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Abstract

We show that a continuous dynamical system on a state space that has the structure of a vector bundle on a compact
manifold possesses no globally asymptotically stable equilibrium. This result is directly applicable to mechanical systems
having rotational degrees of freedom. In particular, the result applies to the attitude motion of a rigid body. In light of this
result, we explain how attitude stabilizing controllers obtained using local coordinates lead to unwinding instead of global
asymptotic stability. (© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is convenient to think of the evolution of a phys-
ical system in terms of a dynamical system evolving
on the physical state space, which is simply the
set of all states of the physical system. We assume
that the states of the system can be placed into a
one-to-one correspondence with the points of an ab-
stract m-dimensional manifold .#. Under this corre-
spondence, the dynamics of the physical system give
rise to a dynamical system on .#. The manifold .#
models the physical state space, while the dynamical
system on .# models the dynamics of the physical
system. In such a case, we call .# the state space
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of the system. Physically relevant quantities such as
angular displacement, angular velocity, etc., yield lo-
cal coordinates on .#. These local coordinates can be
used to locally represent the dynamical system on .#
as a set of differential equations defined on an open
subset of R™, even though .# might be globally quite
different from an open subset of R”. While local
coordinates are convenient and indeed sufficient for
analyzing the local properties of a dynamical system,
questions of a global nature require global analysis
for satisfactory solutions.

One instance where the above observation is rel-
evant is the problem of stabilizing the attitude of a
rigid body. In this case, the state space for the attitude
dynamics can be identified with .# = SO(3) x R3,
where SO(3) is the group of rotation matrices, that is,
3 x 3 orthogonal matrices with determinant 1. In Sec-
tion 6, we consider a continuous feedback controller
designed to globally asymptotically stabilize a desired
rest attitude of a rigid body. However, a closer exami-
nation reveals that this controller, which was designed
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using local coordinates, is not globally well defined on
M and, in fact, leads to the unwinding phenomenon
where the body may start at rest arbitrarily close to
the desired final attitude and yet rotate through large
angles before coming to rest in the desired attitude.
Indeed, it has been observed in [17] that due to the
global topology of .#, no continuous vector field on
-/ has a globally asymptotically stable equilibrium.
In this paper, we generalize and expand upon this ob-
servation by identifying a large class of systems for
which the global topology of the state space precludes
the existence of globally asymptotically stable equilib-
rium points under continuous dynamics. Besides the
rigid body dynamics in terms of both rotation matrices
and quaternions, this class of systems also includes
any mechanical system that has a rotational degree of
freedom. We also outline a general class of situations
in which the use of local coordinates to achieve global
objectives leads to unwinding.

It is well known that the domain of attraction of an
asymptotically stable equilibrium is homeomorphic to
R” for some n [5, Theorem V.3.4]. This fact indicates
that unlike local asymptotic stability, global asymp-
totic stability of an equilibrium depends strongly on
the global topology of the state space .#. Indeed,
Theorem 1 in Section 2 states that if .# has the
structure of a vector bundle over a compact manifold
2, then no continuous vector field on .# has a glob-
ally asymptotically stable equilibrium. This result is
applicable to mechanical systems having rotational
degrees of freedom. When applied to the rigid body
attitude stabilization problem where the state space
is a vector bundle over the compact manifold SO(3),
Theorem 1 leads to the observation made in [17]
that rigid body attitude cannot be globally stabilized
through continuous feedback.

Theorem 1 follows easily from elementary concepts
in differential topology. However, given the substan-
tial literature on the global stabilization of rigid body
attitude [15,20,21,26-28], we feel that it would be
useful to understand the ramifications of this simple
but fundamental result.

In Section 4 we illustrate the unwinding phe-
nomenon in the special case of a rigid body rotating
about a fixed axis. For this case, continuous globally
stabilizing feedback controllers that are designed us-
ing local coordinates turn out to be multiple-valued
on the state space .# = S' x R, where S' is the
unit circle in the complex plane. Consequently,
the closed-loop system exhibits unwinding wherein
the body may start at rest in the desired orientation

and yet rotate several times before eventually coming
to rest in the initial orientation

Often the state space .# of the system of inter-
est is related to another manifold ./, called a cover-
ing manifold, through a covering map p: N — M,
which is onto and a local diffeomorphism everywhere
but globally many to one. Since p is a local diffeo-
morphism everywhere, a given control system 2 on
. may be uniquely lifted to a control system 2 on
A" that is locally equivalent to X. This property of
covering manifolds is particularly useful for modeling
since a covering manifold of .# may have a simpler
structure and thus may be more easily coordinatized
than ./ itself. For instance, the set of unit quaternions
S3 is a covering manifold for the set of rotation matri-
ces SO(3) and the corresponding covering map pro-
vides a globally nonsingular parametrization of SO(3)
in terms of unit quaternions. This parametrization is
widely used for modeling attitude dynamics because
S3 is easily parametrized in terms of four parameters
subject to one constraint, while a rotation matrix con-
tains nine parameters satisfying six constraints. How-
ever, one drawback of using covering manifolds to
model control systems is that since a covering map
may be many to one, the control system 2 on .# may
not be globally equivalent to the lifted control system
S on the covering manifold ./". Under certain feed-
back controllers, two solutions of £ may project onto
two distinct curves in .4 passing through the same
initial condition. Such feedback controllers will give a
family of motions on .# that exhibit unwinding. These
ideas are explained in greater detail in Section 5.

In Section 6, the above ideas are used to explain
how the unwinding phenomenon can arise in the case
of attitude stabilizing controllers that are designed us-
ing quaternions. Although the state space for the atti-
tude stabilization problem is .# = SO(3) x R?, it is
convenient to represent the problem in terms of unit
quaternions on the covering manifold ./ =53 x R>. A
controller that is defined in terms of quaternions, that
is, on ./~, need not determine a well-defined control
law in terms of attitude, that is, on .#. In other words,
such a controller may assign more than one control
value to a point in .#. In such a case, the closed loop
does not give rise to a well-defined dynamical sys-
tem on .#. Thus, not only does such a controller fail
to yield global asymptotic stability, but in fact leads
to unwinding on .#. Strictly speaking, global asymp-
totic stability is not defined (in terms of attitude) for
a controller that does not define a dynamical system
on the state space /.
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2. A topological obstruction to global stability

We note that by a manifold we mean a smooth,
positive dimensional, connected manifold without
boundary.

Let .# be a manifold of dimension m and consider
a continuous vector field f on .# with the property
that for every x € .#, there exists a unique right max-
imally defined integral curve of f starting at x, and,
furthermore, every right maximally defined integral
curve of f is defined on [0, c0). In this case, the in-
tegral curves of f are jointly continuous functions of
time and initial condition [13, Theorem 3.4, p. 24] and
thus define a continuous semiflow v : [0,00) X A4 —
M on A [4] satisfying

¥(0,x) =x, (1)

Y&, (Y(7,x))) = Y(t + 7,x) (2)

forall £,7 € [0,00) and x € /.

A pointz € ./ is an equilibrium of f if f(z)=0, or
equivalently, if y(¢,z) =z for all t > 0. An equilibrium
z of f is said to be globally attractive if, for every
X € MY(t,x) — z as t — oo. An equilibrium z of
f is called Lyapunov stable if, for every open neigh-
borhood %, C . of z, there exists an open neighbor-
hood % s C M of z such that (¢, % s) C U, forall t >0,
where (¢, %s) = {Y(t,x): x € Us}. An equilibrium z
of f is said to be globally asymptotically stable if z
is globally attractive and Lyapunov stable.

A manifold 2 is said to be contractible if there exist
a point go € 2 and a (jointly) continuous mapping / :
[0,1] x 2 — 2 such that 4(0,q) =q and h(1,q) = qo
for all g € 2. In other words, 2 is contractible if the
identity map ¢ — ¢ on 2 is homotopic to the constant
map ¢ — ¢qo. The following is a simple consequence
of mod-2 intersection theory [12, Section 2.4].

Proposition 1. No compact manifold is contractible.

The following result, which is a straightforward
application of Proposition 1, provides a topological
obstruction to the global asymptotic stability of an
equilibrium of £ in terms of the global structure of ./Z.
This result generalizes the observation made in [17].

Theorem 1. Suppose n : M — 2 is a vector bundle
on 2, where 2 is a compact, r-dimensional manifold
with r <m. Then there exists no equilibrium of f that
is globally asymptotically stable.

s
~ g M=5'xR

0= (0,00 Tjn(Q) =8" % {0}
o
<‘_>\_,/

Fig. 1. The zero section of the vector bundle S' x R.

Proof. Suppose z € ./ is a globally asymptotically
stable equilibrium of f. Let  : 2 — .# denote the
zero section and recall that 7 satisfies n(1(q)) = ¢ for
all g € 2. Fig. 1 depicts the maps « and # in the case
where 2 = S', the unit circle, and .# is the cylinder
S! x R.

Define 2 : [0,1] x 2 — 2 by

n(Y(—1In(1 — 4),
n(q))), (4,q) €[0,1) x 2,
n(z), A=1,q € 2.

h(;‘a q) =

3)

By construction, % is continuous on [0,1) x 2, and
satisfies 4(0,q) = ¢ and A(1,q) = qo £ 7(z) for all
q € 2. Therefore, to prove that 4 is continuous on
[0,1] x 2, it suffices to consider ¢ € 2 and a sequence
{(%i»q:)} in [0,1) x 2 such that (1;,q;) — (1,9) as
i — o0o. Define the sequence {#;} in [0,00) and the
sequence {x;} in 4 by t; = —In(1 — 4;), x; = n(q;).
Then t; — oo and x; — x =#(q) as i — oo. To
prove the continuity of 4, it now suffices to show that
Y(ti,x;) — z as i — oo. Let %, C ./ be an open
neighborhood of z. By Lyapunov stability, there exists
an open neighborhood % 5 of z such that y(¢, %) C .
for all #>0. By global attractivity, there exists 7 > 0
such that y(t,x) € ;. Therefore, since (t,x;) —
(t,x) as i — oo, it follows by continuity that there
exists k > 0 such that Y(z,x;) € ;s for all i > k.
Since t; — oo as i — oo, there exists j=k such
that #; > t for all i > j. It now follows from (2) and
our choice of % that Y(t;,x;) = Y(t; — 1, Y(z,x;)) €
W(ti—,%5) € U, foralli > j. Since %, was arbitrary,
it follows that y(f;,x;) — z as i — oo and thus A
is continuous. It now follows that 2 is contractible
which contradicts Proposition 1. Hence we conclude
that there exists no equilibrium of f that is globally
asymptotically stable. [
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Remark 1. Theorem 1 is also valid in the more gen-
eral case of a fibre bundle 7 : .# — 2 that admits a
continuous section 1 : 2 — .#, 2 being a compact
manifold. The proof can be carried out in the general
case without any modification. In particular, Theorem
1 applies to state spaces of the form .# x ', where
M is a vector bundle over a compact manifold and ¢~
is a manifold. Since the state space for the closed-loop
system obtained by applying a dynamic feedback con-
troller to a control system on .# is of the form .# x 4",
where 4" is the state space for the feedback controller,
Theorem 1 implies that no continuous dynamic feed-
back controller can globally asymptotically stabilize
an equilibrium of a control system whose state space
is a vector bundle over a compact manifold.

On letting 2 = .# in Theorem 1, it follows that
no continuous vector field on a compact manifold
can have a globally asymptotically stable equilibrium
point.

Remark 2. Global asymptotic stability is equivalent
to local asymptotic stability together with global at-
tractivity. Local asymptotic stability is clearly inde-
pendent of the global topology of the state space and
hence not ruled out by the hypotheses of Theorem 1.
More interestingly, while the hypotheses of Theorem
1 rule out the possibility of global asymptotic stability,
they do not rule out the possibility of global attractiv-
ity. For instance, the differential equation =sin’(6/2)
represents a continuous vector field on the compact
manifold .# =S" that has =0 as a globally attractive
but Lyapunov unstable equilibrium.

Remark 3. Theorem 1 can be restated as saying that
under the additional hypothesis of local asymptotic
stability, the hypotheses of the theorem rule out global
attractivity. Since the hypotheses of the theorem by
themselves do not rule out global attractivity, Theo-
rem | represents an interesting situation in which the
local property of asymptotic stability interacts with the
global topology of the state space to rule out global
attractivity.

3. Mechanical systems with compact configuration
manifolds

The configuration space of a mechanical system is
the set of all configurations of the system, where each
configuration refers to a particular arrangement of the

various particles constituting the mechanical system.
The configuration space of a mechanical system can
often be identified with an r-dimensional manifold 2,
the configuration manifold of the system, where r is
the number of degrees of freedom of the mechanical
system. The state space .# of a mechanical system
with the configuration manifold 2 has the structure ofa
vector space over 2. In the Lagrangian formulation, .#
is the tangent bundle of 2, while, in the Hamiltonian
formulation, .# is the cotangent bundle of 2. Hence
Theorem 1 implies that a mechanical system having
a compact configuration manifold cannot be globally
asymptotically stabilized to a rest configuration using
continuous state feedback.

A large class of mechanical systems have a config-
uration manifold that is compact. Some examples are
provided in Table 1. Even in the case that a mechanical
system with some rotational degrees of freedom has
a noncompact configuration manifold, it is still pos-
sible to write the state space as a vector bundle over
a compact manifold that represents the rotational de-
grees of freedom. One such mechanical system is the
oscillating eccentric rotor (2=S"' x R, .# =S' x R?)
[3,8,9,14,23].

Theorem 1 is also applicable to the dynamics of
a rigid body written in terms of the unit quaternion,
since these dynamics evolve on .# = S* x R3, where
S3 is the unit sphere in R*. It is claimed in [20,21] that
the feedback controllers presented therein render the
quaternion dynamics globally asymptotically stable on
S3 x R3. This claim is not valid in light of Theorem
1. Indeed, a careful look at the feedback controllers
in [20,21] reveals that the closed-loop system in each
case possesses two distinct equilibria, thus ruling out
global asymptotic stability. The presence of two equi-
libria is also noted in [15] for the attitude stabilizing
controller given therein.

Another control problem that Theorem 1 applies
to is the spin-axis stabilization problem involving the
design of feedback controllers that cause the motion
of a rigid body to asymptotically approach a uniform
rotation about a body-fixed spin axis while the spin
axis asymptotically points in a desired inertially fixed
direction. A special case of this problem is the prob-
lem of asymptotically stabilizing the sleeping motion
of a spinning top [18,24,25]. The dynamcis for the
spin-axis stabilization problem are given by the Euler—
Poisson equations on .# = S* x R?, where the unit
sphere S? in R? represents the set of all possible ori-
entations of the spin axis. Since S? is compact, it fol-
lows from Theorem 1 that continuous global spin-axis
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Table 1

Mechanical systems with compact configuration manifolds

Mechanical system

Configuration manifold 2

Simple pendulum

Double simple pendulum

Planar tree-connected multibody chain

Spherical pendulum

Double spherical pendulum

Tree conected chain of spherical pendula

Top or a rigid body with one point
inertially fixed

Single axis Control Moment Gyro (CMG)

Double axis CMG

Double gimballed gyropendulum

Spacecraft with reaction wheels or CMG’s

S!, the unit circle

St x S, the torus

ST x - x 8 [22]

S2, the unit sphere in R3

$2 x §2 [19]

§2x - x 82

SO(3), the special orthogonal group on R? [2]

S]

St x st

St x St x s [1,7]
SO(3) x St x --- x S! [6]

stabilization is not possible. Indeed, the controllers
presented in [18,24,25] render the sleeping motion of
a top an asymptotically stable equilibrium with a do-
main of attraction of the form % x R?, where % C S? is
open and hence noncompact. For the controllers given
in [18,24] the set % is an open hemisphere, while, for
the controller given in [25], % is all of S? with a point
removed.

Thus, loosely speaking, Theorem 1 applies to every
mechanical system that has at least one rotational de-
gree of freedom. Therefore, Theorem 1 represents a
topological obstruction to the global stabilization of
any system involving rotational motion.

4. The unwinding phenomenon

To illustrate the unwinding phenomenon, consider
a mechanical system consisting of a rigid body rotat-
ing about a fixed axis under the action of a control
torque. The configuration space of the system can be
identified with the unit circle S' ={z € C: |z| =1} in
the complex plane with z =1 representing a reference
configuration. Consequently, by Theorem 1, the rigid
body cannot be globally asymptotically stabilized to
a rest position using a continuous state feedback. The
angular position 0 and the angular velocity o of the
body represent local coordinates in a neighborhood of
(1,0) € S' x R. Assuming that the moment of iner-
tia about the axis of rotation is unity, the equations of
motion of the system can be written in terms of the
local coordinates 6 and w as

0(t) = w(t), “4)
a(t) = u(?), (5)

where u represents the control torque. A continuous
feedback controller that locally asymptotically stabi-
lizes the state 0 =0, w = 0 is given by

u(t) = 7(0(t), (1)) £ —kO(t) — co(t), (6)

where k£ > 0 and ¢ > 0. The resulting closed-loop
system is locally equivalent at 0 = 0, w = 0 to the
second-order system given by

0(t) + cO(t) + kO(1) = 0. (7)

Since 8 = 0 is a globally asymptotically stable
equilibrium for the system (7), it might appear that
Theorem 1 has been contradicted. However, since
values of 0 that differ by integral multiples of 27 rep-
resent the same point on the configuration manifold
S', 0 is multiple-valued on S!. Consequently, the con-
trol law (6) is not globally well defined on the state
space S' x R. As a result (7) does not give rise to a
well-defined continuous vector field on S! x R, thus
explaining the apparent contradiction with Theorem 1.

Since the feedback law (6) is not globally well de-
fined on ' x R, the closed-loop system exhibits the un-
winding phenomenon. Unwinding can be understood
by considering the initial condition (4m,0). This ini-
tial condition coincides with the desired final angular
position 6 = 0 of the rigid body and no further con-
trol action is needed. However, the feedback controller
(6) takes the state (0, w) of the system from (4m,0)
to (0,0) causing the rigid body to rotate at least twice
before coming to rest in the configuration it started in.

Unwinding can be eliminated by replacing 0 in (6)
by the principal value of 0 in [ — &, ©). However, the
resulting feedback law is discontinuous so that Theo-
rem 1 is not applicable. In general, the feedback law
u = y(0,w) will not lead to unwinding if and only
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if y is 2m-periodic in 6. If, in addition, y is continu-
ous, then the resulting closed-loop system gives rise
to a continuous vector field on S' x R, in which case
Theorem 1 rules out global asymptotic stability.

Similar arguments can be used to show that some
of the stabilizing controllers that are proposed in
[9,14,23] for the oscillating eccentric rotor give rise
to unwinding. Ref. [9] contains an experimental
illustration of unwinding in the case of the controlled
oscillating eccentric rotor.

5. Covering manifolds and unwinding

A smooth surjective (onto) map p : N — M,
where /" and .# are manifolds, is called a covering
map if every point x € .# has an open neighborhood
U C M such that p~!(%) is a disjoint union of open
sets ¥ and, for each k, p restricted to ¥ is a diffeo-
morphism. If p: A" — ./ is a covering map, then A"
is called a covering manifold of 4, and A" and .4
are locally diffeomorphic everywhere. For instance,
N = R? is a covering manifold of .# = S' x R with
a covering map p : R?> — S' x R given by

P, 0) = (", w), (8)

where i =+/—1 [11, p. 150]. One can picture p as the
map that wraps the plane R? around the cylinder S' x R
by mapping each strip of the form [2km, 2(k+1)n] xR
onto S' x R.

Since a covering map p : A" — ./ is a local dif-
feomorphism, a covering map can be used to “lift”
curves in .# to curves in the covering manifold 4"
More precisely, if ¢ : [a,b) — . represents a contin-
uous curve in ./, then, for every x € p~!(c(a))C N,
there exists a unique curve ¢ : [a,b) — A" such that
é(a) =x and p(é(t)) =c(¢) for all ¢t € [a,b) [11, p.
150]. Consequently, a semiflow y on .# can be lifted
to a unique semiflow iy on /" such that

PpOb(1,x)) = (2, p(x))

for all (¢,x) € [0,00) X A". In a similar fashion, a
vector field (control system) f on .# can be uniquely
lifted to a vector field (control system) f on /" such
that p projects the integral curves of f onto the inte-
gral curves of f. However, since a covering map in
general is many to one, not every semiflow on the cov-
ering manifold ./~ projects onto a well-defined semi-
flow on .# under the covering map. In particular, a
semiflow yy on A" projects onto a semiflow on .# if

and only if, for all x, y € A" satisfying p(x) = p(»),

pO(8,x)) = p(Ji(t, ¥)) )

for all ¢ € [0,00). If (9) is not satisfied, then the in-
tegral curves through x and y project onto two dis-
tinct curves on .# passing through the same point
p(x) = p(y) € . In this case, the family of curves
{poy(-,x): x € A"} on M represents a family of mo-
tions that exhibit unwinding. Similar remarks apply to
vector fields and control systems on 4.

To illustrate the above ideas, consider once again a
rigid body rotating about a fixed axis with unit moment
of inertia under the action of a control torque u. Such
a rigid body can be modeled by the control system

() = io()z(t), (10)
o(t) = u(t), (11)

which evolves on §' x R. Substituting z(7) = ¢®®) in
(10) yields (4). Thus (4) and (5) represent the dy-
namics of the rigid body lifted to R? using the cover-
ing map (8). Note that the lifted system (4) and (5)
is locally equivalent to (10) and (11) in a neighbor-
hood of (6, w) = (0,0) since p is a local diffeomor-
phism. Hence the control law (6) with 0 restricted to
(—m, ) locally asymptotically stabilizes the equilib-
rium (z,w) = (1,0) of system (10)—(11). However,
the closed-loop system (7) obtained from (4) and (5)
does not project onto a globally well-defined dynam-
ical system on S' x R. For instance, the solutions of
(7) passing through (4, 0) and (0,0) project onto two
distinct curves in S' x R passing through the same ini-
tial condition (z, w)=(1,0). As a result, controller (6)
when applied globally to the system (4)—(5) leads to
unwinding as noted in the previous section.

6. The unwinding phenomenon in attitude control

The configuration space for the attitude dynamics
of a rigid body can be identified with SO(3). Hence
the configuration manifold for the attitude dynamics
of a rigid body is the three dimensional compact Lie
group 2 = SO(3). The Lie group structure of SO(3)
makes it possible to write the equations of motion on
M =S0(3) x R? instead of the tangent bundle 7SO(3)
of SO(3). The equations of motion are given by [16]

R(t) = —(o(t))R(1), (12)

Jaixt) = —((t)x )Jo(t) + u(t), (13)
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where R € SO(3) transforms the components of a
vector in an inertial frame to its components in a
body-fixed frame, » € R3 is the angular velocity of
the body in the body-fixed frame, J is the inertia ma-
trix, u € R? is the external control torque vector and,
for each w € R3, (wx) is the matrix representation of
the linear operation v — @ x v on R?, x denoting
the familiar cross product operation between vectors
in R3.

Unit quaternions or Euler parameters provide a pop-
ular means of parametrizing matrices in SO(3). We
write a quaternion g as ¢ = qo + qi1 + ¢2j + g3k
with quaternion multiplication defined according to
P=7?=k*>=-1,ij=—ji=k, jk=—kj=iand
ki = —ik = j. The set of unit quaternions S* = {qo +
qii+q2j+q3k: ¢3+q3+q5+g5=1} is a group under
quaternion multiplication. Every g € S3 gives rise to
a linear map p(q) : R®> — R given by

P(q)(v) = g(vii + v2j + v3k)g, (14)

where §=qo —q11—q>j — q3k. The matrix of the linear
map p(q) is a rotation matrix for every ¢ € S> [10,
Chapter 5]. The map p : S — SO(3) thus obtained
satisfies p(q) = p(— ¢) and is a two-to-one covering
map of SO(3). Being a local diffeomorphism every-
where, p yields a globally nonsingular parametriza-
tion of rotation matrices in terms of unit quaternions.
Consequently, the kinematics (12) can be lifted onto
S3 to yield the differential equations

4(t) = 3q()(@1(1)i + w2(1)j + w3(0)k), (15)

Jaixt) = —(o(t)x )Jo(t) + u(t), (16)

on ./ =83 x R? for the unit quaternion representation
of the attitude of a rigid body [16, p. 58].

The attitude feedback stabilization problem consists
of finding a feedback controller u(z) = y(R(t), w(t))
such that the closed-loop system obtained from (12)
and (13) has the state (R., 0) € SO(3) x R? correspond-
ing to the desired rest attitude as an asymptotically
stable equilibrium. In [15,20,21,26-28], the solution
is presented in terms of a feedback u(#)=y(q(¢), w())
such that the state (¢e,0) € S* x R* is an asymptot-
ically stable equilibrium for the closed-loop system
obtained from (15) and (16), where g. is such that
p(ge) = R.. Since p is a local diffeomorphism, the
asymptotic stability of (g.,0) €S> x R® implies lo-
cal asymptotic stability of (R.,0) € SO(3) x R3. One
such controller is given by

g, 0)=—Jo—J [q19:43]", (17)

where it is assumed that g = 1 and R, = I, the iden-
tity matrix. Local asymptotic stability of the equilib-
rium (ge,0) € S3 x R* and hence of the equilibrium
(R.,0) € SO(3) x R? follows from the invariant set
theorem by considering the Lyapunov function

V(g.w)= 10" o+ (g0 — 1P + 4] + ¢ + 43 (18)

and its derivative along the closed-loop solutions of
(15) and (16) given by

V(g,w)=—o"J . (19)

Theorem 1 implies that no point of S* x R* can be a
globally asymptotically stable equilibrium of (15) and
(16) for any continuous feedback u(t)= y(q(¢), w(¢)).
Indeed, under the control law (17), both (% g.,0) are
equilibria of the closed-loop quaternion equations (15)
and (16), so that global asymptotic stability of the
equilibrium (g.,0) € S* x R? does not hold. Further-
more, (—¢e,0) is a Lyapunov unstable equilibrium,
while the solutions from all other initial conditions
converge to (ge, 0). Since both ¢, and — g, correspond
to the same attitude R., the state (R.,0) € SO(3) x R?
clearly cannot be a Lyapunov stable equilibrium for
(12) and (13). Moreover, every solution of (15) and
(16) that starts sufficiently close to (— ge, 0) diverges
from (—q., 0) and converges to the equilibrium (g, 0).
The corresponding attitude response starts close to the
desired attitude (R, 0), diverges from (R, 0) and then
converges once again to (R, 0), thus exhibiting un-
winding of up to 360°.

The control law (17) does not satisty y(q,w) =
%(—q, ) for all (¢,w) € S* x R3 and is thus not well
defined on SO(3) x R>. As a result the closed-loop
equations obtained from (15) and (16) do not give rise
to a well-defined vector field on SO(3) x R3, while
the closed-loop solutions of (15) and (16) lead to
attitude responses that exhibit unwinding. To sum up,
controller (17) gives rise to a continuous flow on
S3 x R? and hence does not give global asymptotic
stability by Theorem 1. Instead, controller (17) fails
to give rise to a well defined flow on SO(3) x R? and
hence causes unwinding in the attitude responses.

Remark 4. Controller (17) belongs to the classes of
controllers give in [20,21]. The controllers proposed in
[20,21], like the controller (17), also give closed-loop
dynamics having two equilibria on S* x R3. This fact
is not mentioned in [20,21] and does not appear to
have been recognized. In [15,27,28], the existence of a
second equilibrium in the closed-loop quaternion dy-
namics is recognized. However, it is argued in [15]
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that since both the quaternion equilibria correspond to
the same attitude and all solutions converge to one or
the other of the two, the desired attitude is globally
asymptotically stable on SO(3) x R>. As we have ar-
gued above, this situation in fact leads to attitude re-
sponses that exhibit unwinding. Ref. [26] recognizes
the fact that due to the presence of a second unstable
equilibrium in the closed-loop quaternion dynamics,
the closed-loop dynamics do not give rise to a dy-
namical system on SO(3) x R* and, in fact, lead to
unwinding in the attitude response.

7. Conclusions

Global properties of a dynamical system, such as
global asymptotic stability of an equilibrium, depend
strongly on the global topology of the underlying state
space. For instance, mechanical systems with rota-
tional degrees of freedom cannot be globally asymp-
totically stabilized to a rest configuration. Locally
stabilizing controllers that are designed using local
coordinates lead to unwinding when applied glob-
ally in a continuous manner. Since unwinding can
be highly undesirable in spacecraft applications from
the point of view of fuel consumption and vibration
suppression, this paper highlights the need for using
global considerations in deriving results of a global
nature.

References

[1] J. Ahmed, D.S. Bernstein, Adaptive control of a dual-axis
CMG with an unbalanced rotor, in: Proceedings of the 37th
Conference on Decision and Control, IEEE, Tampa, FL,
December 1998, pp. 4531-4536.

[2] V.I. Amold, Mathematical Methods of Classical Mechanics,
2nd ed., Springer, New York, 1989.

[3] D.S. Bernstein (Ed.), Special issue on a nonlinear benchmark
problem, Int. J. Robust Nonlinear Control 8(4/5) (1998).
[4] N.P. Bhatia, O. Hajek, Local Semi-Dynamical Systems,

Lecture Notes in Mathematics, vol. 90, Springer, Berlin, 1969.

[5] N.P. Bhatia, G.P. Szeg6, Stability Theory of Dynamical
Systems, Springer, Berlin, 1970.

[6] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, G. Sanchez
de Alvarez, Stabilization of rigid body dynamics by internal
and external torques, Automatica 28 (4) (1992) 745-756.

[7] A.E. Bryson Jr., Control of Spacecraft and Aircraft, Princeton
University Press, Princeton, NJ, 1994.

[8] R.T. Bupp, D.S. Bernstein, V.T. Coppola, A benchmark
problem for nonlinear control design, Int. J. Robust Nonlinear
Control 8 (1998) 307-310.

[9] R.T. Bupp, D.S. Bernstein, V.T. Coppola, Experimental
implementation of integrator backstepping and passive
nonlinear controllers on the RTAC testbed, Int. J. Robust
Nonlinear Control 8 (1998) 435-457.

[10] M.L. Curtis, Matrix Groups, 2nd ed., Springer, New York,
1984.

[11] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern
Geometry — Methods and Applications, Part II, Graduate
Texts in Mathematics, Springer, New York, 1985.

[12] V. Guillemin, A. Pollack, Differential Topology, Prentice-
Hall, Englewood Cliffs, NJ, 1974.

[13] J.K. Hale, Ordinary Differential Equations, 2nd ed., Pure and
Applied Mathematics, vol. XXI, Krieger, Malabar, FL, 1980.

[14] M. Jankovic, D. Fontaine, P.V. Kokotovic, Tora example:
Cascade- and passivity-based control designs, IEEE Trans.
Control Systems Technol. 4 (3) (1996) 292-297.

[15] SM. Joshi, A.G. Kelkar, J.T.-Y. Wen, Robust attitude
stabilization of spacecraft using nonlinear quaternion
feedback, IEEE Trans. Automat. Control 40 (10) (1995)
1800-1803.

[16] T.R. Kane, P.W. Likins, D.A. Levinson, Spacecraft
Dynamics, McGraw-Hill, New York, 1983.

[17] D.E. Koditschek, Application of a new Lyapunov function
to global adaptive tracking, in: Proceedings of the 27th
Conference on Decision and Control, IEEE, Austin, Texas,
December 1988, pp. 63—68.

[18] K.-Y. Lum, D.S. Bernstein, V.T. Coppola, Global stabilization
of the spinning top with mass imbalance, Dyn. Stability
Systems 10 (4) (1995) 339-365.

[19] JE. Marsden, J. Scheurle, Lagrangian reduction and the
double spherical pendulum, Z. Angew. Math. Phys. 44 (1)
(1993) 17-43.

[20] R.E. Mortenson, A globally stable linear attitude regulator,
Int. J. Control 8 (3) (1968) 297-302.

[21] S.V. Salehi, E.P. Ryan, A non-linear feedback attitude
regulator, Int. J. Control 41 (1) (1985) 281-287.

[22] N. Sreenath, Nonlinear control of planar multibody systems
in shape space, Math. Control Signals Systems 5 (1992) 343—
363.

[23] C.-J. Wan, D.S. Bernstein, V.T. Coppola, Global stabilization
of the oscillating eccentric rotor, Nonlinear Dyn. 10 (1996)
49-62.

[24] C.-J. Wan, V.T. Coppola, D.S. Bernstein, Global asymptotic
stabilization of the spinning top, Opt. Control Appl. Methods
16 (1995) 189-215.

[25] C.-J. Wan, P. Tsiotras, V.T. Coppola, D.S. Bernstein,
Global asymptotic stabilization of a spinning top with torque
actuators using stereographic projection, Dyn. Control 7
(1997) 215-233.

[26] J.T.-Y. Wen, K. Kreutz-Delgado, The attitude control
problem, IEEE Trans. Automat. Control 36 (10) (1991) 1148—
1162.

[27] B. Wie, P.M. Barba, Quaternion feedback for spacecraft large
angle maneuvers, J. Guidance Control Dyn. 8 (3) (1985)
360-365.

[28] B. Wie, H. Weiss, A. Arapostathis, Quaternion feedback
regulator for spacecraft eigenaxis rotations, J. Guidance
Control 12 (3) (1989) 375-380.



