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Abstract—This paper considers the state-estimation problem
with a constraint on the data-injection gain. Special cases of this
problem include the enforcing of a linear equality constraint in the
state vector, the enforcing of unbiased estimation for systems with
unknown inputs, and simplification of the estimator structure for
large-scale systems. Both the one-step gain-constrained Kalman
predictor and the two-step gain-constrained Kalman filter are
presented. The latter is extended to the nonlinear case, yielding
the gain-constrained unscented Kalman filter. Two illustrative
examples are presented.

Index Terms—Constrained gain, Kalman filter, state estimation,
unscented Kalman filter.

I. INTRODUCTION

I N classical state estimation, the standard data injection gain
is unconstrained in the sense that all measurement residuals

are potentially used to directly update all of the state estimates.
In fact, it is possible to restrict the form of the data-injection
gain. Three distinct motivations for such a restriction can be
found in the literature. First, in [6], [8], [9], [16], and [18], the
data-injection gain is restricted so that the state estimates are
unbiased despite the fact that arbitrary (for example, determin-
istic or nonzero-mean) unknown exogenous inputs are present.
Likewise, in [4] and [5], the data-injection gain is restricted to
simplify the estimator structure so as to facilitate multiprocessor
implementation for applications involving large-scale systems
such as discretized partial differential equations, as well as to
handle partial or complete sensor outage. Finally, in [10], the
data-injection gain is restricted to obtain state estimates satis-
fying a linear equality constraint. Alternative state-estimation
algorithms for enforcing equality constraints in the state vector
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are found in [13], [17], [24], and [28]–[31], while the inequality-
constrained case is addressed in [20], [22], [25], [28], and [32].

The present paper builds on [5], [6], [10], [16], and [18] by
developing a general approach to gain-constrained state esti-
mation, which includes the results of [5], [6], [10], [16], and
[18] as special cases. To facilitate implementation to nonlinear
systems, we first develop these results for linear systems. We
consider both the one-step gain-constrained Kalman predictor
(GCKP) as well as the two-step gain-constrained Kalman filter
(GCKF). Then we extend GCKF to the nonlinear case based
on the unscented Kalman filter [14], a specialized sigma-point
filter [33], yielding the gain-constrained unscented Kalman filter
(GCUKF). The present paper is based on research in [28].

This paper is organized as follows. Section II develops
GCKF. In Section III, the classical Kalman filter [12], the
projected Kalman filter by gain projection [10], the unbiased
Kalman filter with unknown inputs [6], [16], [18], and the
spatially constrained Kalman filter [5] are presented as special
cases of GCKF. Section IV presents GCUKF for nonlinear
systems. In Section V, the GCKP equations are derived. Finally,
two illustrative examples are presented in Section VI.

II. GAIN-CONSTRAINED KALMAN FILTER

Consider the stochastic linear discrete-time dynamic system

(2.1)

(2.2)

where , , and
are known matrices. Assume that, for all , the input

is known and the output is measured. The
process noise , which represents unknown input
disturbances, and the measurement noise , concerning
inaccuracies in the measurements, are assumed to be white,
Gaussian, zero-mean, and mutually independent with known
covariance matrices and , respectively. The initial state
vector is assumed to be Gaussian with initial estimate

and error-covariance ,
where denotes expected value, and, for all , is
assumed to be uncorrelated with and .

For the system (2.1) and (2.2), we consider a two-step filter
with forecast step

(2.3)

(2.4)

and data-assimilation step

(2.5)
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where the filter gain minimizes the cost function

(2.6)

subject to

(2.7)

where, for all , the positive-definite weighting matrix
determines how much the state components should

be updated relative to each other. The matrix is as-
sumed to be right invertible, is assumed to be left
invertible, and . These conditions imply that
and , respectively. The constraint (2.7), which is absent
in the classical Kalman filter (KF) [12], is used to enforce spe-
cial properties in the state estimates. The notation indi-
cates an estimate of at time based on information avail-
able up to and including time . Likewise, indicates an
estimate of at time using information available up to and
including time . Model information is used during the fore-
cast step, while measurement data are injected into the estimates
during the data-assimilation step.

Next, define the forecast error and the innovation
by

(2.8)

(2.9)

as well as the forecast error covariance , innovation co-
variance , and cross covariance by

(2.10)

(2.11)

(2.12)

It follows from (2.1)–(2.4) that

(2.13)

(2.14)

where is the data-assimilation error defined by

(2.15)

whose data-assimilation error covariance is

(2.16)

Finally, it follows from (2.4), (2.5), (2.8), and (2.15) that

(2.17)

The following lemma will be useful.
Lemma 2.1: The forecast error given by (2.8) satisfies

(2.18)

and the data-assimilation error (2.15) satisfies

(2.19)

Proposition 2.1: For the filter (2.3)–(2.5), the data-assimila-
tion error covariance is updated using

(2.20)
where

(2.21)

(2.22)

(2.23)

Proof: It follows from (2.13) and (2.14) and Lemma 2.1
that (2.10)–(2.12) are, respectively, given by (2.21)–(2.23).
Moreover, using Lemma 2.1, (2.17) implies that (2.16) is given
by

which, by using (2.22) and (2.23), yields (2.20).
Next, using (2.15) and (2.16) in (2.6) yields

(2.24)

Assume that, for all , is positive definite. For
convenience, we define

(2.25)

(2.26)

and

(2.27)

(2.28)

(2.29)

Note that and are oblique projectors, that is,
and , but are not necessarily symmetric. If

, then is an orthogonal projector. Furthermore, if is
square, then ; likewise, if is square, then

. Also

(2.30)

(2.31)

Furthermore, note that is equal to the classical Kalman gain
[12].

Proposition 2.2: The gain that minimizes (2.24) and sat-
isfies (2.7) is given by

(2.32)
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where is given by (2.29) with , , and
given by (2.21), (2.22), and (2.23), respectively. Furthermore,

in (2.20) is given by the Riccati equation

(2.33)

where

(2.34)

Proof: Define the Lagrangian

(2.35)

where is the Lagrange multiplier accounting for the
constraints in (2.7). The necessary conditions for a minimizer
are given by

(2.36)

(2.37)

Note that (2.37) yields (2.7).
In (2.36), using the fact that and are positive def-

inite yields

(2.38)
Pre-multiplying and post-multiply (2.38) by and , respec-
tively, and substituting (2.7) and (2.29) into the resulting expres-
sion yields

which implies

(2.39)

Using (2.25)–(2.31) and substituting (2.39) into (2.38) yields
(2.32).

Finally, substituting (2.29) and (2.32) into (2.20) yields
(2.33).

Proposition 2.3: given by (2.32) is the unique global min-
imizer of (2.24) restricted to the convex constraint set
defined by (2.27).

Proof: It follows from [3, p. 286] that, for all ,
such that , and positive-definite

, . Hence, for

, the mapping is strictly convex. It
thus follows that is strictly convex, and hence is the
unique global minimizer of restricted to (2.7).

The gain-constrained Kalman filter (GCKF) is expressed
in two steps, namely, the forecast step given by (2.3), (2.21),
(2.4), (2.22), (2.23), and the data-assimilation step given by
(2.25)–(2.29), (2.32), (2.5), and (2.20).

Note that the GCKF equations are identical to the classical
KF equations except for the gain expression (2.32). Moreover,
note that the first two terms on the right-hand side of (2.33)
correspond to the data-assimilation error covariance of KF.

III. SPECIAL CASES

A. Kalman Filter

Assume that , , and , where
is given by (2.29). In this case, the optimal gain given by

(2.32), which minimizes (2.24) subject to (2.7), is , which is
the classical Kalman gain [12]. Furthermore, (2.33) is equal to
the Riccati equation of KF, that is

(3.1)

B. Condition

Assume that such that the gain constraint (2.7)
is expressed as

(3.2)

In this case, (2.27) yields and (2.25) yields
. Hence, it follows from (2.32) that the optimal gain

that minimizes (2.24) and satisfies (3.2) is given by

(3.3)

where is given by (2.26), is given by (2.28), the comple-
mentary oblique projector is given by

(3.4)

and in (2.20) is given by the Riccati equation

(3.5)

where

(3.6)

Recall that, in this particular case, as well as in Section III-A,
the minimizer of (2.24) is independent of .
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C. Condition

Assume that such that the gain constraint (2.7)
is expressed as

(3.7)

In this case, (2.28) yields and (2.26) yields
. Hence, it follows from (2.32) that the optimal gain

that minimizes (2.24) and satisfies (3.7) is given by

(3.8)

where is given by (2.25), is given by (2.27), the com-
plementary oblique projector is given by

(3.9)

and in (2.20) is given by

(3.10)

D. Kalman Filter With Equality State Constraint

Consider the system (2.1) and (2.2), whose state vector is
known to satisfy the linear equality constraint

(3.11)

where and are assumed to be known.
Assume that . We consider the two-step esti-
mator whose forecast step is given by (2.3) and (2.4) and whose
data-assimilation step is given by (2.5). In (2.24), assume that

(3.12)

We look for a gain in (2.5) that minimizes (2.24) subject
to

(3.13)

where is given by (2.5). By using (2.5), it follows that (3.13)
can be written in the form of the gain constraint (2.7), where

(3.14)

(3.15)

(3.16)

where is given by (2.3) and is given by (2.4).
Therefore, is given by (2.32). Substituting (3.12) and
(3.14)–(3.16) into (2.32), we obtain

(3.17)

which is the gain of the projected Kalman filter by gain projec-
tion (PKF-GP) presented in [10].

E. Unbiased Kalman Filter With Unknown Inputs

Consider the stochastic linear discrete-time dynamic system

(3.18)

(3.19)

where, for all , and are known
matrices. No assumptions are made on the unknown input vec-
tors and . Note that, if we set and

, then we have the system with direct feedthrough
studied in [6] and [9].

For the system (3.18) and (3.19), consider the two-step esti-
mator whose forecast step is given by (2.3) and (2.4) and whose
data-assimilation step is given by (2.5). In this case, defined
by (2.17) is given by

(3.20)

If satisfies

(3.21)

(3.22)

then in (2.5) is unbiased, that is, . Note that
(3.21) and (3.22) can be written in the form (3.2), where

(3.23)

(3.24)

Substituting (3.23) and (3.24) into (3.3), we obtain the unbiased
Kalman filter with unknown inputs (UnbKF-UI) [6], [9], whose
error covariance is given by (3.5).

We assume that in (3.23) is left invertible,
which is equivalent to the conditions i) ,
ii) , and iii) the columns of are linearly
independent of the columns of . These conditions
are equivalent to , which is shown to be
a sufficient condition for the unbiasedness of the estimator
(2.5) in [6, Lemma 2]. Note that is necessary
for (iii) to hold.
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1) Condition : For the system (3.18), (3.19), assume
that . In this case, is given by

(3.25)

while, if (3.21) is satisfied, then in (2.5) is unbiased. Thus,
the gain that minimizes (2.24) subject to (3.2) is given by (3.33),
where

(3.26)

(3.27)

where, since , given by (3.26) is left
invertible. The error covariance is given by (3.5). The resulting
estimator for this case is presented in [16].

2) Condition : For the system (3.18) and (3.19), con-
sider the case . In this case, is given by

(3.28)

If (3.22) is satisfied, then is unbiased. The gain that mini-
mizes (2.24) and satisfies (3.2) is given by (3.3), where

(3.29)

(3.30)

where, since , given by (3.29) is left invertible.
The error covariance is given by (3.5). The resulting estimator
is presented in [18].

F. Kalman Filter With Constrained Output Injection

For the system (2.1) and (2.2), consider the two-step esti-
mator whose forecast step is given by (2.3) and (2.4) and whose
data-assimilation step is given by (2.5). We look for a gain
that minimizes (2.24) and constrains the estimator so that only
estimates in the range of are directly updated during data
assimilation. Assume that and let be
a full column rank matrix. For example, can have the form

. If , we have the classical KF.

Also, let be such that is nonsingular and

(3.31)

That is, we seek a gain that satisfies (3.7), where

(3.32)

(3.33)

Using (3.32) and (3.33), it follows from (3.8) that

(3.34)

and is given by (3.10). Given (3.31) we have that

Since is nonsingular, it follows that

which implies that

(3.35)

Postmultiplying (3.35) by and using (3.34) yields

(3.36)

where

(3.37)

is the gain of the spatially constrained Kalman filter (SCKF)
presented in [5].

IV. GAIN-CONSTRAINED UNSCENTED KALMAN FILTER

Consider the stochastic nonlinear discrete-time dynamic
system

(4.1)

(4.2)

where and are,
respectively, the process and observation models.

For the system (4.1) and (4.2), we consider a suboptimal filter
with forecast step

(4.3)

(4.4)

where and , are
sets of sample vectors with weights , and data-assimila-
tion step given by (2.5), where is assumed to satisfy (2.7).

We consider the unscented transform (UT) [15] to obtain
, , and . UT is a numerical procedure for

approximating the posterior mean and covariance
of a random vector obtained from the non-

linear transformation , where is a prior random
vector whose mean and covariance are
assumed to be known. UT yields the mean and covariance

of , if , where is linear and is quadratic
[15]. Otherwise, is a pseudo mean, and is a pseudo
covariance.

UT is based on a set of deterministically chosen sample vec-
tors known as sigma points. To satisfy and

, the entries of the sigma-point

matrix given by are chosen
as

if ,
if ,
if

(4.5)
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with weights

if ,
if

(4.6)

where is the th column of the Cholesky square root
and determines the spread of the sigma points around

. Propagating each sigma point through yields
such that and .

Therefore, we apply UT to the GCKF equations to obtain
the gain-constrained unscented Kalman filter (GCUKF), whose
forecast step is given by

(4.7)

(4.8)

together with (4.3) and

(4.9)

(4.10)

(4.11)

(4.12)

together with (4.4) and

(4.13)

(4.14)

and whose data-assimilation step is given by (2.32), (2.5), and
(2.20).

Note that the GCUKF equations are identical to the unscented
Kalman filter (UKF) equations [14] except for the gain expres-
sion (2.32).

The next result shows that the gain (2.32) of GCUKF satisfies
the constraint (2.7) with the pseudo error-covariance matrices

(4.13) and (4.14).
Proposition 4.1: Let and be given, respec-

tively, by (4.13) and (4.14), and let be given by (2.32). Then
(2.7) is satisfied.

Proof: Premultiplying (2.27) by and postmultiplying
(2.28) by yields

Also, premultiplying and postmultiplying (2.32) by and
and using (2.25) and (2.26) yields

which confirms (2.7).

V. GAIN-CONSTRAINED KALMAN PREDICTOR

For the system (2.1), (2.2), we now consider a one-step pre-
dictor of the form

(5.1)

where

(5.2)

and the predictor gain minimizes

(5.3)
subject to the constraint (2.7). The differences between the pre-
diction and filtering algorithms are discussed in [27].

Next, define the prediction error and the innovation
by

(5.4)

(5.5)

and the prediction error covariance and the innovation co-
variance by

(5.6)

(5.7)

It follows from (2.1) and (2.2) and (5.1) and (5.2) that

(5.8)

(5.9)

The following lemma will be useful.
Lemma 5.1: The prediction error given by (5.4) satisfies

(5.10)

(5.11)

Proposition 5.1: For the predictor (5.1), (5.2), the prediction
error covariance is updated using

(5.12)

where

(5.13)
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and

(5.14)

Proof: It follows from (5.9) and (5.11) that (5.7) is given
by (5.13). Moreover, by using (5.10), (5.8) implies that (5.6) is
given by

which, by using (5.13) and (5.14), is equal to (5.12).
Next, using (5.4) and (5.6) in (5.3) yields

(5.15)

Assume that, for all , is positive definite. Then, for
convenience, we define

(5.16)

(5.17)

Also, let be given by (2.27), be given by (2.25), and
be given by (2.26). Note that and are oblique

projectors, which satisfy (2.30) and

(5.18)
respectively. Moreover, note that is the gain of the clas-
sical Kalman predictor [12].

Proposition 5.2: The gain that minimizes (5.15) and
satisfies (2.7) is given by

(5.19)
where the error covariance in (5.12) is updated using the
Riccati equation

(5.20)

where

(5.21)

Proof: The proof is similar to that of Proposition 2.2 and is
omitted. For completeness, the proof is presented in [28, Prop.
C.1.2].

Fig. 1. Comparison of estimation errors for x using KF ( ) and PKF-GP

( � ) around the associated �3 P confidence limits given by

( ) and (� � � � � �), respectively.

Proposition 5.3: given by (5.19) is the unique global
minimizer of given by (5.15) restricted to the
convex constraint set defined by (2.7).

Proof: The proof is similar to the proof of Proposition 2.3
and is omitted for brevity.

The gain-constrained Kalman predictor (GCKP) is given by
(5.2), (5.13), (5.14), (2.25)–(2.27), (5.16), (5.17), (5.19), (5.1),
and (5.12). Note that the GCKP equations are identical to the
classical Kalman predictor equations except for the gain ex-
pression (5.19). It is straightforward to derive the special cases
shown in Section III in the context of GCKF. However, for the
sake of brevity, we omit them.

VI. EXAMPLES

A. Tracking a Land-Based Vehicle

We consider a land-based vehicle whose linear dynamics are
represented by (2.1) and (2.2), with parameters

(6.1)

where the state vector is composed of northerly and
easterly position and velocity components. For simulation, we
set , ,
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Fig. 2. Comparison of constraint errors (a) e and (b) e , where e = ~d �

~D x̂ , using KF ( ) and PKF-GP ( � ).

TABLE I
RMS CONSTRAINT ERROR, RMSE (6.3), AND MT (6.4) FOR 100-RUN

MONTE CARLO SIMULATION FOR THE LAND-BASED VEHICLE

SYSTEM USING THE KF AND PKF-GP ALGORITHMS

and . It is known that the vehicle is moving
in a straight line with a heading of . That is, the
equality constraint (3.11) with parameters

(6.2)

defines the subspace to which the vehicle trajectory is confined.
The commanded acceleration , which is assumed to be
known, is alternatively set to , as if the vehicle were
accelerating and decelerating in traffic. This example is also in-
vestigated in [23] and [24].

Our goal is to obtain state estimates satisfying the equality
constraint (3.13). We implement KF (Section III-A) and
PKF-GP, which is shown to be a special case of GCKF
in Section III-D, to perform state estimation, initialized
with and

.
Table I presents a performance comparison between KF and

PKF-GP regarding two performance indices, namely, the av-
erage of the root-mean-square error of each state component

, , over a 100-run Monte Carlo simula-
tion , ,

(6.3)

where is the final time, as well as the mean trace (MT) of the
error-covariance matrix

(6.4)

Fig. 1 shows the estimation error around the confidence

interval given by , while Fig. 2 shows the con-

straint estimation error .
Results from Table I and Fig. 2 show that, unlike the PKF-GP

estimates, the KF estimates do not satisfy the equality constraint
(3.13). Moreover, PKF-GP outperforms KF regarding both in-
dexes RMSE and MT; see Table I and Fig. 1.

Similar to the constrained state-estimation problem inves-
tigated above, GCKF (or GCUKF) can be used to enforce
linear equality constraints on parameters of nonlinear models.
This problem is considered in [1], [2] using a constrained
least-squares approach.

B. Van der Pol Oscillator

We consider the Euler-discretized van der Pol oscillator given
by

(6.5)
where , is an exogenous
input, and is the sampling interval, with noisy observation
given by (2.2) with . For simulation, we set

, , , and

if or
if
if .

(6.6)
Now, assuming that is unknown, our goal is to obtain

unbiased state estimates. For comparison, we perform state es-
timation using UKF in two distinct cases, namely, assuming

is known and assuming is unknown, as well as using
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Fig. 3. Comparison of estimation errors for x using (a) UKF with u assumed to be known, (b) GCUKF with u assumed to be unknown, and (c) UKF
with u assumed to be unknown. The case of UKF with u assumed to be unknown when a larger value of Q is used is denoted by (d). Dotted lines
show the associated �3 P confidence limits. Observe that these limits for the cases (b) and (d) almost coincide.

GCUKF and assuming that is unknown. Whenever
is assumed to be unknown, we set during the forecast
step. In this case, plays the same role as the unknown input

used in the linear model (3.18). We set
and . To help convergence of UKF [34] with

assumed to be known, we set . For
consistency, this value is used for the remaining two cases. We
implement GCUKF using , , and

, where, according to (6.5), ; see
Section III-E-1.

Fig. 3 shows the estimation error component around the

confidence interval , where is the pseudo

error-covariance given by (2.20). Observe that, when we as-
sume is unknown, given by UKF does not converge.
On the other hand, the GCUKF estimates converge, but with a
larger confidence interval compared to the case in which UKF
is used with assumed to be known. Likewise, if we set

using UKF with assumed to be
unknown, then converges with similar accuracy compared
to GCUKF; see Fig. 3. This value of was heuristically

TABLE II
RMSE (6.3) AND MT (6.4) FOR A 100-RUN MONTE CARLO SIMULATION

FOR THE VAN DER POL OSCILLATOR USING ALGORITHMS i) UKF WITH

KNOWN u , ii) GCUKF WITH ASSUMED UNKNOWN u , iii) UKF WITH

UNKNOWN u , AND iv) UKF WITH UNKNOWN u AND A LARGER Q

chosen by increasing the original value until the estimation er-
rors remain inside the confidence interval . Sta-

tistical approaches to estimate offline are found in [11].
Table II presents a performance comparison regarding

RMSE (6.3) and MT (6.4) over a 100-run Monte Carlo simu-
lation among the following cases: i) UKF with known ;
ii) GCUKF with unknown ; iii) UKF with unknown ;
and iv) UKF with unknown and a larger . Note that,
regarding RMSE, case ii) outperforms case iii). Although case
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TABLE III
SUMMARY OF CHARACTERISTICS OF GAIN-CONSTRAINED KALMAN FILTERING ALGORITHMS FOR LINEAR SYSTEMS (2.1) AND (2.2).

IT IS SPECIFIED HOW THE GAIN CONSTRAINT (2.7) IS HANDLED BY EACH SPECIAL CASE

Fig. 4. True ( ) and estimated (��) unknown input u using GCUKF.

iii) exhibits smaller MT than case ii), as illustrated in Fig. 3(c),
the estimation error for case iii) do not converge. Also, the
indexes RMSE and MT for cases ii) and iv) are close.

Finally, Fig. 4 compares the input (actual value) to its
estimate given by [9], [18]

(6.7)

where is given by (4.4) and is given by (2.32) using
GCUKF. Alternatively, in [7], [19], a least-squares approach is
proposed for estimating unknown inputs of time series, while,
in [21] and [26], a dynamical model compensation technique is
used.

VII. CONCLUDING REMARKS

This paper derives the optimal solution to the problem of
linear state estimation with constrained data-injection gain.
Both the one-step gain-constrained Kalman predictor (GCKP)
and the two-step gain-constrained Kalman filter (GCKF) are
derived. Then, the classical Kalman filter (KF), the projected
Kalman filter by gain projection (PKF-GP), the unbiased
Kalman filter with unknown inputs (UnbKF-UI), and the spa-
tially constrained Kalman filter (SCKF) are presented as special
cases of GCKF. Table III summarizes how the gain constraint
is set for all special cases of GCKF.

Using the unscented transform, the gain-constrained un-
scented Kalman filter (GCUKF) is presented as a nonlinear
extension of GCKF. Although the resulting algorithm is an

approximate solution to the state-estimation problem for non-
linear systems, its gain exactly satisfies the constraint.

An example of tracking a land-based vehicle is employed to
illustrate the use of GCKF to obtain state estimates satisfying a
linear equality constraint in the state vector. In addition to sat-
isfying this constraint, the GCKF estimates are improved com-
pared to KF for this example.

Furthermore, an Euler-discretized van der Pol oscillator is
used to illustrate a nonlinear application of GCUKF when the
input vector is unknown. In this case, improved estimates are
obtained using GCUKF compared to the case in which the un-
scented Kalman filter (UKF) is used with an assumed unknown
input vector. Also, GCUKF has performance similar to the case
in which UKF is employed with an assumed unknown input
vector and a larger process-noise covariance matrix.
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