
EECS 381 Example Code Quality Check List - C versionEECS 381 Example Code Quality Check List - C version
Explanation and guidance for some items is shown in italics

Student: Student: AG score:_______

General code quality
(2) Appropriate commenting.
Function prototypes first, functions in readable order
Main function is very small
- represents top level of program process, calling functions that do the work.
Program has well-chosen subfunctions to organize the code
Program lacks redundant or awkward code.
- it could have been eliminated, or rewritten to make it simpler and clearer.
Code is not duplicated excessively.
- don't code identical functionality with copy/paste! - write a function instead!
Code reads well, and is not excessively verbose or convoluted.
Good variable/symbol naming
Code follows recommended C style practices (e.g. NULL, typedefs, macro names)
Code uses C idioms
- testing with if(flag) instead of if(flag != 0), writing loops like for(i = 0; i < len; i++) when possible.- testing with if(flag) instead of if(flag != 0), writing loops like for(i = 0; i < len; i++) when possible.
(2) Program lacks egregious or gross inefficiency.
- egregious inefficiency: inefficiency without compensating quality improvement in return.- egregious inefficiency: inefficiency without compensating quality improvement in return.
- gross inefficiency: extreme inefficiency that could have been easily avoided.

Specific code quality - differs depending on project
Main function built around a switch statement that calls command-specific functions
Format for scanf of strings disallows overrun of array
No unnecessary memory allocations (e.g. for temporary buffers - local arrays used instead)No unnecessary memory allocations (e.g. for temporary buffers - local arrays used instead)
Memory allocated and deallocated in responsible module's functions only
Return value from malloc checked and program terminated if 0
Memory for strings allocated to fit the data
No apparent memory leaks.
All allocated memory freed upon termination.
Globals are used, and declared and defined in .h, .c files, following course guidelines.
Globals are modifed only by appropriately responsible module
Good choice of functions in Utility module (e.g. a string allocator/deallocator)
- functions used in more than one module, or could be used in very different projects.
Standard Library facilities used appropriately (no reinvention of wheels)

Other Attributes
Additional positive qualities:
Additional negative qualities:
- Points deducted if serious failure to apply course content or project specifications.
E.g. On an important topic, the project looks like you aren't even in the course,
or you completely missed the point, or blew off the project goals.

Total

