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Adaptive Attitude Control of a Dual-Rigid-Body Spacecraft with
Unmodeled Nonminimum-Phase Dynamics

Zhanzhan Zhao', Gerardo Cruz', Taeyoung Lee?, and Dennis S. Bernstein'

Abstract— We consider control of a dual rigid-body space-
craft consisting of a bus and an appendage connected by a
compliant joint. Thrust actuators are located on the spacecraft
bus, and performance measurements are obtained from sensors
on the appendage. This problem is challenging due to the flex-
ibility of the joint and the noncolocation between the actuation
and the performance variable. The goal is to motivate and
investigate the challenges arising in control of nonminimum-
phase (NMP) systems with rigid- and flexible-body dynamics.
Exact equations of motion are derived for the spacecraft, and
the invariant zeros of the linearized model are determined.
This paper investigates the robustness of an adaptive control
law to variations in the mass and inertia matrices of the bus
and appendage as well as the geometry and joint stiffness. The
adaptive controller uses no knowledge of the NMP dynamics.

I. INTRODUCTION

Attitude control of flexible spacecraft is a long-studied
problem that remains challenging due to uncertainty, non-
linearity, and dimensionality. Uncertainty arises due to im-
precisely modeled dynamics; nonlinearity is due to large-
angle and high-rate kinematics [1]; and high dimensionality
reflects the continuum mechanics of flexible appendages and
propellant slosh [2].

One of the difficulties of assessing the performance of
control laws for these systems is the fact that models based
on continuum mechanics depend on simplifying assumptions
concerning properties of the material and the structure. In
addition, the relevant partial differential equations are infinite
dimensional, which ultimately requires approximation and
truncation [3]. Since the model used for control design must
depend on approximation and truncation, it is difficult to
assess and compare the performance of attitude control laws.
One way to overcome this difficulty is to derive a spacecraft
model with discrete modes in place of contintum mechanics.
A model of this type can be viewed as possessing idealized
flexible modes that are exactly modeled.

The exact-modeling paradigm for investigating spacecraft
attitude control laws was considered in [4] for a spacecraft
consisting of a rigid bus with a discrete flexible mode as-
sumed to be unmodeled. Retrospective cost adaptive control
(RCAC) was applied. As shown in [5], RCAC uses limited
modeling information: the leading sign of the numerator, the
relative degree, and nonminimum-phase (NMP) zeros.

In the spirit of [4], the present paper considers a spacecraft
consisting of two components, namely, a rigid bus and
a rigid articulated appendage. These bodies are connected
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by a compliance that allows 3DOF relative rotation but
no translation. The spacecraft sensors are assumed to be
placed on the appendage, while thrusters apply torques to the
spacecraft bus. The performance objective is thus to achieve
attitude pointing of the appendage with actuation applied to
the bus. This model may represent, for example, a telescope
mounted on a spacecraft bus. As in the case of [4], this
idealized flexible spacecraft amenable to exact modeling.

The challenging aspect of this spacecraft model is the fact
that the actuation and performance variable are noncolocated.
Because of noncolocation, control torques applied to the bus
induce a rotation of the appendage relative to the bus that
is initially in the opposite direction to the asymptotic angle.
This undershoot phenomenon indicates NMP behavior, and
linearization of the nonlinear equations of motion reveals the
presence of NMP invariant zeros. The main goal of this paper
is thus to investigate the performance of RCAC as applied
to the dual-body spacecraft without using knowledge of the
NMP dynamics as in [5].

II. DUAL RIGID-BODY SPACECRAFT MODEL

Consider a two-body spacecraft consisting of a rigid bus
and a rigid appendage connected by a flexible joint as shown
in Figure 1. The flexible joint allows longitudinal rotation
of the appendage relative to the bus with torsional spring
constant «¢ and lateral rotation of the appendage relative to
the bus with bending spring constant k.

Fig. 1. Dual Rigid-Body Spacecraft. The bus and appendage are connected
by a flexible joint that allows relative motion in torsion and bending.

The spacecraft is controlled by torque-generating actua-
tors, such as thrusters, attached to the spacecraft bus. There
is no onboard stored momentum. We define an inertial frame
Fi, a bus-fixed frame Fp, and an appendage-fixed frame F 4.
Let ¢, denote the center of mass of the bus, ¢, denote the
center of mass of the appendage, p denote the flexible joint
connecting the bus and the appendage, and w denote the
center of mass of the spacecraft. The location of the joint
relative to the center of mass of the bus is denoted by ?p Jen-

Note that “z” indicates a component-free physical vector.
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It is assumed that, when the flexible joint is relaxed, the
bus and appendage frames are aligned. In addition, as is
shown in Figure 1, the bus and appendage frames are defined
such that, when the flexible joint undergoes only torsion, then
the appendage frame is related to the bus frame by a rotation
around 25 . Likewise, when the flexible joint undergoes only
bending, then the appendage frame is related to the bus frame
by rotation around js and I%A.

'Ille component-free tensor that rotates F'y to F'g is denoted

by Rp,1- The angular velocity of the bus frame relative to the
inertial frame is given by SB /1> and the angular velocity of
F 4 relative to Fy is denoted by w A,1- The rotation matrices,
angular velocities, and position vectors are resolved in the
bus and appendage frames as

A2 — A = A,
Ry, = Rp1 Wb = WB/I| 5P = Tp/ch7/’[/b:]B‘B
A N N VAN
R, = RA/I yWa = wA/I’ y Pa = rca/p‘ aua:]A|A
A A A

For a vector =z, ‘ = Ry x‘ , which shows that Ry
transforms components of a vector resolved in Fp into the
components resolved in Fy.

The kinematic rotation equations are given by
Ry = Rywy,  Ra = Rawy, ey

where the superscript x indicates the skew-symmetric cross-
product matrix operator. Since the bus is rigid, ?p /e 18 fixed
in Fg. Similarly, ?Ca/p is fixed in F 5. Hence, p1, = p, = 0.
The configuration of the spacecraft is described by R}, and
R., and thus the configuration space is SO(3) x SO(3).

III. LAGRANGIAN MECHANICS ON A LIE GROUP

The spacecraft may be subject to disturbance torques that
vary along its orbit. However, we assume that the orbital and
attitude dynamics are decoupled, and thus the center of mass
w of the spacecraft can be viewed as an unforced particle,
which provides a reference point for the rotational kinetic
energy. In effect, the following analysis considers only the
rotational kinetic energy of the spacecraft by ignoring the
net force on the spacecraft and assuming that its translational
kinetic energy is constant.

It follows from the definition of w that

(Rbpb + Rapa)a (2)

N

T = —
Cb/w’l Ma + My,

where m, is the mass of the appendage and mj, is the mass
of the bus. It thus follows from (1)—(2) that

Te

N

T ey /w

Ma
(wab Pb + Raw Pa)- (3)

ma+m

Using (3), the kinetic energy of the bus By, relative to w
with respect to Fj is given by

1
Ty, win = 5% L Jowh + a(Rpw pp + Rawpa)?, (4

where Ji, € R3*3 is the inertia matrix of the bus relative to

its center of mass resolved in Fg, and o 2 %mb(m,n}:m - )?
Similarly, the appendage yields
N mp
Feuful (Ropy + Rapa), (9

I Ma + Mp
Ie

N

Teo/w

mp

Ma +m

- (Rowy pb + Raw pa).  (6)
1
Using (6), the kinetic energy of the appendage is given by

1
Ty, jut = 5Wa Jawa + B(Rowy oy + Rawilpa)®, (1)

where J, € R3*3 is the inertia matrix of the appendage
. . A
relative to ¢, resolved in F, and 3 = %ma(#‘;nb)?

Using (4) and (7), the kinetic energy of the spacecraft is

1 1
Ty, w1 = 5(,ung,ywb + iwaTJa,Ywa ywb Ph RTRapa Wa,
A 2% AN MaMp
Joy = Jp — , Jay = J — , = —
by b Py ary rypa‘ Y Ma + my,

The potential energy of the flexible joint is given by
Rp 2 Rt 2
U=—6.+ -0 8
2 b + 2 t ( )
where 6, is the angle between ?p /ey, and ?Ca /p» Kb is the

bending spring stiffness, and 6; is the angle between jg and
JA, Ky is the torsional spring stiffness. Hence,

U= 5 ™ 4cos pgRb R.p, + ?acos ugRb R.jia, (9
where p, £ roer and p, = 7oz are the unit vectors along
p and p,, respectively, and fi, = HZ—EH and fi, £ ”Z—a” are
the unit vectors along py, and p,, respectively.

It follows that the Lagrangian is
L=Ts ju1—U. (10)
The derivatives of L with respect to wy, wa, Ry, R, are
oL
DupL = 5o = Tt =975 RE Rap}wa, (11)
oL
Do, L = 5~ = Jaywa = 10 By Rupijwn, (12)
oL Oy 0
Drl=—— =kp—
Ry, OR, Kb sin Oy, Rapapb + Rt ——F sin 0, Ra,uaﬂb
—YRapy Wawl?:pl?’ (13)
oL b T 0 T
DprL=— = Rypup, Ry finft
R OR, b Sin Oy bPbPa Tt it sin 6 bHbHa
— YR p whwy pr- (14)

It follows from [6] that

(TiLg, -Dr,L) 'no = (Dr,L,0Ry) = tr (Dp, L) 0 Ry,
(15)

where TiLg, - Dg, L € R? is the cotangent lift of the
left translation [7], (Dg,L,0Ry) is the variation of the
Lagrangian with respect to Ry, and 0 Ry, is the variation of
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R),. Furthermore, d R}, is given by

d
5 = — €70 = X
Rb de EZORbe Rbﬁo 5

where 79 in (15) is the eigenaxis of dRj,. Using (13) and
(16), it follows that

(DR, L,6Rp) = tr [(Dg, L) " Rung]

(16)

o 0,
=l g P 3 RE Rapa + i o g X Ry Raia

+prbwb>ARbfap§w4Tn@ (17)
Comparing (15) and (17) yields
Kpbp _ _ Kebp _ _
TiL Dp L= —"""5 RIRopa + —— i R Rufia
Ry * PRy sinfy Py By, Rapa + inet:ubRbR Iz
+ (P wb) * R Rapf wa. (18)
Similarly,
0 KB4
Tilp, -Dr,L= 2 Hb Pa R 00, fiy Ry Ry fin,

—w%%)ﬂmxw. (19)

The Euler-Lagrange equations on SO(3) x SO(3) [6] are
given by

d
dtowL—l—wngbL TiLgr, -Dr,L =M, (20)
%DwaL 4w D, L—Tilg, -Dp.L =M, QI

where M, is the net torque on By, resolved in Fg, and M,
is the net torque on B, resolved in F 5. It follows that

My, = Bu+ tqp, M, 22)

= Tda,

where u € R? is the control torque vector resolved in Fp,
B € R3*3 determines the applied torque about each axis of
Fgp due to u, 7qp is disturbance torque on By, resolved in
Fp, and 74, is disturbance torque on B, resolved in F. It
follows from (11), (12), (18), (19)-(22) that

—wg Jbvwb

Jontn = py RE Rapywa =

0
+7py, RTRaw prwa + lib o, oy, RTRapa

0,
+ ke 0 iy R Rafia + Bu + Tap = G17 (23)

JaryWa — VP2 *RT Ryppan = —w) waa

P RE Rypy,

+vpXRT Rywy ppwh, + Kb 0

+ Rt X RE Ryfiy + Taa = G2 (24

0
We assume that the control thrusters are configured such that
B=1;. -

Define G = [G]T G5 G3 Gi|] € R399 where

Gs £ I;,® (—wRy), Gi2I30(—wiR.).  (25)

The resulting equations of motion can be defined in terms

of the state vector

22 [ wi wy vee(Ry)T vec(Ra)T ]T e R*, (26)

where “vec” is the column-stacking operator. Using (26) to
rewrite (1), (23) and (24) yields

2 F(eu) 2 [FF FF FF FF)" = M(2) "G, w),

27
where I, F, € R®*1, F3, Fy € R%%!, and M (z) € R*4*x24
is defined by

M(z) 0
M(x) é ( ) 6x18 , (28)
O18x6  Iis
where the inertia matrix M € R%*S is defined by
. J) —vpr RE RapX
() 2 [ i TPy By, Rap 29)
—VPa R Rbpb Ja'y

The objective of this attitude control problem is to de-
termine control inputs such that R, follows commanded
attitude trajectory given by rotation matrix R4. The error
between R,(t) and Rq(t) is given in terms of the attitude-
error rotation matrix

RERTR.,, R=Ro", (30)
where the angular velocity error «w is defined by
& 2w, — RTwa, 31)

where wyq is the desired angular velocity of the appendage.
For the output, which is the command-following error z, R
is represented by the vector S defined by

A8 : agRsy — azRas
R)=> ai(R";) x e; = | a1Ris—asRs | € R,
i=1 asRyy — a1 Ryy
(32)

where, for 1 = 1,2,3, a; € R are distinct and positive, and
e; is the ith column of I3.
IV. LINEARIZED EQUATIONS OF MOTION

We consider the equilibrium of (27) given by

T T T T

A T
(Te,ue) = [ O1x6 € €3 €3 el e3 e3 Oixs |,

(33)
which represents the spacecraft at rest relative to Fy; with
body frames Fp and Fa aligned with F; and zero control
torque. Linearizing (27) at (33) yields

§i = Audz + Beodu, (34)
42 OF (z,u)| [8F1T oRT  9F,T 3F4T}T
¢ ox e_ ox Ox ox ox o ’
(€R)
F
Bcé OF (z,u) (36)
8u o

Define N 2 p%pX, Z £ (Ju, — m2NTJIN)!, P £
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ZNTJM Pl R ZNT ub7 Q £ ANTI pl Eup?,
and W 2 px Eijpy, where Elj = eie; Assummg that the
mass matrix M (z) is positive deﬁmte 1t follows that M ()

is also pos1t1ve definite. In fact, Z is the (2,2) block of

M (z)~', and thus Z is positive definite. Assuming - 9 ~
1

s sing; ~ 1 and Tap = Taa = 031 yields

OF (z,u)
ox

_ [or aR _oF OF,
dw, Ow. ORn,, ORa,

b
e

e

oF
o
ORy,,

_0F
T Qw, o

= 03x3,

= y%bjgj [NPE;; + W'P

ij le

+ NZ(W I 5y + QP + Q" P)lpa

+ kb, [NZp Eij+(NZQ+ NzZQ"
+ W Z55 pw + angjﬁé Ejipa
+7%kudy INRE; + WTR
+NZ(W I iy + QR+ QT R)ljia

+ ki INZpS Eij + (NZQ + NZQ"

+ W ZpS i + ke dy ) i1 Ejifla. 37)
Replacing E;; in (37) with Ej; yields 5 RF Also
@ _ OB -0
aWb . - 8wa . — U3x3,
OF:
2| = ymu[PEj; + Z(W ) oy + QP
ORy,; |,
+Q'P)lpa
+ruZ(py Eij + (Q + QT)Zﬁ:]ﬁb
+ vk [RE;; + Z(WJ ¥+ QR
+ Q" R))fia
+ R ZIEE B+ (Q+ QN ZpS . (38)
Replacing E;; in (38) with Ej; yields 5 BF | . Also,
OF;(x,u) T
or . = [— [er e ef]  Ogxs 09><18} )
OFy(z,u) T
T = [ngg 7[(3;( e; e?f] 09><18} )
J B
oF
OF@u)| _ yZNTJb (39)
ou |,
O18x3

The direction cosine matrix R, can also be expressed in
terms of 3-2-1 Euler angles v, 0, ¢ as

Ry = (01(9)02(0)03()) T

chcyy  spsbcy) — copsyp  cpsbcy) + spsy
= |cOsyp  s@sfsy) + cpcyy  coshsy — sopcy |, (40)
—s0 s¢ch coch

R
1 = atan Ra—’m, 6 = asin(—R,31), ¢ =atan———

R, 32
a1l Ra 33

Linearizing at R, = I3 yields the local approximations
[(5¢ 59 (;’ll)]T ~ [5R3732 — (5Ra’31 5R3721]T.

V. INVARIANT ZEROS OF THE LINEARIZED SYSTEM

(41)

Consider the inertia matrices
Jy, = diag(100,250/3,50)kg-m?, J, = diag(0.3, 1, 1)kg-m?.

m, = 1 kg, mp, = 100 kg, x¢ = 10 N/rad, kp, = 100 N/m,
b = pa = [100T m, and p, = po = [0 1 0]T m. Note
that J}, and J, are diagonal, which implies that F4 and Fp
are principal axes of the bus and appendage, respectively.
This assumption simplifies the subsequent analysis. Using
[6¢ 66 v]T in (41) as the output and constructing a
minimal realization of the 3-input, 3-output linearized system
(34), (41) of order 24 yields a 17th-order realization of the
3 x 3 transfer function

20 0
Ge=|0 2 0]. (42)
0 %

usz

The first row of Gys accounts for the torsional motion
of the appendage about its longitudinal axis. Note that,
if k, = 0, which models the case where the torsional
spring is replaced by a frictionless bearing, then g—f = 0.
On the other hand, if x; >> 1, which models the case
where the appendage is connected rigidly to the bus in the

longitudinal direction, then it can be shown numerically that

5 1
Uz (Ja,22+Jb,22)s2 " . . .
The (2,2) entry of Gy, which is the transfer function

from ug to §6, has zeros +10.02, whereas, the (3, 3) entry
of Gy¢, which is the transfer function from ug to dv, has
zeros +10.49. Consequently, G¢ has four invariant zeros,
two of which are NMP.

Figure 2 shows how the NMP zeros of the (2, 2) and (3, 3)
entries of Gi¢ depend on Ky, Kt ¥, ||pall2s |lobll2, .
Ja,22, Ja,33, Jb,11, Jb,22 and Jy, 33 respectively.

To assess the accuracy of the linearized model, we com-
pare the impulse response of the linearized system with
the nonlinear system. The maximum deviation of the two
systems after 250 steps is within 8%. The closeness of both
systems show that the NMP behavior of the linearized system
also gives rise in the nonlinear system.

a,l1,

VI. RCAC ALGORITHM [5]

RCAC uses a strictly proper input-output controller

£ 3 Pilkulk =) + Y Qulk)z(k — i) = 2(k)6(k),
i=1 i=1
where n,. is the controller order, M;(k) € Rl«*tu N;(k) €

Rl*ly | Defining Iy 2 lLunc(ly + 1), then

0(k) = vec [Pi(k) -+ Py, (k) Qu(k) -+ Qu.(K)] " € R",
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100 Ist NMP zero varying 1st NMP zero varying ||pp]2
£ 4 ==2nd NMP zero varying r; 8 1of, o [m2nd NMP zero varying ||yl
g —1st NMP zero varying r; & i 1st NM’P zero varying [|pall2
& g0 —2nd NMP zero varying r; &g i ---2nd NMP zero varying ||pa|l2
; 1st NMP zero varying y ; I
- —--2nd NMP zero varying v !l
% \

E i

2
0
Ky OF Ky, OF
@) (®)
10.03 =
R
£ 1002 g 7
-~
; 10.01 f 10z Pt
= ;: .
Z 10 z R
= < 10.01 /
5 999 g / .
2 g / Ist NMP zero varying Jg
é 9.98 / g 10 / —==2nd NMP zero varying J;, 33
9.97—
02 04 60 80 100 120
Jnii
(d)

Fig. 2. NMP invariant zeros of the linearized system as a function of (a)
Kb, Kt, and v, (b) ||pall2 and ||pp||2, (€) Ja,11, Ja,22, and Ja 33, (d)
Jb,11, Jb,22, and Jp 33.

wk-1) 1"
o | u(k—nc) Luxlo
o(k) = 2(k— 1) ®IL, eR ,
L 2(k—ne) |

To update the controller coefficient vector 6(k), we define
the retrospective performance

RPN A

2(k,0) = 2(k) + Ge(a)[@(Kk)0 — u(k)],
where Gy € R'=*"« is an FIR filter that captures the plant
modeling information. The controller update 8(k+1) = 0 is
obtained by minimizing the retrospective cost function

(43)

k
J(k,0) 2 ané(z’, 0)" (i, 0)

k
+ > @00 [@(6)0] + nal0 — 0] [0~ 00], (44
i=1
where 7., 7,79 are positive scalars.

VII. NUMERICAL EXAMPLES

In this paper, we set Gf(q) = (1/q)l3, where q is
the forward shift operator. This choice means that RCAC
uses no modeling information about the NMP zeros of the
linearized plant. The identity matrix reflects the assumptions
about the alignment of the actuators and sensors, but uses
no knowledge of the dynamics of the spacecraft. The goal is
to assess the closed-loop performance despite the absence of
this modeling information. For all simulations, the plant is
the exact nonlinear dynamics of the dual-rigid-body space-
craft given by (27) and (32).

To express the command-following error of the appendage
attitude, R in (30) is represented by the Rodrigues formula

R(0,6) 2 (cos0)I5 + (1 — cosO)ce™ + (sinB)eX,  (45)

where ¢ € R? is the eigenaxis resolved in F5 and 0
(—, ] is the eigenangle. In terms of the appendage attitude
R, (t) and the desired attitude Rq4(t), attitude-error metric is
given by the eigenangle of R

0(t) = cos™ (3[tr R(t) — 1]). (46)

Using the Rodrigues formula, R4 can be represented by
eigenangle 64 and eigenaxis &4 resolved in Fy.
As in [4], the settling-time metric is defined as

T, = min{t > ih : for alli € 1,...,400,0(t — ih) < 3deg},

where h = 0.1 s is the integration step length. The final error
metric is the average of é(t) over the last 1 s of simulation.

We consider R2R maneuvers for command following
with disturbance rejection, where the desired attitude of
the appendage is a fixed attitude in the inertial frame. The
spacecraft is initially at rest. The numerical values in Section
V are used in this section.

A. R2R Maneuvers with Disturbances

1) Command Following: In Figure 3, the disturbance is
set to Tap = Taa = [0 0.4in(100¢) 0]*. Various commanded
motions of the appendage, with desired eigenangle 64 vary-
ing from —180° to 180° around the desired eigenaxes &q
11 1% [100]T,[010]T,[00 17 are tested.

1400 0.8
1200 —&=[111]"
vt &=[100]" 0.6
& 1000 &=[010" =
g —&=[001]" 5
£ 800 G=001 204
) =
EI A
Z £o2
% 400 X\ v .
200 0
200 -100 0 100 200 200 -100 0 100 200
Desired Eigenangle 6, (deg) Desired Eigenangle 6, (deg)
(a) (b)
Fig. 3. For the performance weights n, = 1, n,, = 0.2, and 19 = 0.01,

Ne = 2, Tab = Tda = [0 0.4 sin(100¢) O}T, (a) shows the settling time Ty
as a function of the desired eigenangle 64 and eigenaxis &4, and (b) shows
the corresponding final error.

2) Stochastic Disturbance: The components of the ex-
ternal torque disturbances 74, and 74, are both Gaussian
white noise with covariance matrix 0.001/3 and mean
[0.1 0.1 0.1]T. The command for the appendage is a 150-
deg rotation about &g = [1 1 1]T. Figure 4 shows that RCAC
achieves the desired appendage attitude.

B. Robustness Test

1) Robustness to Off-Diagonal Inertia Matrix: As is
shown in Figure 5, to account for the case when F'g is not the
principal-axis frame of the bus relative to ¢}, we rotate the
bus inertia matrix by eigenangle 6 about body-fixed eigenaxis
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50

Eigenangle of R (deg)

0 500 1000 1500 2000 0 500 1000 1500 2000
Time (s) Time (s)

a b
Fig. 4. For the(p)erformance weights 17, = 1, g :(0.)2, and ny = 0.01,
ne = 2, (a) shows 8 as a function of time without stochastic disturbance.
The settling time is 506 s, and the final error is 1.5 x 10~° deg. The
maximum control input is 20.6 N-m. (b) shows 6 as a function of time with
stochastic disturbance. The settling time is 1506 s, and the asymptotic error
is 1.72 deg. The maximum control input is 23.3 N-m.

n = [1 1 1]T. The rotated inertia matrix Jg is defined as

Jr £ R(0,n)T R0, n), @7)

where R(6,n) is obtained using Rodrigues formula.

2) Robustness to Diagonal Inertia Matrix Variations:
Now, we assume that Fp is the principal-axis frame
of the bus, and that F, is the principal-axis frame of
the appendage. We define the nominal inertia cases as
J1 = diag(100, 100, 100), Jo = diag(100,100,50), J3 =
diag(100,250/3,50), where, according to [4], J1, Jo, and
J3 correspond to the inertia matrix of a sphere, cylinder, and
cuboid, respectively. The varied inertia matrix is

J; (Oé) = ﬂ[(l — Oé)jz + Ozjj], (48)

where 4,5 € {(3,1),(3,2),(1,3)} for a € [0,1], and 3 >
0. Js1() indicates the varying of inertia from the cuboid
to sphere. Js2() is the inertia varying from the cuboid to
cylinder. Jy3(c) is varied from the sphere to cuboid.

In Figure 6 (a)-(b), we vary the bus inertia, that is J, =
Jij(a), with 8 = 1. Similarly, in Figure 6 (c)-(d), we vary
the appendage’s inertia, that is J, = J;;(«), with 8 = 0.01.

0.5

© 5
o o
o o
Final Error (deg)

Settling Time T} (s)

@
=3
S

n=[111]T

400 0

200 -100 0 100 200 200 -100
0 (deg)

(@) (b)

0 100 200
0 (deg)

Fig. 5. For the performance weights . = 1, 7, = 0.2, 59 = 0.01, nc =
2,60 =[111]%,04 = 150deg, and Tqp, = Tqa = [0 0.4sin(100t) 0]T,
(a) shows the settling time Ty as a function of #, and (b) shows the
corresponding final error.

3) Robustness to Variations of Other Configuration Pa-
rameters of the Spacecraft: In Figure 7, we vary the spring
stiffness x, and ky.
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Fig. 6. For the performance weights 1, = 1, n, = 0.2, ng = 0.01, n. =
2,64 =[111]7,04 = 150deg, and 741, = 7qa = [0 0.4sin(100t) 0]T,
(a) shows the settling time 75 as a function of « with the bus inertia varied
in 3 ways, and (b) shows the corresponding final error. (c) shows the settling
time T as a function of o with the appendage inertia varied in 3 ways, and
(d) shows the corresponding final error.
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Fig. 7. For the performance weights . = 1, 5, = 0.2, g = 0.01, nc =
2,60 =[111]T,04 = 150deg, and Tqp, = Tqa = [0 0.4sin(100t) 0]T,
(a) shows the settling time Ty as a function of xy,, and (b) shows the
corresponding final error. (c) shows the settling time 75 as a function of
Kt, and (d) shows the corresponding final error.
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