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SUMMARY

In this paper we synthesize linear and nonlinear output feedback dynamic compensators for plants with
saturating actuators. Our approach is direct in the sense that it accounts for the saturation nonlinearity
throughout the design procedure as distinct from traditional design techniques that first obtain a linear
controller for the 'unsaturated' plant and then employ controller modification. We utilize fixed-structure
techniques for output feedback compensation while specifying the structure and order of the controller. In
the full-order case the controller gains are given by LQG-type Riccati equations that account for the
saturation nonlinearity.
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1. INTRODUCTION

Vinually all control actuation devices are subject to amplitude saturation. Whether or not these
saturation effects need to be accounted for in the control-system design process depends on the
required closed-loop performance in relation to the capacity of the actuators. In many
applications, panicularly in the field of aerospace engineering, actuator saturation is often the
principal impediment to achieving significant closed-loop performance.1.2 In fact, the effects of
actuator saturation often constitute a greater source of performance limitation than even
modelling uncenainty.

Techniques for addressing actuator saturation have been studied since the advent of modern
control theory, 3-9while recent activity in this area has been steadily increasing; see for example,
References 10-16. Performance optimization under saturation constraints is addressed in
References 5, 6, 11, 13 and 17, while global stabilization of plants with closed left-half plane
poles is discussed in References 4, 14 and 15. A variety of approaches to the classical problem
of integrator windup due to saturation are developed in References 8, 10, 12, 18 and 20. These
references are merely representative of the extensive research activity in this area.

In the present paper we consider the problem of synthesizing nonlinear output feedback
dynamic compensators for plants with saturating actuators. Our approach is direct in the sense
that it accounts for the saturation nonlinearity throughout the design procedure and provides an
explicit expression for a guaranteed domain of attraction. This approach is thus distinct from
the more common two-step design strategy that first designs a linear controller for the
'unsaturated' plant and then accounts for the saturation by means of suitable controller
modification. The two-step approach includes the classical problem of designing an!i-windup
circuitry for controllerswith integrators.8,10.12
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In this paper we consider both linear and nonlinear controllers. In both cases closed-loop
stability is enforced by a bounded real condition. The linear controller given in Section 3 is thus
related to the LQG controller with an H.. bound given in Reference 21. The proof of stability
given herein, however, is considerably more complicated than the results of Reference 21 since
we invoke no a priori assumption on the magnitude of the control signal as in References 16
and 19.

A primary goal of our work is to design realistic controllers that have access only to the
available measurements. Since full-state feedback control is often unrealistic in practice, we
utilize fixed-structure techniques.21-23In fixed-structure controller synthesis the structure of the
controller, including details such as order, degree of decentralization, and availability of
measurements, is specified prior to optimization. Finite-dimensional optimization techniques are
then applied to the free controller gains within the given controller structure. In the present paper
the controller gains are chosen to minimize an LQG-type cost to provide a measure of
performance beyond closed-loop stability.

The contents of the paper are as follows. In Section 2 we state and prove a sufficient
condition (Theorem 2.1) for stability of a closed-loop system with a saturation nonlinearity.
This result involves a small gain condition along with a guaranteed domain of attraction. In
Sections 3 and 4 we apply Theorem 2.1 to the problem of controller synthesis to obtain linear
and nonlinear dynamic compensators, respectively. The nonlinear controller, which is developed
in Section 4, has an observer structure with a nonlinear input to account for the input saturation.
Similar anti-windup controller structures were considered in References 12, 20. Illustrative
numerical results are given in Section 5.

1.1. Notation

Ir
sn, Nn, pn
Amax(F)

amax(G)

IIxII
IIG(jw) II..

r x r identity matrix
n x n symmetric, nonnegative-definite, positive-definite matrices
maximum eigenvalue of matrix F having real eigenvalues
maximum singular value of matrix G
Euclidian norm of x, that is, IIxll= "xTX

sup OJenamax [G (jw)]

2. ANALYSIS OF SYSTEMS WITH SATURATION NONLINEARITIES

Consider the closed-loop system

i(t) =M(t) + B(a(u(t)) - u(t)), i(O) = Xo

u(t) = Cx(t)
(1)

(2)

where i E ~1i, UE ~rn, A, B, Care real matrices of compatible dimension, and a: ~rn -7~rn is a
multivariable saturation nonlinearity. We assume that a(.) is a radial ellipsoidal saturation
function, that is, a(u) has the samedirectionas u and is confinedto an ellipsoidalregionin ~n.
LettingR denote an m x m positive-definitematrix, a(u) is definedby

a(u) = u, uTRu.s;;1 (3)

= (uTRu)"1/2U, uTRu>1 . (4)

Alternatively,a(u) can be writtenas

a(u) = {3(u)u (5)

- - - - - ---
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where the function f3: IRm-7 (0, 1] is defined by

(6)

(7)

f3(u) = 1,

The closed-loop system (1), (2) can be represented by the block diagram shown in Figure 1. Note
that in the SISO case m = 1, the function u - a (u) shown in Figure 1 is a deadzone nonlinearity.

For the statement of Theorem 2.1, define the function f3o:(0,00] -7 [0, 1] by

f3o(y) = 0, 0 < y ~ 1

1
= 1 - -, y> 1

Y

= 1, y=oo

The following result provides the foundation for our synthesis approach.

Theorem 2.J

Let R1ENri, R2Epm, and yE(O,oo], and assume that (A, R1+CTR2C) is observable.
Furthermore, suppose there exists PE pri satisfying

0= ATp+ PA+ RI + CTR2C+ y-2p{JRi1j)Tp (8)

Then the closed-loop system (1) and (2) is asymptotically stable with Lyapunov function
V(i) =iTPi, and the set

(9)

is a subset of the domain of attraction of the closed-loop system. Finally, the cost functional

J(xo) ~ t [X\t)(/?1 + y-2PBR~IBTp)X(t) + uT(t)R2u(t) + 2xT(t)PB(u(t) - a(u(t»)] dt (10)

is given by J(io) = i~Pio.

Proof. First consider the case y=oo, that is, f3o(y) = 1.Letting io E ~ it follows that

u T(O)Ru (0) =iJCTRCio

=iJpI/2poI/2CTRCpol/2PI/2io

~ iTpl/2 A (pol/2CTRCpol/2 )PI/2i0 max 0
-T-- -T - - -I

= XoPXOAmax(C RCP )

<1

Figure 1. Closed-loop system with a deadzone nonlinearity in negative feedback

O'(u)-u u
C(d - Ar' iJ

u-O'lu)

Tf-L
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so that f3(u(O»= 1. Letting x(t) satisfy (1) and (2) and using (8) it follows that

V(x(t» =XT(t)(IFp + PA)x(t) + (a(u(t» - u(t» TIlTPx(t) + xT(t)PB(a(u(t» - u(t»

=_XT(t)[R, + CTR2C+ (1 - f3(u(t»)(CTBTp + PBC) + y-2PBR"i.IBTP]X(t) (11)

and thus V(x(O»~O. Two cases, that is, V(x(O»<O and V(x(O» =0, will be treated
separately.

First consider the case V(x(O» < O.Suppose there exist T, > T> 0 such that V(x(t» < 0 for all
t E [0, T), V(x(T» = 0, and V(x(t» > 0, t E (T, Td. Since V(x(t» < 0, t E [0, T), there exists T2
satisfying T < T2~ T, and sufficiently close to T such that xT(t)Px(t) = V(x(t» < V(xo) =xJPio,
tE (0, T2], and thus

uT(t)Ru(t) =XT(t)CTRCx(t)

~xT (t)PX(t)Amax(CTRCP-I)
< xTpx A (CTRCP-I)o 0 max

<1

t E [0, T2]. Therefore, f3(u(t» = 1, t E [0, T2]. Since V(x(t» > 0, t E (T, T,], it follows from
(11) that f3(u(t» < 1, t E (T, Td. Therefore, 13(U(T2»< 1, which is a contradiction. Hence,
f3(u(t» = 1 for all t;<:Oand thus a(u(t» = u(t) and x(t) =exp(At)xo for all t;<:O,which implies
that

V(x(t» = -xJ exp(ATt) [R, + CTRi:. + y-2PBR2IBTP]exp(At)xo~0

for all t;<:O.Since (A, R, + CTR2C) is observable, it follows that the invariant set consists of
x=O.Hence V(x(t» is nonincreasing and approaches zero as t ~ co. 25

Next, consider the case V(x(O» =O. Since f3(u(O» = 1, it follows that V(x(O» = 0 implies
that u(O)= 0, that is, uT(O)Ru(O)= O.Since, for t> 0, V(x(t» > 0 implies that f3(u(t» < 1, that
is, u\t)Ru(t) > 1, it follows that there exists To>0 sufficiently close to 0 such that V(x(t» ~ 0
for all t E (0, 0]' Using similar arguments as in the case V(x(O» < 0, it can be shown that
V(x(t» * 0 for all t E (0, To]. Therefore, V(x(t» < 0 for all t E (0, To]. In particular,
V(x(To» < O. Hence we can proceed as in the previous case where V(x(O)) < 0 with the time 0
replaced by To. It thus follows that V(x(t»~O as t~oo and the closed-loop system (1), (2) is
asymptotically stable.

Next consider the case 1 < y < co, that is, 130(y) = 1 - Y-I . Letting XoE ~, we have

T T-T - T- -T - - J 1
u (O)Ru(O)= xoC RCxo ~ XoPXoAmax(CRCP- ) < -

/35(Y)

which, since f3o(Y) < 1, implies that 13(u(O» > f3o(Y). Next, note that V(x(t)) can be written as

V(X(t)) = - f3(u(t)) - f3o(Y) xT(t)(RI + CTR2C+ y-2pBR;IBTp)X(t)
1- f3o(Y)

- 1- f3(u(t))X\t)[RI + CTR2C+ y-2PBR;IBTp+ (1 - f3o(y))(CTBTp+ PBC)]x(t)
1- f3o(y)

= _ f3(u(t)) - f3o(Y) xT(t)(R1 + CTR2C + y-2pBR;IBTp)X(t)
1 - f3o(y)

- 1- f3(u(t)) xT(t)[R + (c+ -IR;IBTp )TR (c + -IR;IBTp)]X(t)
1- f3o(y) 1 Y - 2 Y-

.
(12)
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Hence,{J(u(O))> {Jo(Y)impliesthat V(x(O))~ 0. Forthecase V(x(O))=° theprocedureusedto
prove asymptotic stability is similar to the case Y= 00.Here, we prove only the case V(x(O)) <0.

Assuming V(x(O)) <0, there exist TI>T>O such that V(x(t))<O for all tE [O,T),
V(x(T)) = 0, and V(x(t)) > 0, t E (T, TI]. Since V(x(t)) < 0, t E [0, T), there exists T2 satisfying
T < T2~ TI and sufficiently close to T such that xT(t)Px(t) = V(x(t)) < V(xo) = xJpxo, t E (0, T2].
Thus, if tE [0, T2] is such that {J(u(t)) < 1, then

1
{J(u(t))=

.JuT(t)Ru(t)
I

~xT (t)CT RCx(t)

I

~x\t)P 1I2p-1I2CTRCP -1I2p 1/2X(t)

>- I

,... "jA~x(P -II2CTRCP-1I2)XT(t)Px(t)

I

"jA~x(CTRCP-I)(xJpxo - b(t))

>- I

... "jAmax(CTRCP-I)xJpxo

> {Jo(Y)

where b(t) ~ I~ - V(x(t)) dt = V(xo) - V(x(t))~O, t E [0, T2]. Therefore, fJo(Y) < {J(u(t)). On
the other hand, if tE [0, T2] is such that fJ(u(t)) = I, then fJo(Y)<fJ(u(t)). Hence,
fJo(Y) < fJ(u(t)) for all t E [0, T2]. In particular, fJ(U(T2))> fJo(Y). Since V(x(t)) > 0, t E (T, TI],
it follows from (12) that fJ(u(t)) < fJo(Y), t E (T, Td. Therefore, fJ(U(T2))< fJo(Y), which is a
contradiction. Therefore, V(i(t)) ~ ° for all t~O and thus {J(u(t)) > {Jo(Y)for all t~O.

If V(x(t)) = 0, it follows from (12) that u(t) = Ci(t) = 0, whichgives i(t) = exp(At)io. Since
(A,RI + CTR2C) is observable it follows that (A, R, + CTR2C+ y-2PBR"iIJjTP) is observable.
Therefore, the invariant set consists of x =0. It thus followsthat V(x(t)) -? ° as t -? 00 and
closed-loop system (1), (2) is asymptotically stable.

=

=

=

For the case ° < Y~ I, that is, fJo(Y) = 0, we have

V(x(t)) = -fJ(u(t))xT(t)[R) + CTR2C+ y-2PBR"iIBTP)'X(t)
- (1- {J(u(t)))iT(t)[RI + (1- y2)CT R2C]i(t)
- (1- {J(u(t)))iT(t)[yC + y-1R"iIBTpJlR2[YC + y-IR"iIBTp]X(t)

The remainingstepsare similiarto those in the case I < Y< 00.

Finally, since x(t) -? ° as t -? 00,the cost cost (10) is given by

J(x(t)) = J; [x\t)(RI + y-2pBR;IBTp)X(t) + u\t)R2u(t) + 2xT(t)PB(a(u(t)) - u(t))] dt

= rooxT(t)[RI + CTR2C + (fJ(u(t)) - I)(PBC + CTBTp) + y-2pBR;IBTp]X(t) dtJo ·
=J; - V(X(t)) dt

=~ 0
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Remark 2.1

Theorem 2.1 can be viewed as an application of the small gain theorem to a deadzone
nonlinearity. To see this, note that since (8) has a positive-definite solution P it follows that
IIG(jw)II_~ y, where G(s):a: C(sl- A) -IB. Furthermore, since {J(u(t))~{Jo(Y) for all t~O, the
gain of the deadzone nonlinearity lies in [0, 1- {Jo(y)]. Since 1- {Jo(y) = l/y for y~l and
1- {Jo(y)< l/y for 0< y< 1, we have y(1- {Jo(Y))~ 1 for all y>O. If, furthermore,
y(1 - {Jo(y)) < 1, then it follows from the small gain theorem that the closed-loop system is
asymptotically stable. This approach to stability with a saturation nonlinearity is closely related
to References 9, 16 and 19. However, the novel feature of Theorem 2.1 is the proof that
{J(u(t))~{Jo(Y), tE[O,co), for initial conditions that lie in the subset ~ of the domain of
attraction. In contrast, the results of References 9, 16, 19 require an explicit a priori assumption
on the magnitude of the control input.

Remark 2.2

If 0< y< 1 then {J(y) =0 and the system (1), (2) is globally asymptotically stable.

Remark 2.3

The cost J (xo) defined by (10) is similar to the H 2 cost of LQG theory with additional terms.
The quadratic terms involving x and u can be used to adjust the control authority. Although the
additional terms are indefinite, Theorem 2.1 shows that the integrand of J(xo) is nonnegative.
The closed-form expression J(xo) =X6PXowill be used within an optimization procedure to
determine stabilizing feedback gains. This procedure is carried out in the following section.

3. LINEAR CONTROLLER SYNTHESIS

Consider the plant

x(t) =Ax(t) + Ba(u(t)),

y(t) = Cx(t)

where xElJ\I1n,uElJ\I1tn,yEIJ\I1/,(A, B) is controllable,
controller have the form

(13)

(14)

(A, C) is observable, and let the linear

x(O) = Xo

xc(t) = Acxc(t) + Bcy(t), Xc(0) = XcO (15)

u(t) = Ccxc(t) (16)

where XcE IJ\I1ncand nc~ n. Then the closed-loop system can be written in the form of (1), (2) with

x~ [~} xo~ [:l A~[B~CB~'lB~[~lC~[Oq
Ourgoal is to optimize the closed-loop cost J(x(O)) =x~Pxogiven by Theorem 2.1 with

respect to the controller matrices Ac, Bc, Cc. To do this note that J(x(O)) =tr PXox6, which has
the same form as the H2 cost in LQG theory, which has the form

~ -- -
[

\I; 0

]
J(Ac,Bc'Cc)= tr PV, V = T

o Bc~ Bc
(17)
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where VI E Nn and V2E pi denote plant disturbance and measurement noise intensity matrices,
respectively. It is therefore convenient to replace ioX~ by V and proceed by determining
controller matrices that minimize this LQG-type cost. Furthermore, let

where RI E Nn.
We first consider the full-order controller case, that is, ne= n. The following result as well as

Proposition 3.2 and later results is obtained by minimizing J(Ae, Be, Ce) with respect to Ae, Be,
Ce. These necessary conditions then provide sufficient conditions for closed-loop stability by
applying Theorem 2.1. For convenience define:E ~ BR21BT and ~CTV2IC.

Proposition 3.1

Let l1e= n. y E (0,00]. suppose there exist n x n nonnegative-definitematrices p. Q, P
satisfying

O=ATp+PA +RI- (1- y-2)P:Ep

0= (A - Qf+ y-2:EP)Tp+ P(A - Qf+ y-2:EP)+ P:EP+ y-2p:Ep

0= (A + y-2:E(P+ P»Q + Q(A + y-2:E(P+ P» T+ VI- Q~Q

(18)

(19)

(20)

and let Ae, Be, Cebe given by

Ae = A + (1 - y-2)BCe- BeC

Be = QCTV21

Ce=-R2IBTp

Furthermore, suppose that (A, RI + CTR2C) is observable. Then

p=
[

P+f -!
]-P P

satisfies (8), and (Ae, Be, Ce) is an extremal of J(Ae, Be, Ce>. Furthermore, the closed-loop
system (1), (2) is asymptotically stable, and ~ defined by (9) is a subset of the domain of
attraction of the closed-loop system.

(21)

(22)

(23)

Proof. The proof is similar to the proof of Proposition 3.2 below with ne=nand
r=GT = -r=/.

Remark3./

Proposition 3.1 can be viewed as a direct extension of the standard LQG result. Specifically,
by setting y = 00, equations (18) and (20) specialize to the usual regulator and estimator Riccati
equations, while equation (19) plays no role.

Next we consider the case ne~ n. The following lemma is required.
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Lemma 3.1

Let P, Q be 11X 11nonnegative-definite matrices and suppose that rank QP =lie. Then there
exist lieXn matrices G, r and an lieXne invertible matrix M, unique except for a change of
basis in IR1n<, such that

rank Q = rank P = rank QP = lie

QAp=GTMf' rGT=!, ~

(24)

(25)

Furthermore, the 11x 11matrices

(26)

are idempotent and have rank neand n - ne, respectively.

Proof. See Reference 21 for details. D

Proposition 3.2

Let ne~n, yE(O,oo], suppose there exist nxn nonnegative-definite matrices P, Q, P, Q
satisfying

0= ATp + PA +RI - (1- y-2)PT.p + 'rIpT.P'l".l (27)

0= (A - Qf+ y-2T.P)P + P(A - Qf+ y-2T.P) + PT.P + y-2pT.p - 'l"IpT.p'l".l (28)

0= (A + y-2T.(P + P»Q + Q(A + y-2T.(P + p»T + VI - QT.Q + 'l".lQfQ'l"I (29)

0= (A - (1- y-2)T.P)Q + Q(A - (1 - y-2)T.P)T + QfQ - 'l".lQfQ'l"I (30)

and let Ae, Be, Ce be given by

Ae = rAGT + (1 - y-2)rBCe - BeCGT

Be = rQcTV2"I

Ce=-R2"IBTpGT

Furthermore, suppose that (A, R. + CTR/:) is observable. Then

p=
[

p+~ _~GT
]-GP GPGT

(31)

(32)

(33)

satisfies (8), and (Ae, Be, Ce) is an extremal of J(Ae, Be, Ce). Furthermore, the closed-loop
system (1), (2) is asymptotically stable, and ~ defined by (9) is a subset of the domain of
attraction of the closed-loop system.

Proof. The result is obtained by applying the Lagrange multiplier technique to performance
subject to (8) and by partitioning P, Q as

-=
[

PI p.2

]

-=
[

QI Q12

]
P T ' Q T

PI2 P2 Q21 Q2

Here, we show only the key steps. First, define the Lagrangian

~ =tr PV+ tr Q(ATP + PA +RI + CTR2C+ y-2pfJRi1fJTP)



Taking derivatives with respect to Ae, Be, Ceand P, and setting them to zero yields

a;£ T

o = aAe= 2(P12QI2 + P2Q2)

a~ T T T

0= aBe = 2P2Be~ + 2(P12QI + P2QI2)C

a;£ T

0= aCe = 2R2CeQ2 + 2B (PI QI2 + PI2Q2)

0= a~ = (A+ y-2BR;IBTp)Q + Q(...1+ y-2BR;IBTp)T + V
ap

Next, defineP, Q, P, Q, r, G, M by

P~ PI - P, P~ Pl2p:;IP;2'Q~ QI- Q, Q~ QI2Q:;IQ;2,
GT~ QI2Q:;I, M~ Q2P2, r~-p:;lp;2

Algebraic manipulation yields Be and Ce, given by (32) and (33). The expression (31) for Ae is
obtained by combining the (1,2) and (2,2) blocks of equation (8) or (37) using (34). Equations
(27) and (28) are obtained by combining the (1, I) and (1,2) blocks of equation (8). Similarly,
(29) and (30) are obtained by combining the (1,1) and (1,2) blocks of equation (37). See
Reference 21 for details of the algebraic manipulation. 0

ANTI-WINDUP COMPENSATOR SYNTHESIS 529

(34)

(35)

(36)

(37)

Remark 3.2

Suppose that 0 < y < 1 and there exists PEP Ii satisfying (8). Then Theorem 2.1 implies that
the open-loop system and the compensator are both asymptotically stable. To see this note that

(A -BC)Tp+ PUf -BC)
= -(CTBTp+PBC+R1 + CTR2C+y-2PBR:;IBTp)

- 2 -T - -T -I - - -I - -I -T -
= -R1 - (1 - y )C R2C- (yC R2+ y PB)R2 (yR2C+ y B P)
os;0,

where

- --

[
A 0

]A - BC =
BeC Ae

Since (A, RI + CTR2C)is observable it follows that (A-BC, RI+ CTR2C)is observableor,
equivalently, (A-BC, RI+(1_y2)CTR2C) is observable, which implies that (A-BC,
RI + (1- y2)CTR2C+ (yCTR2+ y-IPB)R:;I(yR2C + y-IBIP) is observable.Lyapunov's lemma
now implies that A- BCis asymptotically stable.

Remark 3.3

For initial conditions of the form Xo= [x~ 0] T, the set ~ x (O) is a subset of ~, where

~ ~
I
xo E ~n:x~(p + p>xo < 1_ _ _

I
(38)

f35(y)Arnax(CTRCP -I)
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Remark 3.4

By setting y = 00, Proposition 3.2 specializes to the reduced-order LQG result.21

4. NONLINEAR CONTROLLER SYNTHESIS

In this section we consider the nonlinear controller

Xe(t) =Aexe(t) + Bey(t) + Ee(a(u(t)) - u(t)),

u(t) = Cexe(t)

(39)

(40)

where XcE IRn< and ne~ n. Note that the compensator now includes a nonlinear term
Ee(a(u(t)) - u(t)), and the structure shown in Figure 2 is similar to the observer-based anti-
windup setup studied in Reference 20. The closed-loop system can be written in the form of
(I), (2) with

Proposition 4.1

Let ne= n, y E (0,00],supposethereexist n x n nonnegative-definitematricesP, Q, P satisfying

0=ATp+PA+R1-(I-y-2)pr,p (41)

o = (A - Qf) TP + P (A - Qf) + pr,p (42)

O=AQ+QAT + VJ- QfQ (43)

and let Ae, Be, Cc' Ee, be given by

Ae=A+BCe-BeC (44)

Be = QCTV2"' (45)

Ce=_R2"IBTp (46)

~=B ~~

Furthermore, suppose that (A, R, + CTR2C) is observable. Then

p=
[

p+f> -!
]-P P

satisfies (8). Furthermore, the closed-loop system (1), (2) is asymptotically stable, and 0J
defined by (9) is a subset of the domain of attraction of the closed-loop system.

+

Figure 2. Closed-loop system with nonlinear anti-windup controller
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Proof. The result is a special case of Proposition 4.2 with lle= ll. o

Propositioll 4.2

Let lle:S:;ll, Y E (0, 00], suppose there exist II x 11nonnegative-definite matrices P, Q, P, Q satisfying

0= ATp + PA + R, - (1 - y-2)pr,p + rlpr,Pr.L (48)

0= (A - Q1:)TP+P(A - Q1:)+ pr,p - rIpr,Pr.L (49)

0= AQ + QAT+ VI - Q1:Q+ r.LQ1:QrI (50)

0= (A - r,P)Q + Q(A - r,p)T + Q1:Q- r.LQ1:QrI (51)

and let Ae, Be, Ce,Eebe given by

Ae=rAGT +rBCe-BeCG

Be= rQCTViJ

Ce=-RiIBTpGT

(52)

(53)

(54)

(55)Ee=rB

Funhermore,supposethat (A, RI+ CTR/:) is observable.Then

p=
[
P+f -!

]-P P

satisfies (8). Funhermore, the closed-loop system (1), (2) is asymptotically stable, and ~
defined by (9) is a subset of the domain of attraction of the closed-loop system.

Proof. Letting V(i) =iT Pi, it is easy to show that (8) is satisfied, and

V(i(t)) =-x T[RI+ (y-2 - (1- P(U))2)pr,P]X
-[Cexe+ (1- P(U))R2IBPx]TR2[CeXe+(1- P(U))R2IBPx]

Next let Ee= rB andrequirethatQ satisfy

O=AQ+QAT + V

The remaining steps are similiar to the proof of Proposition 3.2. o

5. NUMERICAL EXAMPLES

Example 5.1

To illustrateProposition3.1, considerthe asymptoticallystablesystem

[

-0.03 1

x= ~ -0~03

Y= [1 0 OJx,

~

]

x +

[

~

]

a(u(t))

-0.03 1
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with the saturationnonlinearitya(u) given by

a(u)= u, lul <4
= sgn (u)4, lul~4

ChoosingRI = I), R2= 100, VI= I), V2= 1, and y = 1-05yieldsthe linearcontroller(15), (16)
with gains (21)- (23) given by

[

-0-0069 0.0001 0

]
Ae = 104X -0-2392 0-0000 0-0001 ,

-4.6611 0-0000 0-0001

Ce= [-0-3686 -2-6772 -10.0025]

By applying Remark 3.3, the set 21Jis given by 21J= {xo: xi>(P+ P)xo < 1-6498 X 103}, where

[

4-6916e8 -1-8665e7 2-6908e5

]

P + P = -1-8665e7 1-895ge6 -6-2702e4
2-6908e5 -6-2702e4 3-6318e3

[

0-006ge4

]
Be = 0-2392e4

4-6611e4

To illustrate the closed-loop behaviour let Xo= [-40 -25 30]T and XcO= [0 0 O]T,respectively_
Note that Xois not in the set 21J_As can be seen in Figure 3, the closed-loop system consisting of the
saturation nonlinearity and the LQG controller designed for the 'unsaturated' plant is unstable_
However, the controller designed by Proposition 3_1provides an asymptotically stable closed-loop
system. The actual domain of attraction is thus larger than 21Jx {O}.Figure 4 illustrates the control
input u(t) for the LQG controller with and without saturation as well as the output of the
saturation nonlinearity a(u(t)) for the LQG controller with saturation. Figures 5 and 6 show the
control u(t) and saturation input a(u(t)) for the controller obtained from Proposition 3_1.
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\
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\

I

\

\

J.
\

,.',
i

I
I
,
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I
,
,
I
I
I
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/.,

,
I

,
,,

,
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,
I
,
,
,-1000

10 20 30 40 50 60 70 eo
time(sec)

90 100

Figure 3. Time response of xl
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Figure 4. Control effort u and saturated input a(u) of the LQG controller with and without saturation
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sat level.4 gamma.1.05 r2.100

o

-50

-100

:;-
1i
.§.-150III
::i

-200

-250 r . . .. u of Proposi1ion 3.1- sigma(u) of Proposition 3.1

-3001'-.
".'

10 20 30 40 50 60
time (sec)

70 80 90 100

Figure 6. Control effol1 u and saturated input a(u) using Proposition 3.1 for 2.. t ..100

Example 5.2

This example illustrates Proposition 4.1 by designing nonlinear controllers with integrators
for tracking step commands. Consider the closed-loop system shown in Figure 7, where the
plant G(s) = 1/s2 and r is a step command. Let G(s) and Gc(s) have the realizations

[~:]=[~ ~][::]+ [~]a(u)

y ~ [I 0][:: ]
and

Xc = Acxc + Bcq + Ec(a(u) - u)

u = CcXc

respectively.The saturationnonlinearitya(u) is givenby
a(u) =u, lul<0.3

=sgn (u) 0.3, lul~0.3

r+ elllq y

Figure 7. Block diagramfor Example5.2
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To apply Theorem 2.1, we combine the plant G(s) with an integrator state q to obtain the
augmentedplant

Choosing design parameters R.=/3, R2=100, VI =/3, V2=1, and 1'=1.002 yields the
nonlinear controller (39), (40) with gains (44)-(47) given by

[

-165.2148 27.2773 3.2366

] [

-1

]

Ae = -1.0000 0 -2.4142, Be = 2.4142
o 1.0000 -2.4142 2.4142

C,- [-165-2148 27-2773 2.2366], E, = [~]

sallevel-o.3 gamma-1.002 12.100

, ,
.' \., ,

i '\. . ,
':/ \
'1 i. .
r. \
i~ i
i :
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. :' i i " /\ j "-', .
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Figure 8. Time responseof y with r = 5
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sallevel..o.3 gamma.1.()()2 12.100
2.5

2~!1I'.1
,". 1

1.5H~
i :.. :I
I .'.,

1~ ~i
I '.

_ i ~~
.=.0.51: :~II r: .
E
.2'
~ 0:J

. . . .. u 01 LOG without saturation

.- .- u 01 LOG with saturation

- slgma{u) 01 LOG with saturation

30
time(see)

Figure 9. Control effort u and saturated input a(u) of the LQG controller with and without saturation

20 40 50 60

The set q]jis given by q]j= {xo: xX(P + P)xo< 5.8809 X 105}, where

[

6,4328 1.3621 1.2928

]

P + P= 106x 1.3621 0.8430 -0.0371

1.2928 -0.0371 0.5729

To illustrate the closed-loop behaviour let r=5, X20=qo=O, eo= r, and XcQ=[0 0 O]T,
respectively. As can be seen from Figure 8, the output y of the closed-loop system with the
LQG controller becomes oscillatory and has a large overshoot, while the output of the
closed-loop system with the controller given by Proposition 4.1 shows satisfactory response.
Figure 9 shows the control input u{t) for the LQG controller with and without saturation as
well as the output of the saturation nonlinearity a(u(t» for the LQG controller with
saturation.

6. CONCLUSION

In this paper, we developed linear and nonlinear dynamic compensators based upon Theorem
2.1, which accounts for the saturation nonlinearity and provides a guaranteed domain of
attraction. Controller gains were characterized by Riccati equations which were obtained by
minimizing an LQG-type cost. Propositions 3.1 and 4.1 were demonstrated by two numerical
examples using full-order dynamic compensators.
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