How to do Well on the Projects

EECS 381: Object-Oriented and Advanced Programming
David Kieras, University of Michigan

Overview

Why you should be diligent and industrious on the projects. Fluency in programming can not be attained by simply reading and
studying; you must practice the skills and consolidate your understanding by designing, writing, and debugging computer programs on
your own. Thus, there are several substantial programming projects in this course. The main reason, and for most people the only
reason, why you will have trouble with this, or any other, programming course, is simply not allowing yourself enough time to work
on the projects. Start the projects as soon as they are assigned. The projects in this course have very detailed specifications, so even if
you can't start writing code immediately, you can start understanding the project requirements immediately. With an immediate start,
you can either finish the project soon, or if you have trouble, you have enough time to learn the concepts, get help, reread the book or
specs, or simply get some sleep - which is often the most effective way of solving a difficult design problem or finding a bug.

Working with the Project Specifications
The projects in this course have detailed specifications. Here's how to deal with them.

1. The specification information is found in:

o The project document (doc.pdf). You will have to read this carefully and refer back to it frequently. There is a lot of
information there! Often the document will include some important concepts introduced in the context of real needs.

e The "starter" files, including the supplied complete files and skeleton files; both the supplied code and the comments are part
of the specifications. The comments especially are very important. The "strings.txt" file includes not only what message strings
the program should use, but also information on which module should be outputting that string (and the associated data).

e The demo files provided in some projects provide concrete examples of how a specified module is supposed to be used.

o The behavior samples show samples of how the program is supposed to behave (the "big picture"), and also specify some of
the details of the output. Note that your program must reproduce the samples exactly. Note also that these are samples - they are
not at all complete tests or descriptions of how the program should behave.

o The Corrections & Clarifications page posted and updated during each project - check this before starting each work session
and before sending for help.

2. While these materials are prepared by a human who can make errors, they have been pretty carefully worked on. So chances are
they are accurate and complete. Therefore, I expect you to have studied the specifications very thoroughly before asking about them.
That is, if you ask about something that I believe is in the specs adequately clearly, I will just briefly reply "check the specs" so that I
have time free for more difficult questions.

3. If you have done your best to understand the specifications, by all means ask questions if they seem incomplete or don't make sense.
In this case, don't ask an open-ended question about the project requirements - tell me what specific part of the specification seems
incorrect, confusing, or incomplete, so that a Correction or Clarification can be prepared and posted if necessary.

Getting Help on the Projects

First review the Corrections & Clarifications and the FAQ. The project specifications, while very detailed, are not supposed to be
confusing to a careful reader. You are expected to ask questions if the specifications are not clear, but check the Corrections and
Clarification page for the project first - maybe your question has already been answered. Likewise, maybe your question has already
been answered in the project FAQ. Check there first. There are some useful general FAQ pages on the course home page which may
also be useful.

How to get help by email. Clarifications and simple questions can be handled effectively and efficiently by email. If you ask a
question by email about why your program isn’t working, please include the appropriate information so that time isn’t wasted by
asking you to supply it. Here is what you should do with your email to make this process work well:

o Include the compiler version and platform, and where: e.g., gcc 4.7.1, Linux, CAEN lab
o If an error message is puzzling you, copy-paste the exact and complete error message into your email. If it is a compile error,
you should also copy-paste the statement where the error occurred plus the few lines before it. Linker errors are different, but

EECS 381 How to do Well on the Projects Page 2

the exact wording is also important. If you have a zillion errors of the same kind, the first one or two are the most useful to
supply.

» Do not expect me to be helpful when you supply only a vague and general description - e.g. “the compiler barfs at my file I[/O
code.”

o If you aren’t sure whether something is legal or will work, give it a try before you ask about it. “Playing with code” this way is
very educational, and the actual results of bad code make it easier to understand and explain why it is bad code.

 Since I often read mail with efficient plain-text mail programs, or with limited bandwidth, please turn off all the html and styles
nonsense in your email program - don’t make me read through gobbledegook when I try to help you.

o Important: Send only the code mentioned above. Do not send big hunks of code, especially as attachments, unless I ask you to;
the skill of isolating the problem and asking a well-framed question is something you must develop. I will want the big chunk
or whole file only if I am puzzled and need to compile it to figure out the problem. Unsolicited files will be deleted without
inspection.

Rather than simply telling you what to do, often my answers will also explain what is going on, and provide useful tips: E.g. why a
particular way of reading the input doesn’t work like you thought it would, or how to figure out a yard-long error message. Please take
the time to read and digest such answers when I have taken the time to write them - they will add to your skill and save you a lot of
time in the future when a similar issue arises.

How to get help - in person. Even very experienced programmers encounter serious bugs that seem to yield only when another person
looks at the code. Less experienced programmers often benefit from some coaching on debugging. So for really nasty bugs, come in
person to the office hours, and I will work through it with you. Again, my primary goal is to help you learn how to do this better, so I
will be expecting you to have done as much as you can, and to be prepared to explain what seems to be going on and what you have
already checked out. If you have a conflict with the staff office hours, then email me to make arrangements for a special meeting
outside of those hours.

Beware of legal but lousy advice: 1 have often seen students get “advice” from other people that turned out to be ignorant, mistaken,
dead wrong, obsolete, superstitious, dangerous, not to mention contrary to the approach and guidelines presented in this course. Other
people have found similar bad “advice” by searching the web. While it is possible to get such “advice” legally with regard to the
Academic Integrity policies for the course (see the Syllabus), it is likely to mess you up. It is really amazing how much stupid and
wrong stuff is present on the web. The material presented in this course is my digest of the best advice available from the best people,
the “gods” of programming. Making it available to you is a key purpose of this course. So when you want to know something, review
the course material first, then ask me - there is no need to go fishing elsewhere. For example, check out the code examples on the
course web pages - when it comes to STL usage, for example, these will often show you exactly what you need - why rummage
through the whole web?

Beware of illegal advice: Reread the section in the Syllabus about academic integrity. If you get help with the actual design, writing,
or testing of your code from anybody except the TA or Prof, it is a violation of the course rules. If detected, you will be reported to the
Honor Council.

Project Grading and Evaluation

Code quality. The general quality of the code will be emphasized throughout this course. The principle is that in the real world, code is
often used, maintained, and modified long after it has been written. This means that code is read and modified far more often than it is
written. Therefore it is critical that the code be easy for a human reader to understand. It must be straightforward and simple, make
good use of the language facilities, have good organization and structure, and be idiomatic. As in natural languages, an “idiom” is the
common or accepted way to say something, which has evolved over time to work well in that particular language. Part of becoming a
good programmer is learning what the idioms for a particular language are, understand why they work well, and then use them where
applicable.

Some examples of poor code quality are:

o Unnecessarily duplicated code (“copy-paste coding”) - the most common and worst bad habit of beginning programmers.

o Lack of well-designed sub-functions that eliminate duplication, provide single points of maintenance, and improve code clarity
(the everything-in-main newbie error).

« Convoluted, unnecessarily complex, hard-to-read code, such as excessive nesting, clumsy functions, or bad layout.

o Egregiously inefficient code - a bit of inefficiency can be a good trade for simplicity, but inefficiency with nothing gained in
return, or serious inefficiency that could be remedied easily, is just bad design or sloppy work.

» Bizarre (non-idiomatic) code - such as oddly specified for-loops for no good reason.

EECS 381 How to do Well on the Projects Page 3

o Code that fails to follow course guidelines and recommendations for increasing reliability, maintainability, clarity, quality,
portability, and reusability. There is a reason for these principles, developed over decades of experience by professionals.
Learning and using them is a major point of the course. One example is the guideline not to use leading underscores for names -
a source of difficult and completely unnecessary errors.

Ideas about code quality will be presented throughout the course: in lectures, in the handouts on specific topics, in the textbooks, and
the grading feedback on the projects. Some very specific and critical rules are presented in the Coding Standards documents for the
course that are posted on the course web site. You will be expected to take advantage of these ideas and improve the quality of your
code substantially during the course.

Even if they get all the autograder points, students typically make a horrible mess of the code quality on the first project, and have to
struggle for the remainder of the semester to recover from it. In almost all cases the cause is simply ignoring the guidelines for writing
quality code. The Coding Standards documents contain specific industry-based rules chosen in light of the mistakes made by students
in the past. Hint: Pay attention to this resource! Plan your work so that you have time to compare your code to the Coding Standards
and other guidance and revise it before the deadline. Turning in garbage early is no way to earn a good grade in this course!

Living with the autograder. Most projects will be graded for correct behavior by an “autograder” computer system which will compile
and execute your program, feed it with a set of test inputs and determine if the outputs match those produced by the instructor’s
solution. Additional tests will check for certain aspects of whether your code meets specifications for content and structure. For
example, on most projects, I will combine components of your program with components of my own and see if the resulting
combination compiles and performs correctly. This is a test for whether your components conform to the specifications for their
interfaces and behavior. The autograder system is actually very similar in concept to the automated testing systems that sophisticated
software development groups use, especially those that follow the tenants of “agile” or “extreme” programming - “write the tests
first)” “no code exists except to pass a test.” The difference is that you do not know what my tests are, but this is because I want you to
devise your own tests based on the specifications - learning how to do this is a critical software skill. See the web site essay “Finding
Bugs in your Projects” for some ideas.

My goal with the autograder is to provide accurate and timely multiple feedbacks about the correctness of your work in a way that is
faster and more consistent than possible with human graders. But the grading system is complex, so please bear with me if [have
difficulty with it. Any problems that are my fault will not be held against you, and allowance will be made for delays or bugs that are
my fault. But do not mistake my corrections and adjustments of the grading system for leniency or slackness in the grading.
Announcements and web pages will keep you posted on the policies and status of the grading system. See the course web page
“Autograder Information and Policies” for more details.

Suspect your code first. Students have sometimes complained that the system was grading their projects incorrectly, claiming that they
know that their code is correct. However, in almost all cases, the student had not tested his or her program at all thoroughly, and it
turned out to simply not work as specified. Student programmers have to develop the same humble attitude about their code that
professionals have: There are always bugs in your code; you just haven'’t found them yet! So suspect your own work before doubting
the grading system. That said, no matter how hard I try, the grading system is still a program with potential bugs, and flaws in
specifications and testing are a fact of real as well as academic life. Note that significant problems that are my fault will not be held
against you; with luck, they will be uncommon.

Code with undefined effects is incorrect code. 1t is possible to have a program that appears to run correctly in your own programming
environment, and then fail miserably in the grading system. In almost all cases, this is due to the fact that your code has errors that are
tolerated by your programming environment but not by the grading system. Some such errors result from your using nonstandard
syntax or facilities, but most commonly they are a result of relying on undefined behavior in the C/C++ language. For example, in
Standard C and C++, uninitialized variables are not required to have any particular value, but depending on the platform and
implementation, uninitialized variables might have either a “good” value in them (such as zero) or simply random garbage. If your
code expects a “good” value in an uninitialized variable (especially a pointer), the result can be inconsistent platform-dependent
behavior.

Another example is that some implementations of the C Library function strcmp will return -1, 0, or +1, while the Standard just calls
for values that are negative, zero, or positive. If your code assumes that exactly -1 will be returned, it might work correctly in some C/
C++ implementations, but not others.

A program that relies on undefined behavior is not a correct program; no credit will be given for an incorrect program that happens to
run correctly on your platform. If you submit your projects to the grading system early enough, any such problems will appear and

EECS 381 How to do Well on the Projects Page 4

you can get help with them if necessary. Compiling and testing your program on another platform prior to submitting it will often
reveal such problems.

A Final Word

The Perils of Procrastination. Since the very beginning, even when computers used vacuum tubes and filled a whole room, computers
have always been equipped with hidden deadline-detection and programmer-stress level sensors that are hardwired to random bug and
catastrophic crash generators. This is a fact of life; your only defense is to allow extra time. Even professional software developers
can’t reliably predict project completion times, so it is foolish for students to push their luck! Crowded labs, flakey computers, dead
hard drives, or slow networks are no excuse, and you will get no sympathy if you start a project late and then run out of time. By far,
the most common reason that students have problems in this course is simply waiting too late to start the projects. The course schedule
and projects are designed so that you can start working on the projects right away, and all the concepts and ideas needed are presented
at least a week before the due date. So do your all-nighter a week before, not the day before! You’ll either get the project done, or have
time to get help!

