fk1;…; kdg, and eD;n9 ½ek1 ;n … ekd ;n�. Hence, Eq. (73) is a vector whose components are linear
combinations of all qi; iAf1;…;ng\D. Let WiARd�n;WoARðp�dÞ�n and define

yi;d9qd;WijeD;n ¼WiIn½�;D�q½D�; (74)

yo;d9qd;WojeD;n ¼WoIn½�;D�q½D�: (75)

Following the procedure used to derive Eqs. (15) and (16) yields

ΔdðpÞyi;d ¼ �WiIn½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��eD;nqD;d; (76)

ΔdðpÞyo;d ¼ �WoIn½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��eD;nqD;d; (77)

where ΔdðpÞ9 det p2M½D;D� þK ½D;D�
	 


AR½p� and qD;d9 ½qk1⋯qkd �TARd. Using the notation

Gd;Wi ;eD;n ðpÞ9�WiIn½�;D� p2M½D;D� þK ½D;D�
	 
�1

K ½D;��eD;n; (78)

Gd;Wo ;eD;n ðpÞ9�WoIn½�;D� p2M½D;D� þK ½D;D�
	 
�1

K ½D;��eD;n; (79)

we can rewrite (76) and (77) as

yi;d ¼ Gd;Wi ;eD;n ðpÞqD;d; (80)

yo;d ¼ Gd;Wo ;eD;n ðpÞqD;d; (81)

which are interpreted as the differential Eqs. (76) and (77), respectively. Note that Eqs. (80) and (81) include the free
response due to q½D�ð0Þ and _q ½D�ð0Þ as well as the forced response due to qD;d. Defining

Γi;dðpÞ9�WiIn½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��eD;nARd�d½p�; (82)

Γo;dðpÞ9�WoIn½�;D�adj p
2M½D;D� þK ½D;D�

	 

K ½D;��eD;nARðp�dÞ�d½p�; (83)

we can rewrite Eqs. (76) and (77) as

ΔdðpÞyi;d ¼Γi;dðpÞqD;d; (84)

ΔdðpÞyo;d ¼Γo;dðpÞqD;d: (85)

Multiplying Eq. (84) by adj Γi;dðpÞ from the left yields

adj Γi;dðpÞΔdðpÞyi;d ¼ adj Γi;dðpÞΓi;dðpÞqD;d ¼ det Γi;dðpÞqD;d: (86)

Next, multiplying Eq. (85) by det Γi;dðpÞ yields
det Γi;dðpÞ
� �

ΔdðpÞyo;d ¼ det Γi;dðpÞ
� �

Γo;dðpÞqD;d: (87)

Substituting the left hand side of Eq. (86) into Eq. (87) yields

ΔdðpÞdet Γi;dðpÞyo;d ¼ΔdðpÞΓo;dðpÞadj Γi;dðpÞyi;d: (88)

Definition 4. Assume that det Γi;dðpÞ is not the zero polynomial. The transmissibility operator from yi;d to yo;d is the operator

T D
Wo ;WijeD;n pð Þ9 ΔdðpÞ

ΔdðpÞdet Γi;dðpÞ
Γo;d pð ÞadjΓi;d pð Þ ¼ΔdðpÞ

ΔdðpÞ
Γo;d pð ÞΓ�1

i;d pð Þ:

Hence, Eq. (88) can be written as

yo;d ¼ T D
Wo ;WijeD;n ðpÞyi;d: (89)

As in Section 4, it can be shown that ΔdðpÞ can be cancelled without excluding any solutions of Eq. (88), that is,
T D

Wo ;Wi jeD;n ðpÞ in Eq. (89) can be redefined as

T D
Wo ;WijeD;n ðpÞ9Γo;dðpÞΓ�1

i;d ðpÞ: (90)
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8. Equality of motion transmissibilities in force-driven and displacement-driven structures

8.1. Equality of SISO motion transmissibilities in force-driven and displacement-driven structures

Define wo;k and wi;k to be wo and wi, respectively, with the kth component replaced by zero. The following result shows
that the SISO transmissibilities of force-driven and displacement-driven structures with identical inputs and outputs and
with the force and the prescribed motion applied to the same location are identical. This result is somewhat surprising since
the specified displacement of a mass could be perceived as introducing a node.

Theorem 3. The SISO force-driven and displacement-driven transmissibilities are equal, that is,

T F
wo;k ;wi;k jek;n ðpÞ ¼ T D

wo;k ;wi;k jek;n ðpÞ: (91)

Proof. It follows from Eq. (72) that

T D
wo ;wijek;n pð Þ ¼woIn½�;k�adj p2M½k;k� þK ½k;k�

	 

K ½k;��ek;n

wiIn½�;k�adj p2M½k;k� þK ½k;k�
	 


K ½k;��ek;n
: (92)

From Eq. (A.1) in Appendix A we have

wo;kIn½�;k�adj p
2M½k;k� þK ½k;k�

	 

K ½k;��ek;n ¼ �wo;kadj p2MþK

	 

ek;n; (93)

wi;kIn½�;k�adj p
2M½k;k� þK ½k;k�

	 

K ½k;��ek;n ¼ �wi;kadj p2MþK

	 

ek;n: (94)

Using Eqs. (93) and (94), Eq. (92) yields

T D
wo;k ;wi;k jek;n pð Þ ¼wo;kadj p2MþK

	 

ek;n

wi;kadj p2MþK
	 


ek;n
: (95)

Replacing wo, wi, and b in Eq. (31) with wo;k, wi;k, and ek;n, respectively, yields

T F
wo;k ;wi;k jek;n pð Þ ¼wo;kadjðp2MþKÞek;n

wi;kadjðp2MþKÞek;n
: (96)

Hence, Eqs. (95) and (96) yield Eq. (91). □

8.2. Equality of MIMO motion transmissibilities in force-driven and displacement-driven structures

Define Wo;D and Wi;D to be Wo and Wi, respectively, with the kth1 ;…; kthd columns replaced by zero. The following result
shows that the MIMO transmissibilities of force-driven and displacement-driven structures with identical inputs and
outputs and with the forces and prescribed motions applied to the same locations are identical.

Theorem 4. The MIMO force-driven and displacement driven transmissibilities are equal, that is,

T F
Wo;D ;Wi;D jeD;n ðpÞ ¼ T D

Wo;D ;Wi;D jeD;n ðpÞ: (97)

Proof. It follows from Eqs. (82), (83) and (90) that

T D
Wo;D ;Wi;D jeD;n ðpÞ ¼Γo;dðpÞΓ�1

i;d ðpÞ
¼WoIn½�;D�adj p2M½D;D� þK ½D;D�

	 

K ½D;��eD;nðWiIn½�;D�adjðp2M½D;D� þK ½D;D�ÞK ½D;��eD;nÞ�1: (98)

Using Eq. (A.2) in Appendix A, we have

WoIn½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��eD;nðWiIn½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��eD;nÞ�1

¼Wo;Dadj p2MþK
	 


eD;nðWi;Dadjðp2MþKÞeD;nÞ�1: (99)

Therefore, Eq. (98) becomes

T D
Wo;D ;Wi;D jeD;n ðpÞ ¼Wo;Dadjðp2MþKÞeD;nðWi;Dadjðp2MþKÞeD;nÞ�1: (100)

Next, replacing Wo, Wi, and B in Eqs. (42) and (43) with Wo;D, Wi;D, and eD;n, respectively, Eq. (53) becomes

T F
Wo;D ;Wi;D jeD;n ðpÞ ¼ΓoðpÞΓ�1

i ðpÞ
¼Wo;Dadjðp2MþKÞeD;nðWi;Dadjðp2MþKÞeD;nÞ�1: (101)

Comparing Eq. (100) with Eq. (101) yields Eq. (97). □



Fig. 3. Mass–spring system for Example 3, where m1 ¼m2 ¼m3 ¼m4 ¼m5 ¼m6 ¼ 1 kg and k01 ¼ k12 ¼ k14 ¼ k15 ¼ k23 ¼ k36 ¼ k45 ¼ k46 ¼ 1 N=m. m2 is
either force-driven by the force f or displacement-driven with the prescribed motion qd .
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9. Numerical examples

In this section we present three examples to illustrate the equality of transmissibilities in force-driven and displacement-
driven structures.

Example 3. Consider the mass-spring system shown in Fig. 3, where m1 ¼m2 ¼m3 ¼m4 ¼m5 ¼m6 ¼ 1 kg and
k01 ¼ k12 ¼ k14 ¼ k15 ¼ k23 ¼ k36 ¼ k45 ¼ k46 ¼ 1 N/m. We force-driven m2 and consider the transmissibility from q1 to q6.
Then we displacement-driven m2 and consider the transmissibility from q1 to q6. Note that M¼ I6, M½2;2� ¼ I5,

K ¼

4 �1 0 �1 �1 0
�1 2 �1 0 0 0
0 �1 2 0 0 �1
�1 0 0 3 �1 �1
�1 0 0 �1 2 0
0 0 �1 �1 0 2

2
666666664

3
777777775
; K ½2;2� ¼

4 0 �1 �1 0
0 2 0 0 �1
�1 0 3 �1 �1
�1 0 �1 2 0
0 �1 �1 0 2

2
6666664

3
7777775
: (102)

It follows that

adj p2MþK
	 


e2;6 ¼

p8þ9p6þ27p4þ32p2þ14
p10þ13p8þ61p6þ124p4þ102p2þ25

p8þ11p6þ40p4þ54p2þ22
p6þ8p4þ21p2þ16
p6þ8p4þ19p2þ15
p6þ10p4þ28p2þ19

2
6666666664

3
7777777775
; (103)

adj p2M½2;2� þK ½2;2�
	 


K ½2;��e2;6 ¼ �

p8þ9p6þ27p4þ32p2þ14
p8þ11p6þ40p4þ54p2þ22

p6þ8p4þ21p2þ16
p6þ8p4þ19p2þ15
p6þ10p4þ28p2þ19

2
6666664

3
7777775
: (104)
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Next, it follows from Eq. (31) with wo ¼ eT6;6;wi ¼ eT1;6, and b¼ e2;6 that

T F
eT6;6 ;e

T
1;6je2;6

pð Þ ¼ p6þ10p4þ28p2þ19
p8þ9p6þ27p4þ32p2þ14

: (105)

Similarly, it follows from Eq. (72) with wo ¼ eT6;6;wi ¼ eT1;6, and b¼ e2;6 that

T D
eT6;6 ;e

T
1;6je2;6

pð Þ ¼ p6þ10p4þ28p2þ19
p8þ9p6þ27p4þ32p2þ14

: (106)

Hence,

T F
eT6;6 ;e

T
1;6 je2;6

ðpÞ ¼ T D
eT6;6 ;e

T
1;6je2;6

ðpÞ:

Example 4. Consider a simply supported beamwith a uniform density ρ per unit length, modulus of elasticity E, moment of
inertia I, length L, and rectangular cross section with area A. We consider first the force-driven case by applying a
concentrated transverse force at the location xa, where 0oxaoL. Let yðt; xÞ denote the displacement of the beam from its
equilibrium shape, and let δðx�xaÞf ðtÞ denote the external force. The beam is modeled by

∂4

∂x4
y t; xð ÞþρA

EI
∂2

∂t2
y t; xð Þ ¼ δ x�xað Þf tð Þ: (107)

Let

yðt; xÞ ¼
X1
i ¼ 1

qiðtÞviðxÞ; (108)

where qi is the modal coordinate corresponding to the mode shape viðxÞ ¼ sin ðiπx=LÞ. Substituting Eq. (108) in Eq. (107) and
taking the inner product of both sides of the resulting equation with viðxaÞ yields

€qiðtÞþω2
i qiðtÞ ¼ bif ðtÞ; i¼ 1;2;3;…; (109)

where ωi ¼ i2π2=L2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ρA

p
is the modal frequency corresponding to vi(x) and bi9viðxaÞ. Defining

qðtÞ9 ½q1ðtÞ ⋯ qrðtÞ�T; b9 ½b1 ⋯ br �T; (110)

it follows from Eq. (109) that

€qðtÞþΩ2qðtÞ ¼ bf ðtÞ; (111)

where Ω29diagðω2
1;…;ω2

r Þ.
In the displacement-driven case we assume that the interior point xa moves with the specified displacement

qdðt; xaÞ ¼
Pr

i ¼ 1 qiðtÞviðxaÞ. We define the coordinates

q̂ðtÞ9S�TqðtÞ; (112)

where

S9
Ir�1 0ðr�1Þ�1

v1ðxaÞ ⋯ vrðxaÞ:

" #�T

; (113)

where to ensure nonsingularity we assume that vrðxaÞa0. Then, the resulting coordinates are

q̂ðtÞ ¼ ½q1ðtÞ ⋯ qr�1ðtÞ qdðt; xaÞ�T: (114)

Using Eqs. (112) and (111) yields

M̂ €̂q ðtÞþ K̂ q̂ðtÞ ¼ B̂f ðtÞ; (115)

where M̂9SST, K̂9SΩ2ST, B̂ ¼ Sb9en;n.
Driving xa with a prescribed motion requires applying a suitable force as in Eq. (107). As in Section 5 we remove the rth

equation of Eq. (115) and manipulate the remaining equations to make qdðt; xaÞ the input. Therefore, Eq. (115) becomes

M̂ ½r;r� €q ½r� þ K̂ ½r;r�q½r� ¼ � K̂ ½r;��ek;nqdðt; xaÞ: (116)

Suppose that E¼200 GPa, L¼ 100 mm;h¼ 10 mm;w¼ 1 mm, xa ¼ 83:3 mm, and xs ¼ 21:1 mm. The transmissibility from
xa to xs for the force-driven beam is given by

T F
vTðxs ;rÞ;vTðxa ;rÞjvðxaÞ ¼

vTðxs; rÞadjðp2M̂þ K̂ ÞvðxaÞ
vTðxa; rÞadjðp2M̂þ K̂ ÞvðxaÞ

¼ p6þ156:4p4�1:814� 104p2þ3:454� 106

63:38p6þ1:426� 104p4þ8:057� 105p2þ9:591� 106; (117)
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where vTðxs; rÞ and vTðxa; rÞ denote vTðxsÞ and vTðxaÞ, respectively, after setting the rth component of vTðxs; rÞ and vTðxa; rÞ to
zero as suggested by Theorem 3. Next, with a prescribed motion at xa, the transmissibility from xa to xs is given by

T D
vTðxs ;rÞ;vTðxa ;rÞjvTðxa ;rÞ ¼

vTðxs; rÞI½r;��adjðp2M̂ ½r;r� þ K̂ ½r;r�ÞK ½r;��eTr;r
vTðxa; rÞI½r;��adjðp2M̂ ½r;r� þ K̂ ½r;r�ÞK ½r;��eTr;r

¼ p6þ156:4p4�1:814� 104p2þ3:454� 106

63:38p6þ1:426� 104p4þ8:057� 105p2þ9:591� 106;

which is equivalent to Eq. (117).

Example 5. Consider the mass–spring system shown in Fig. 3, where m1 ¼m2 ¼m3 ¼m4 ¼m5 ¼m6 ¼ 1 kg and
k01 ¼ k12 ¼ k14 ¼ k15 ¼ k23 ¼ k36 ¼ k45 ¼ k46 ¼ 1 N=m. We force-drive m2 and m3 and consider the transmissibility from
½q1 q4�T to ½q5 q6�T. Then we displacement-drive m2 and m3 and consider the transmissibility from ½q1 q4�T to ½q5 q6�T. Note
that D¼ f2;3g, M¼ I6, M½D;D� ¼ I4, Wo ¼ ½e5;6 e6;6�T, and Wi ¼ ½e1;6 e4;6�T. Hence, we have

K ¼

4 �1 0 �1 �1 0
�1 2 �1 0 0 0
0 �1 2 0 0 �1
�1 0 0 3 �1 �1
�1 0 0 �1 2 0
0 0 �1 �1 0 2

2
666666664

3
777777775
; K ½D;D� ¼

4 �1 �1 0
�1 3 �1 �1
�1 �1 2 0
0 �1 0 2

2
6664

3
7775: (118)

It follows that

adj p2MþK
	 
½e2;6 e3;6� ¼

p8þ9p6þ27p4þ32p2þ14 p6þ8p4þ19p2þ14
p10þ13p8þ61p6þ124p4þ102p2þ25 p8þ11p6þ40p4þ54p2þ22

p8þ11p6þ40p4þ54p2þ22 p10þ13p8þ61p6þ126p4þ111p2þ30
p6þ8p4þ21p2þ16 p6þ9p4þ23p2þ18
p6þ8p4þ19p2þ15 2p4þ13p2þ16
p6þ10p4þ28p2þ19 p8þ11p6þ40p4þ55p2þ24

2
6666666664

3
7777777775
: (119)

Using Eqs. (42) and (43) we have

ΓiðpÞ ¼Wiadj p2MþK
	 
½e2;6 e3;6� ¼

p8þ9p6þ27p4þ32p2þ14 p6þ8p4þ19p2þ14
p6þ8p4þ21p2þ16 p6þ9p4þ23p2þ18

" #
; (120)

ΓoðpÞ ¼Woadj p2MþK
	 
½e2;6 e3;6� ¼

p6þ8p4þ19p2þ15 2p4þ13p2þ16
p6þ10p4þ28p2þ19 p8þ11p6þ40p4þ55p2þ24

" #
: (121)

Moreover,

adj p2M½D;D� þK ½D;D�
	 


K ½D;��½e2;6 e3;6� ¼ �

p6þ7p4þ14p2þ8 p2þ3
p4þ5p2þ6 p4þ6p2þ7
p4þ6p2þ7 p2þ5

p2þ3 p6þ9p4þ23p2þ13

2
66664

3
77775: (122)

It follows from Eqs. (82) and (83) that

Γi;d ¼ �WiI½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��½e2;6 e3;6� ¼
p6þ7p4þ14p2þ8 p2þ3

p4þ5p2þ6 p4þ6p2þ7

" #
; (123)

Γo;d ¼ �WoI½�;D�adj p2M½D;D� þK ½D;D�
	 


K ½D;��½e2;6 e3;6� ¼
p4þ6p2þ7 p2þ5

p2þ3 p6þ9p4þ23p2þ13

" #
: (124)

Therefore,

det Γi;dðpÞΓoðpÞadj ΓiðpÞ ¼ p10þ13p8þ62p6þ133p4þ125p2þ38
	 


� p6þ8p4þ19p2þ15 2p4þ13p2þ16
p6þ10p4þ28p2þ19 p8þ11p6þ40p4þ55p2þ24

" #
p6þ9p4þ23p2þ18 �p6�8p4�19p2�14
�p6�8p4�21p2�16 p8þ9p6þ27p4þ32p2þ14

" #

¼
A1;1ðpÞ A1;2ðpÞ
A2;1ðpÞ A2;2ðpÞ

" #
; (125)
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where

A1;1ðpÞ ¼ p22þ28p20þ342p18þ2394p16þ10;611p14þ31;052p12þ60;672p10þ78;167p8

þ63;850p6þ30;491p4þ7184p2þ532; (126)

A1;2ðpÞ ¼ A1;1ðpÞ; (127)

A2;1ðpÞ ¼ �p24�31p22�426p20�3420p18�17793p16�62;885p14�153;828p12�260;183p10

�298;351p8�222;041p6�98;657p4�22;084p2�1596; (128)

A2;2ðpÞ ¼ p26þ33p24þ487p22þ4244p20þ24;291p18þ96;077p16þ268;987p14þ536;787p12þ758;045p10

þ740;576p8þ478;889p6þ188;907p4þ38;580p2þ2660: (129)

Moreover,

det ΓiðpÞΓo;dðpÞadj Γi;dðpÞ ¼ p14þ17p12þ115p10þ396p8þ735p6þ709p4þ300p2þ28
	 


� p4þ6p2þ7 p2þ5
p2þ3 p6þ9p4þ23p2þ13

" #
p4þ6p2þ7 �p2�3
�p4�5p2�6 p6þ7p4þ14p2þ8

" #
¼

Ad;1;1ðpÞ Ad;1;2ðpÞ
Ad;2;1ðpÞ Ad;2;2ðpÞ

" #
; (130)

where

Ad;1;1ðpÞ ¼ p22þ28p20þ342p18þ2394p16þ10;611p14þ31;052p12þ60;672p10þ78;167p8

þ63;850p6þ30;491p4þ7184p2þ532; (131)

Ad;1;2ðpÞ ¼ Ad;1;1ðpÞ; (132)

Ad;2;1ðpÞ ¼ �p24�31p22�426p20�3420p18�17;793p16�62;885p14�153;828p12�260;183p10

�298;351p8�222;041p6�98;657p4�22;084p2�1596; (133)

Ad;2;2ðpÞ ¼ p26þ33p24þ487p22þ4244p20þ24;291p18þ96;077p16þ268;987p14þ536;787p12þ758;045p10

þ740;576p8þ478;889p6þ188;907p4þ38;580p2þ2660: (134)

Comparing Eqs. (126), (127), (128), and (129) with Eqs. (131), (132), (133), and (134), respectively, yields,

A1;1 ¼ Ad;1;1; A1;2 ¼ Ad;1;2; A2;1 ¼ Ad;2;1; A2;2 ¼ Ad;2;2: (135)

Therefore, it follows from Eqs. (125) and (130) that

det Γi;dðpÞΓoðpÞadj ΓiðpÞ ¼ det ΓiðpÞΓo;dðpÞadj Γi;dðpÞ: (136)

That is,

T F
Wo ;WijeD;n ðpÞ ¼ T D

Wo ;WijeD;n ðpÞ; (137)

which confirms Theorem 4.

10. Conclusions and future research

Transmissibility estimates are traditionally obtained using only frequency-domain methods, which are based on the
assumption that the input and output signals are stationary, and thus initial conditions and transient effects are either
assumed to be absent or are ignored. We showed that ignoring the initial conditions and transient effects can degrade the
transmissibility estimates in the frequency-domain. Moreover, we showed that frequency-domain identification techniques
cannot give exact estimates with finite data sets. Therefore, we developed a time-domain framework for SISO and MIMO
transmissibilities that accounts for nonzero initial conditions for both force-driven and displacement-driven structures.
It was shown that if the locations of the forces and prescribed displacements are identical, then the SISO and MIMO force-
and displacement-driven transmissibilities are equal. Numerical examples for a mass–spring system and a simply supported
beam were presented to illustrate the equality of transmissibilities in force-driven and displacement-driven structures.

The time-domain transmissibility models developed in this paper are intended to facilitate the use of time-domain
identification methods. Preliminary results in this direction are given in [19–21].
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Appendix A. Adjugate identities

Let AACn�n, let AAACn�n denote the adjugate of A, and let Aði;jÞAC denote the (i,j) entry of A. Let D9fk1;…; kdg
where 1rdrn�2 and kiAf1;…;ng for all i¼1,…,d. Let A½D;��ACðn�dÞ�n denote A with rows k1;…; kd removed and let

A½D;D�ACðn�dÞ�ðn�dÞ denote A with rows k1;…; kd removed and columns k1;…; kd removed. Finally, Let

eD;n9 ½ek1 ;n … ekd ;n�ACn�d where ei;nACn denotes the ith unit vector.

Adjugate identity 1: For all iAf1;…;ng,

ðAAÞ½i;�� þðA½i;i�ÞAA½i;��
h i

ei;n ¼ 0ðn�1Þ�1: (A.1)

Proof. See [25]. □

Adjugate identity 2: Let CACd�n and define R9AAeD;nACn�d and S9ðA½D;D�ÞAA½D;��eD;nACðn�dÞ�d. Let CRACd�d and
C½�;D�SACd�d be nonsingular where C ½�;D�ACd�ðn�dÞ denotes C with columns k1;…; kd removed. Then,

In;½D;��RðCRÞ�1 ¼ SðC½�;D�SÞ�1; (A.2)

where InACn�n is the identity matrix and In;½D;��ACðn�dÞ�n denotes In with rows k1;…; kd removed.
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