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The scale that forms the basis of most Western music consists of
twelve tones:
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That these twelve pitches form the palette of possible notes is usually
taken as axiomatic, or as simply an artifact of cultural convention.
In fact, though, it is possible to “discover” the twelve-note scale us-
ing just a length of resonant string—an imaginary string will do—and
some mathematics. The goal of this article is to give a mathematically-
minded exposition of one way to form scales with any number of pitches,
the so-called Pythagorean scales, wherein the ratio between any two
frequencies involves only powers of the prime numbers 2 and 3. Fur-
thermore, we introduce a new property of scales, which we call the
two-step property, and prove that it is possessed by Pythagorean scales
of very special sizes—among them, our familiar scale size of twelve.

1. How to invent a scale

Suppose that you hold in your hand a string under constant tension,
like those found on a guitar or violin, and that any knowledge you may
have of Western music has been wiped away. You notice that plucking
the string produces a note, and that other, higher notes are created
when the string is cut down to a smaller size.

Perhaps you try cutting the string in half and comparing the new
note to the one your original string sounded. In modern musical termi-
nology, these two notes differ by an octave from one another, and we
tend to perceive them as “the same”; if one is called a C, the other is
called a C, as well. There is a good acoustical reason for this sense of
sameness, having to do with the similarity in the Fourier series describ-
ing the motion of a vibrating string of length ` and one of length `

2
.
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We will return to this fact later, but for now let us assume that, even
in the hypothetical situation wherein no musical knowledge exists, you
still hear notes differing by an octave as essentially identical pitches.

The next simple manipulation you might try is to cut your string into
thirds. Now you have succeeded in creating a genuinely new note: a
string two-thirds the length of your original one produces a pitch that
(again borrowing the modern musical terminology) is a fifth higher.
This is—more or less—the interval between the notes C and G on a
piano keyboard, and the name “fifth” refers to the five white keys
spanning this interval.

At this point, a scale is already within reach. If you normalize so
that your original string vibrates at a frequency of 1, then by repeat-
edly cutting a third from the length of your string, you produce notes of
frequency 3b for all non-negative integers b. Given the assumed equiv-
alence of notes differing by octaves, we may as well divide each of the
resulting frequencies by a power of 2 until it lies in the interval [1, 2).

Let us define a scale as a collection of frequencies of this form, listed
in increasing numerical order. So, for example, the scale formed by the
first four powers of 3 is:

30

20
,
32

23
,
34

26
,
31

21
,
33

24
.

How do you know when to stop piling on the powers of three? You
might like to stop when you get back to the same pitch you started
with (modulo a multiple of 2), but that would mean reaching a nonzero
power of 3 that is also a power of 2. This is, of course, impossible, by
uniqueness of prime factorizations.

To put the problem another way, the equation

(1) 2a = 3b

has no integer solutions besides (a, b) = (0, 0), since it rearranges to

(2)
a

b
=

log(3)

log(2)
,

and log(3)/ log(2) is irrational. This perspective points the way to a
good solution: we can find a rational approximation of log(3)/ log(2),
and use that to dictate the length of our scale.

The best rational approximations of irrational numbers are given by
continued fractions.1 These are expressions, for any real number x, of

1For a precise notion of “best”, see [11]. The idea of using continued fractions
to determine scale lengths is attributed, in [1], to M.W. Drobisch [6].
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the form

(3) x = k +
1

k0 + 1
k1+

1
k2+···

,

where {kn} is a possibly infinite sequence of integers for which the
truncations of (3) converge to x. A common short-hand is

x = [k; k0, k1, k2, . . .].

In the case of log(3)/ log(2), the continued fraction expansion begins:

log(3)

log(2)
= [1; 1, 1, 2, 2, 3, 1, 5, . . .].

Truncating the expansion produces the following successively better
approximations of log(3)/ log(2):

[1; 1, 1] =
3

2
,

[1; 1, 1, 2] =
8

5
,

[1; 1, 1, 2, 2] =
19

12
,

[1; 1, 1, 2, 2, 3] =
65

41
,

[1; 1, 1, 2, 2, 3, 1] =
84

53
,

and so on. In light of equations (1) and (2), the denominators of these
fractions indicate powers of 3 that are close to a power of 2, which are
places where it makes sense to stop the process described above and
declare the result a scale.

Approximating log(3)/ log(2) by 19/12, we find that a scale formed
by powers of 3 has approximately returned to its starting pitch after
twelve steps. If we list the pitches in increasing numerical order and
add the frequency 2 = 30

2−1 at the end to give our scale a sense of finality,
then we obtain:

(4)
30

20
,

37

211
,
32

23
,

39

214
,
34

26
,
311

214
,
36

29
,
31

21
,

38

212
,
33

24
,
310

215
,
35

27
,

30

2−1
.

Or, we may call these C,C],D,D],E,F,F],G,G],A,A],B,C: we have
found our way back to the twelve-tone scale.2

2Or, rather, we have found our way to some scale with twelve notes. In fact,
as we will see below, this is not quite the present-day Western scale but one of its
historical predecessors.
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As an enlightening bonus, we may notice that another truncation
of the continued fraction approximation of log(3)/ log(2) is 8/5, which
leads one to a scale of five notes. Such scales are referred to as pen-
tatonic, and are common in Chinese, Scottish, and other musical tra-
ditions, as well as in jazz. Of course, a natural question at this point
is: where is the musical tradition of the 41-note scale, or the 53-note
scale? Though such music has been composed, for example by Dutch
guitarist Melle Weijters [22, 9] and others [26], it has not yet achieved
the wide popularity of the twelve- or five-note scale.3

2. The two-step property

Taking a cue from music theorists, let us call the B-note Pythagorean

scale the list, in increasing numerical order, of all numbers 3b

2a
∈ [1, 2)

with b in some range 0, 1, . . . , B − 1, together with the final pitch 30

2−1 .
The discussion of the previous section suggests that Pythagorean

scales whose length B is the denominator of a continued fraction ap-
proximation of log(3)/ log(2) are particularly desirable. In fact, these
scales all share a property that is not immediately obvious: there are
exactly two different possible ratios between successive notes. For ex-
ample, in the twelve-note Pythagorean scale (4), each frequency is ob-
tained from the frequency of the previous note by multiplication either
by 37

211
or by 3−5

2−8 . Let us call the ratio between successive notes in a
scale a step, and call this property of the twelve-note Pythagorean scale
the two-step property.

Musically speaking, the two-step property is a good feature for a
scale to have. The reason is that we often like to transpose songs; that
is, we take a sequence of notes and shift all of them up or down by some
number of scale steps, perhaps to make the song singable by someone
with a higher or lower voice. If all of the step sizes in the scale are the
same, then the transposed song sounds very much like the original one.
If, on the other hand, the scale has steps of many different sizes, then
transposition may dramatically change how a melody sounds. Thus,
to say that certain Pythagorean scales have the two-step property is to

3In a charming American Mathematical Monthly article [1] from November 1948,
J. M. Barbour discusses, using the notion of “ternary continued fractions”, various
possible scale lengths beyond those considered here. He treats scales with too many
notes, however, as “nothing but mathematical speculation” that is “useless to the
musician”. In the modern age of computer-generated pitches, though, things have
changed: ideas that might previously have been merely academic have become
entirely implementable.
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say that, in those scales, transposition does not too seriously alter the
sound of a song.

With this motivation in mind, let us understand why the two-step
property holds for the scales produced by the continued fraction method.
The argument relies on just one key fact about continued fractions.
Suppose we write the nth truncation of the continued fraction approx-
imation of log(3)/ log(2)—or, indeed, of any real number x ∈ [1, 2)—as

[1; k0, k1, . . . , kn] =
an
bn

for integers an and bn. Then

an = knan−1 + an−2(5)

bn = knbn−1 + bn−2,(6)

where the base cases are defined by

a−1 = 1, a−2 = 1,

b−1 = 1, b−2 = 0.

The proofs of (5) and (6) are elementary, and are left as a challenge to
the interested reader.

Consider, now, the bn-note Pythagorean scales for n ≥ 1. We will
not only prove that these scales possess the two-step property, but we
will describe the two step sizes that appear. To do so, let

In =
3bn−1

2an−1
,

and let

Jn =
3−bn+bn−1

2−an+an−1
.

Then the bn-note Pythagorean scale is formed either from

(A) bn−1 steps of size Jn and the other steps of size In; or
(B) bn−1 steps of size J−1

n and the other steps of size I−1
n ,

with the two types alternating as n increases.
The proof of this strengthening of the two-step property is by induc-

tion on n. As a base case, we have b1 = 2, and the two-note scale

30

20
,
31

21
,

30

2−1

is indeed of type (B) in the above dichotomy. (Note that a1 = 3, a0 = 2,
and b0 = 1.)

To prove the inductive step, we construct the bn+1-note scale from
the bn-note scale by a process of “filling in”. Suppose the bn-note scale
is of type (A). Then, to expand it to the bn+1-note scale, replace each
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Figure 1. Filling in the five-note scale to obtain the
twelve-note scale.

step of size In by one step of size J−1
n+1 followed by kn+1−1 steps of size

I−1
n+1, and replace each step of size Jn by one step of size J−1

n+1 followed
by kn+1 steps of size I−1

n+1. Figure 1 illustrates the procedure in the case
n = 2, which is the passage from the five-note to the twelve-note scale.

One must now verify a number of facts:

(1) The process described above indeed fills in each step of the bn-
note scale.

(2) The new frequencies added to the scale in this way all have
numerators of the form 3b with 0 ≤ b < bn+1.

(3) The number of notes added to the scale is bn+1 − bn.
(4) All of these new notes are distinct (in other words, no product

of the steps In+1 and Jn+1 produces the step 30

20
), so the resulting

scale has bn+1 notes in all.

All four of these facts follow directly from the equations (5) and (6).
For example, to prove (1), we may take a step of size In in the bn-
note scale and attempt to fill it in by one step of size J−1

n+1 followed by
kn+1 − 1 steps of size I−1

n+1. This works because

J−1
n+1 · (I−1

n+1)
kn+1−1 =

3bn+1−bn−(kn+1−1)bn

2an+1−an−(kn+1−1)an
=

3bn−1

2an−1
= In,

using equations (5) and (6).
Thus, we have successfully constructed a bn+1-note Pythagorean

scale of type (B) from a bn-note Pythagorean scale of type (A), and
a similar argument constructs a type-(B) scale from a type-(A) scale
of the previous size. This completes the induction and confirms the
two-step property.

3. Other scales

As its name suggests, the method of constructing scales by pow-
ers of three has likely been known since the days of Pythagorus. It
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admits many generalizations, though, which are interesting for both
mathematical and music-historical reasons.

For example, one might allow frequencies of the form 3b5c, adjusted
by powers of 2 to lie in the interval [1, 2). The result is what a music
theorist would call a 5-limit just scale. One example of a 5-limit just
scale with twelve notes is the following:

3050

20
,
3351

27
,
3250

23
,
3152

26
,
3051

22
,
3352

29
,
3251

25
,
3150

21
,
3052

24
,
3350

24
,
3252

27
,
3151

23
,
3050

2−1
.

Playing pitches of these frequencies yields a scale that sounds quite
similar to the twelve-note Pythagorean scale.

There is a good reason to prefer the 5-limit scale, though: the nu-
merators and denominators in its frequencies are smaller than those
in the Pythagorean scale. When two notes are played simultaneously,
they tend to sound more harmonious (at least on traditional string
instruments) if the ratio of their frequencies is expressible as a frac-
tion with small numerator and denominator; the explanation is again
in terms of the similarity of the Fourier series expressing the motion
of strings vibrating at these two frequencies. Consider, then, the fifth
note in the above just scale, which is 5

4
, compared to the fifth note in

the twelve-note Pythagorean scale, which is 34

26
. If either one is played

simultaneously with a pitch of frequency 1 (forming an interval that,
in modern musical terminology, is called a major third), then the just
option produces a much more pleasing sound.

On the other hand, 5-limit just scales have a downside. If such a
scale contains both a “just perfect fifth” (the interval 3

2
) and a “just

major third” (the interval 5
4
), it cannot have the two-step property.

The twelve-note just scale written above, for example, has steps of
three different sizes. Other just scales, even ones with twelve notes,
fare even worse. It is an interesting mathematical challenge to describe
a property of subsets A ⊂ Z2 such that scales of frequencies 3b5c with
(b, c) ∈ A have only three step sizes, analogously to the way in which
continued fractions yield Pythagorean scales with steps of only two
sizes.

Aside from the just scales and their relatives, another possibility is
to mimic the Pythagorean process of forming a scale by taking powers
of a single number, but to allow that number to be irrational. One
historically relevant choice in this vein is to take powers of 51/4. A scale
consisting of the first twelve non-negative powers of 51/4 (adjusted by
appropriate powers of 2, and arranged in increasing order) is interesting
in that it has the two-step property and contains the just major third 5

4
.
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This is the so-called quarter-comma meantone scale that was popular in
Western music of the sixteenth, seventeenth, and eighteenth centuries.

The scale consisting of the first twelve non-negative powers of 21/12

is also important, because all of its steps are the same size. This is the
12-tone equal-tempered scale—the Western industry-standard temper-
ament used by piano tuners, guitar manufacturers, and many others
today.4 Harmonically, the equal-tempered scale is in some sense the
worst of the options we have considered: not one of the ratios between
its frequencies is a fraction with small numerator and denominator. On
the other hand, it closely approximates many such ratios while being
the only scale with the one-step property, so it perfects the problem of
transposition.

Now that we have departed from the Pythagorean framework, more-
over, we may as well also depart from the scale size of twelve. Equal-
tempered scales, for example, can be formed by dividing an octave
into any number of same-sized steps, or the numerators and denomi-
nators of all scale notes can be restricted to lie in a certain set as in
Harry Partch’s tonality diamond [14]. More interestingly, one is not
even beholden to octaves as a fundamental unit. Paul Erlich makes
the case for relinquishing the primacy of the octave in [8], where he
describes how one might arrive at a tuning system by beginning with a
lattice of frequencies—all numbers of the form 2a3b, for instance—and
adjusting (literally, “tempering”) it so that previously unequal pitches
become equal, a process that can and perhaps should involve temper-
ing the octave. See [19, 20] for many further references on the subject
of non-octave-based scales.

Do these exotic tuning systems sound unpleasantly dissonant to the
untrained ear? They need not, if played on the appropriate instrument.
As we have mentioned, the motion of a typical vibrating string can
be expressed as a Fourier series whose components (“overtones”, in
musical parlance) are all integer multiples of a base frequency, and it
is due to the similarity in these Fourier decompositions that a pair of
frequencies sounds harmonious when related by small integer multiples.
With modern technology, however, one can produce sounds with any
desired overtone series, and this can be used to engineer timbres in
which a tempered octave sounds more pleasant than a true 2: 1 ratio, or
in which any predetermined interval becomes a consonance. Research

4Stuart Isacoff [10] traces the ascendancy of equal temperament to the influence
of French musician Jean-Philippe Rameau and the invention of the modern piano,
both in the mid-eighteenth century; by the beginning of the twentieth century,
Isacoff writes, “Americans were buying more than 350,000 pianos a year,” and
“they were all tuned, more or less, in equal temperament.”
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in this fascinating direction was pioneered by music theorist William
A. Sethares [17, 18].

When one considers the relationship between intervals and conso-
nance to be malleable in this way, many new doors open. There are op-
timization problems related to choosing the best timbre for a given scale
[17], and conversely, there are questions about how to measure the dis-
sonance of an interval after a timbre is chosen; Sethares’s original work
used an experimentally-based measure he calls “sensory dissonance”,
which is built on sound-perception studies of Plomp and Levelt [15],
but another possibility is Erlich’s “harmonic entropy” [18, Appendix J],
which uses mathematics from information theory to model the extent
to which the ear is uncertain about which of a discrete set of ratios a
heard interval belongs to. There is work to be done in deciding which
among the infinitely-many possible scales is musically desirable, and
in developing a music theory—indeed, even a reasonable notation—by
which to understand them, work that is being actively carried out by
the community of “xenharmonic” musicians [25, 16]. A key role in this
process is played by computer programs, including notation software
such as Mus2 [13] and the excellent free app Wilsonic [24] dedicated to
the tuning theory of Ervin M. Wilson [23].

And all of this is prior to the work of composition itself. Too many
composers to name have written works in a wealth of tuning systems,
among them Lou Harrison (who constructed, together with his partner
Bill Colvig, a number of instruments meant to played in tunings other
than 12-tone equal temperament), Ben Johnston (who composed in
just scales with many prime factors and proposed a corresponding new
notation), Easley Blackwood (who has systematically explored all equal
temperaments with between 13 and 24 pitches), Wendy Carlos [5],
Brendan Byrnes [4], Tolgahan Çoğulu, Kraig Grady, and many others.
Though mathematics led us to the twelve-tone scale, it is becoming
consistently clearer that both mathematically and musically speaking,
twelve tones are just the beginning.
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