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Abstract— Traditional system identification uses measure-
ments of the inputs, but when these measurements are not
available, alternative methods, such as blind identification,
output-only identification, or operational modal analysis, must
be used. Yet another method is sensor-to-sensor identification
(S2SID), which estimates pseudo transfer functions whose
inputs are outputs of the original system. A special case of
S2SID is transmissibility identification. Since S2SID depends
on cancellation of the input, this approach does not extend
to nonlinear systems. However, in the present paper we show
that, for the case of a two-output Hammerstein system, the least-
squares estimate of the PTF is consistent, that is, asymptotically
correct, despite the presence of the nonlinearities.

I. INTRODUCTION

Traditional linear system identification uses measurements
of inputs and outputs to construct a dynamic model. These
measurements may be noisy, and thus the challenge is to
construct the most accurate model possible with a limited
amount of imperfect data and without knowledge of the order
of the true system and the statistical properties of the noise.
The system may also be subjected to additional inputs that
are not measured; in this case, the effect of the unmeasured
inputs can be viewed as noise corrupting the output.

In many applications, however, measurements of the inputs
are not available. In this case, there are several possible
approaches to system identification. One approach is to use
statistical knowledge about the input signal and then estimate
the model based on the signal characteristics; this approach
is called blind identification, output-only identification, or
operational modal analysis [1–6].

A second approach to identification when input measure-
ments are not available is sensor-to-sensor identification
(S2SID). In S2SID, one sensor signal is viewed as the input
of a pseudo transfer function (PTF) whose output is another
sensor signal. The sensor signals are thus called the pseudo
input and pseudo output, respectively, of the PTF. It is easy
to see that, if the same set of states is observable from
both output channels, then the denominators of the “original”
transfer functions cancel, and the PTF retains information
about only the zeros of the transfer functions from the
input to the sensor. Most importantly, the contribution of
the unmeasured input signal also cancels, and therefore the
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resulting estimate of the PTF is independent of the detailed
history of the excitation signal.

A version of S2SID is routinely performed in the special
case of modal vibration analysis, where ratios of FFT’s of
accelerometer signals are used to obtain frequency-domain
estimates of transmissibilities [7–11]. This frequency-domain
approach, however, does not address issues that arise in time-
domain identification, namely, the order of the PTF, the effect
of the initial condition, the persistency of the input, and the
impact of sensor noise.

A time-domain approach to S2SID was proposed in [12–
15], where the order of the resulting PTF was analyzed in the
presence of a nonzero initial condition. In [13], it was shown,
somewhat surprisingly, that the denominator dynamics cancel
despite the presence of nonzero initial conditions. The effect
of sensor noise was considered in [13] within the context of
least squares identification, which also reveals the level of
persistency in terms of the condition number of the regressor
matrix. S2SID with more than two sensors is addressed in
[14].

As noted above, the usefulness of S2SID depends on the
ability to estimate a transfer function independently of the
details of the excitation signal. This ability depends on the
fact that the input signal is cancelled in the construction of
the PTF. As expected, however, this cancellation does not
occur in the case of nonlinear systems, which suggests that
S2SID is confined to linear systems. However, in the present
paper we consider the case of a Hammerstein system, and we
estimate the Markov parameters of a linear PTF between the
pseudo input and pseudo output despite the fact that these
signals are not linearly related. Under these conditions we
show that, despite the presence of the input nonlinearities, the
estimates of the Markov parameters of the identified PTF are
semi-consistent, that is, up to a uniform scale factor, they are
asymptotically correct estimates of the Markov parameters
of the corresponding PTF of the system in the absence of
the input nonlinearities. This statement holds for the case in
which both input nonlinearities are nonzero, but otherwise
arbitrary.

The contents of the paper are as follows. In Section II,
we formulate the problem. In section III, we define the
identification architecture. In section IV we analyze the
consistency of the Markov parameters obtained from the
proposed method. In section V we show the numerical
examples. We give conclusions in section VI.

II. PROBLEM FORMULATION

Consider the block diagram shown in Figure 1, where u
is the input, N1 : R→ R and N2 : R→ R are memoryless
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nonlinearities, N1(u) and N2(u) are the intermediate signals,
and y1 and y2 are the output signals of the asymptotically
stable, SISO, linear, time-invariant, causal, discrete-time sys-
tems G1 of order n1 and G2 of order n2, respectively.

Since the input u is not measured, it is not possible to iden-
tify the SISO Hammerstein systems (N1, G1) and (N2, G2).
Furthermore, because of the presence of the nonlinearities
N1 and N2, the relationship between y1 and y2 is not linear.
Nevertheless, for reasons explained in subsequent sections,
we identify a linear model whose input and output are the
signals y1 and y2, respectively, see Figure 2. This linear
model, which we call a pseudo-transfer-function (PTF), has
the form

G(q) =
B(q)

A(q)
, (1)

where G is the PTF, q is the forward shift operator, and
A and B are polynomials in q. For simplicity, we assume
that G is a finite impulse response (FIR) model, and thus
A(q) = qµ and B(q) =

∑µ
i=0Hiqi, where µ is the model

order. Consequently, the FIR PTF model G that relates the
pseudo input y1 to the pseudo output y2 has the form

y2(k) =

µ∑
j=0

Hjy1(k − j), (2)

where H0, . . . ,Hµ−1 are the Markov parameters of (1).
In order for the PTF to be causal, the relative degree of

G2 must be greater than or equal to the relative degree of
G1. If this is not the case then we delay the pseudo output
y2 as needed.

III. LEAST SQUARES IDENTIFICATION OF THE PTF

The FIR model (2) can be expressed as

y2(k)= θµφµ(k), (3)

u

N1

N2

G1

G2

N1(u)

N2(u)

y1

y2

Fig. 1. SIMO Hammerstein system, N1 and N2 represent memoryless
nonlinearities, and y1 and y2 represent outputs of the linear transfer
functions G1 and G2, respectively.

G
y1 y2

Fig. 2. The pseudo-transfer function G is a linear model that is identified
based on the input and output signals y1 and y2, respectively. This
identification does not assume that the relationship between y1 and y2 is
linear.

where

θµ
4
=
[
H0 · · · Hµ−1

]
,

φµ(k)
4
=
[
y1(k) · · · y1(k − µ+ 1)

]T
.

The least squares estimate θ̂µ,` of θµ is given by

θ̂µ,` = arg min
θ̄µ

∥∥Ψy2,`− θ̄µΦµ,
∥̀∥

F
, (4)

where θ̄µ is a variable of appropriate size, || . ||F denotes the
Frobenius norm,

Ψy2,`
4
=
[
y2(µ) · · · y2(`)

]
,

Φµ,`
4
=
[
φµ(µ) · · · φµ(`)

]
,

and ` is the number of samples. It follows from (4) that

Ψy2,`Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (5)

Next, consider the system in Figure 3, which represents the
system in Figure 1 without the Hammerstein nonlinearities
N1 and N2. Note that y′1 and y′2 represent the outputs of G1

and G2, respectively.
Define H ′0, . . . ,H

′
µ−1 to be Markov parameters of the PTF

G′ constructed by y′1 and y′2, see Figure 4. It follows that

Ψy′2,`
= θ′µΦ′µ,`, (6)

where

Ψy′2,`
4
=

[
y′2(µ) · · · y′2(`)

]
, (7)

θ′µ
4
=

[
H ′0 · · · H ′µ−1

]
, (8)

Φ′µ,`
4
=

[
φ′µ(µ) . . . φ′µ(`)

]
, (9)

φ′µ(k)
4
=

[
y′1(k) · · · y′1(k − µ+ 1)

]T
. (10)

Although the PTF G′ is unknown and cannot be identified,
the goal is to compare the Markov parameters of the identi-
fied FIR PTF G relating y1 and y2 to the Markov parameters
of the PTF G′ relating y′1 to y′2.

u

G1

G2

y′1

y′2

Fig. 3. y′1 and y′2 are the outputs of the linear transfer functions G1 and
G2, respectively, with input u. This system does not exist and is used only
for analysis

G′
y′1 y′2

Fig. 4. The pseudo-transfer function G′ is a linear model that is identified
based on the input and output signals y′1 and y′2, respectively.
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IV. CONSISTENCY ANALYSIS

Assumption 4.1: u is a realization of a stationary white
random process U , and y1, y2, y′1, and y′2 are realizations of
stationary random processes Y1, Y2, Y ′1 , and Y ′2 , respectively.

Assumption 4.2: For all k ≥ 0, N1

(
U(k)

)
, N2

(
U(k)

)
,

N 2
1

(
U(k)

)
, and N1

(
U(k)

)
N2

(
U(k)

)
have finite mean and

variance.
Assumption 4.3: For all k ≥ 0, E

[
N1

(
U(k)

)]
= 0,

E
[
N1

(
U(k)

)
N2

(
U(k)

)]
6= 0, and E

[
N 2

1

(
U(k)

)]
6= 0.

Assumption 4.4: θµ is not zero.
Definition 4.1: The least squares estimator θ̂µ,` of θµ

is a semi-consistent estimator of θ′µ if there exists nonzero
γ ∈ R such that

lim
`→∞

θ̂µ,`
wp1
= γθ′µ.

Theorem 4.1: Let assumptions 4.1-4.4 hold. Then θ̂µ,`
is a semi-consistent estimator of θ′µ.

Proof 4.1: Note that,

y′1(k) =
(
u ∗ h1

)
(k)=

k∑
i=−∞

u(i)h1(k − i), (11)

y′2(k) =
(
u ∗ h2

)
(k)=

k∑
i=−∞

u(i)h2(k − i), (12)

y1(k) =
(
N1

(
u
)
∗ h1

)
(k)=

k∑
i=−∞

N1

(
u(i)

)
h1(k − i),(13)

y2(k) =
(
N2

(
u
)
∗ h2

)
(k)=

k∑
i=−∞

N2

(
u(i)

)
h2(k − i),(14)

where h1 and h2 are the impulse response sequences of G1

and G2, respectively. Furthermore,

y2(k) =
α(k)

β(k)
y′2(k), (15)

where

α(k)
4
=

(
N2(u) ∗ h2

)
(k),

β(k)
4
=

(
u ∗ h2

)
(k).

Therefore,

Ψy2,` =
[

α(µ)
β(µ)y

′
2(µ) . . . α(`)

β(`)y
′
2(`)

]
= Ψy′2,`

A`, (16)

where

A`
4
=


α(µ)
β(µ) 0

. . .

0 α(`)
β(`)

 . (17)

Therefore, (6) and (16) imply that

Ψy2,` = θ′µΦ′µ,`A`. (18)

It follows from (5) and (18) that θ̂µ,` satisfies

θ′µΦ′µ,`A`Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (19)

Note that,

Φ′µ,`A`Φ
T
µ,` =

y
′
1(µ) · · · y′1(`)
...

...
y′1(1) · · · y′1(`− µ+ 1)



y2(µ)

y′2(µ)
0

. . .

0
y2(`)

y′2(`)


y1(µ) · · · y1(`)

...
...

y1(1) · · · y1(`− µ+ 1)


T

=



∑̀
i=µ

y′1(i)y2(i)y1(i)

y′2(i)
· · ·

∑̀
i=µ

y′1(i)y2(i)y1(i−µ+1)

y′2(i)

...
. . .

...∑̀
i=µ

y′1(i−µ+1)y2(i)y1(i)

y′2(i)
· · ·

∑̀
i=µ

y′1(i−µ+1)y2(i)y1(i−µ+1)

y′2(i)


. (20)

Since Y1, Y2, Y
′
1 , and Y ′2 are stationary random processes, it

follows that for all k ≥ 0 we can calculate

lim
`→∞

1

`
Φ′µ,`A`Φ

T
µ,`

wp1
= (21)

E


Y ′1 (k)Y2(k)Y1(k)

Y ′2 (k) · · · Y ′1 (k)Y2(k)Y1(k−µ+1)
Y ′2 (k)

...
. . .

...
Y ′1 (k−µ+1)Y2(k)Y1(k)

Y ′2 (k) · · · Y ′1 (k−µ+1)Y2(k)Y1(k−µ+1)
Y ′2 (k)

 ,
where (21) is independent of k. Moreover, note that,

E
[
Y ′1 (k)Y2(k)Y1(k)

Y ′2 (k)

]

=E


k∑

i=−∞
U(i)h1(k−i)

k∑
j=−∞

N2

(
U(j)

)
h2(k−j)

k∑
r=−∞

N1

(
U(r)

)
h1(k−r)

k∑
q=−∞

U(q)h2(k−q)



=E


k∑

i=−∞

k∑
j=−∞

k∑
r=−∞

U(i)N2

(
U(j)

)
N1

(
U(r)

)
h1(k−i)h2(k−j)h1(k−r)

k∑
q=−∞

U(q)h2(k−q)

.
(22)

Since U is a stationary white random process and N2 and N1
are memoryless nonlinearities, it follows that the expectation
in (22) is nonzero when the arguments i, j, and r are equal
and zero otherwise. Therefore, (22) can be also written as

E
[
Y ′1 (k)Y2(k)Y1(k)

Y ′2 (k)

]

=E


k∑

i=−∞

U(i)h2(k−i)
k∑

j=−∞

k∑
r=−∞

N2

(
U(j)

)
N1

(
U(r)

)
h1(k−j)h1(k−r)

k∑
q=−∞

U(q)h2(k−q)


= E

[
k∑

j=−∞

k∑
r=−∞

N2

(
U(j)

)
N1

(
U(r)

)
h1(k − j)h1(k − r)

]

=

k∑
j=−∞

k∑
r=−∞

E
[
N2

(
U(j)

)
N1

(
U(r

)
)
]
h1(k − j)h1(k − r)

=

k∑
j=−∞

E
[
N2

(
U(k)

)
N1

(
U(k

)
)
]
h2
1(k − j). (23)

Since E
[
N2

(
U(k)

)
N1

(
U(k)

)]
is a nonzero constant for all
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k ≥ 0 and independent of j in (23), it follows that

E
[
Y ′1(k)Y2(k)Y1(k)

Y ′2(k)

]
= E

[
N2

(
U(k)

)
N1

(
U(k)

)] k∑
j=−∞

h2
1(k − j)

= E
[
N2

(
U(k)

)
N1

(
U(k)

)] ∞∑
i=0

h2
1(i), (24)

for all k ≥ 0.
Using the same procedure we obtain

lim
`→∞

1

`
Φ′µ,`A`Φ

T
µ,`

wp1
= E

[
N2

(
U(k)

)
N1

(
U(k)

)]
Γ, (25)

where

Γ
4
=



∞∑
i=0

h21(i) · · ·
∞∑
i=0

h1(i)h1(µ−1+i)

...
. . .

...
∞∑
i=0

h1(µ−1+i)h1(i) · · ·
∞∑
i=0

h21(i)


(26)

∈ Rµ×µ.

Likewise,

lim
`→∞

1

`
Φµ,`Φ

T
µ,`

wp1
= E

[
N 2

1

(
U(k

)
)
]

Γ. (27)

Dividing (19) by ` and using (25) and (27) yields

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
θ′µΓ

wp1
=

lim
`→∞

E
[
N 2

1

(
U(k)

)]
θ̂µ,`Γ. (28)

That is,(
E
[
N2

(
U(k)

)
N1

(
U(k)

)]
θ′µ

− E
[
N 2

1

(
U(k)

)]
lim
`→∞

θ̂µ,`

)
Γ

wp1
= 01×µ. (29)

Since Γ is nonsingular, it follows that

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
θ′µ

wp1
= E

[
N 2

1

(
U(k)

)]
lim
`→∞

θ̂µ,`.

Finally,

lim
`→∞

θ̂µ,`
wp1
=

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
E
[
N 2

1

(
U(k)

)] θ′µ, (30)

for all k ≥ 0. Thus, θ̂µ,` is a semi-consistent estimator of
θ′µ. 2

Example 4.1: Let N1(U) = U3, N2(U) = U7, and let
U(k) be uniformly distributed with the density function

p(u) =

{
1
2a , |u| ≤ a,
0, |u| > a.

(31)

Then,

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
=

1

2a

∫ a

−a
U10(k) dU(k) =a10/11,

E
[
N 2

1

(
U(k)

)]
=

1

2a

∫ a

−a
U6(k) dU = a6/7.

Finally, it follows from (30) that

lim
`→∞

θ̂µ,`
wp1
=

7a4

11
θ′µ.

V. NUMERICAL EXAMPLES

Consider the transfer functions

G1(q) =
4q + 1

(q− 0.6)(q + 0.8)(q− 0.9)
, (32)

G2(q) =
2q + 5

(q− 0.55)(q + 0.6)(q− 0.4)
. (33)

Then, the PTF is

G(q) =
G2(q)

G1(q)
,

=
(q− 0.6)(q + 0.8)(q− 0.9)(2q + 5)

(q− 0.55)(q + 0.6)(q− 0.4)(4q + 1)
. (34)

It follows from (1) that

B(q) = (q− 0.6)(q + 0.8)(q− 0.9)(2q + 5),

A(q) = (q− 0.55)(q + 0.6)(q− 0.4)(4q + 1).

Define the normalized Markov parameters of the PTF
constructed from y′1 and y′2 by

H
′n
i
4
=
H ′i
H ′d

,

where H ′d is the first nonzero Markov parameter of the
PTF. The estimated Markov parameters Ĥi, obtained from
θ̂µ,`, are normalized by Ĥd to obtain Ĥn

i . The least squares
estimates are computed for 200 independent realizations of
U . We also define the error metric

ε =
1

200

200∑
i=0

|H ′ni − Ĥn
i |

|H ′ni |
. (35)

In the following we show five examples involving both
odd, even, and neither odd nor even nonlinearities in both
cases of zero mean and nonzero mean for N2(u). In example
5.2 the term M(u2) denotes the mean of the realization of the
random process U2 and in example 5.5 the term M(u2eu)
denotes the mean of the realization of the random process
U2eU .

Example 5.1: N1(u) = sign(u), N2(u) = sin(u)
Consider the transfer functions G1 in (32) and G2 in (33),

and let U be white and have the uniform pdf (31) with
a = 5. Figure 5 indicates that the estimates of the Markov
parameters H2, H3, H4, and H5 are semi-consistent.

Example 5.2: N1(u) = u2 −M(u2), N2(u) = cos(u)
Consider the transfer functions G1 in (32) and G2 in (33),

and let U be white and have the Gaussian pdf N(0, 1). Figure
6 indicates that the estimates of the Markov parameters H2,
H3, H4, and H5 are semi-consistent.

Example 5.3: N1(u) = sinh(u), N2(u) = u3

Consider the transfer functions G1 in (32) and G2 in (33),
and let U be white and have the Gaussian pdf N(0, 1). Figure
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7 indicates that the estimates of the Markov parameters H2,
H3, H4, and H5 are semi-consistent.

Example 5.4: N1(u) = sign(u), N2(u) = eu

Consider the transfer functions G1 in (32) and G2 in (33),
and let U be white and have the uniform pdf (31) with
a = 5. Figure 8 indicates that the estimates of the Markov
parameters H2, H3, H4, and H5 are semi-consistent.

Example 5.5: N1(u) = u2eu − M(u2eu), N2(u) =
sin(u) + 10

Consider the transfer functions G1 in (32) and G2 in (33),
and let U be white and have the uniform pdf (31) with
a = 5. Figure 9 indicates that the estimates of the Markov
parameters H2, H3, H4, and H5 are semi-consistent.

VI. CONCLUSIONS

We used least squares with an FIR model structure to
identify a pseudo transfer function for a two-output Hammer-
stein system. Only output signals of the Hammerstein system
were used since the intermediate signals were inaccessible.
Despite the presence of the input nonlinearities, we proved
that, under certain assumptions, the least squares estimate of
the Markov parameters of the PTF is semi-consistent. This
method was demonstrated on several numerical examples
including odd, even, and neither odd nor even nonlinearities
in both cases of zero mean and nonzero mean for the output
channel Hammerstein nonlinearity, where the input channel
Hammerstein nonlinearity should be of zero mean.
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Fig. 5. Semi-consistency of the estimates of the Markov parameters
obtained from the FIR model with the Hammerstein nonlinearitiesN1(u) =
sign(u) and N2(u) = sin(u).
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Fig. 6. Semi-consistency of the estimates of the Markov parameters
obtained from the FIR model with the Hammerstein nonlinearitiesN1(u) =
u2 −M(u2) and N2(u) = cos(u).
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Fig. 7. Semi-consistency of the estimates of the Markov parameters
obtained from the FIR model with the Hammerstein nonlinearitiesN1(u) =
sinh(u) and N2(u) = u3.
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Fig. 8. Semi-consistency of the estimates of the Markov parameters
obtained from the FIR model with the Hammerstein nonlinearitiesN1(u) =
sign(u), N2(u) = eu.
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Ĥn
4

10
3

10
4

10
5

10
0

ε(
%
)

Number of samples.

Ĥn
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Fig. 9. Semi-consistency of the estimates of the Markov parameters
obtained from the FIR model with the Hammerstein nonlinearitiesN1(u) =
u2eu −M(u2eu) and N2(u) = sin(u) + 10.
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