
How the Adapters and Binders Work
David Kieras

Prepared for EECS 381, Fall 2004

What code gets generated when we write

#include <vector>
#include <algorithm>
#include <functional>
using namespace std;
...
vector<int> v;
void foo(char, int);

for_each(v.begin(), v.end(), bind1st(ptr_fun(foo), 'c'));

The last statement, using for_each, is the “target statement” whose instantiation will be explained.
While this explanation is limited to for_each, bind1st, and ptr_fun, the principles are general and
apply to the other algorithms, adapters, and binders.

What happens in the target statement is that each int in the vector is supplied as the second
argument to foo, whose first argument is always 'c'. The process of generating the code from the
involved templates is basically simple, but requires some patience to work through. Basically, there
are some clever template definitions that guide the compiler to instantiate function object classes and
create the appropriate objects, the last one of which can behave as a simple function object in the
for_each instantiation. Read the following carefully, with a cup of coffee, glass of beer, etc., handy,
to see Template Magic in action.

First, the Std. Lib has a template class (a struct) to hold typedefs for binary (two-argument)
functions:
template <typename Arg1, typename Arg2, typename Result>
struct binary_function
{

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

All this does is provide some "standard" typedefs so that the other templates can consistently
refer to the types of the first argument, second argument, and result of a function using the same
typedef names. We can inherit from a template class in a class by providing the template arguments.
Thus if we instantiate

class Demo : public binary_function<char, int, void> {

};

the Demo class will end up with three public typedefs, as if we had written:
class Demo {
public:

typedef char first_argument_type;
typedef int second_argument_type;
typedef void result_type;

};

1

These typedefs can then be used in the rest of the class declaration, and because they are public,
they can be used by any templates that use this template as a member or parameter.

Now, let’s arrange to store a function pointer in a function object, whose operator() simply calls the
function using the stored pointer. We declare the function pointer type and set up the typedefs from
binary_function. We do this with another class template, called pointer_to_binary_function,
declared as follows:

template <typename Arg1, typename Arg2, typename Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result> {
public:

explicit pointer_to_binary_function(Result (*fptr_)(Arg1, Arg2)) : fptr(fptr_) {}
Result operator()(Arg1 x, Arg2 y) const {return fptr(x, y);}

private:
Result (*fptr)(Arg1, Arg2);

};

The member variable fptr is our function pointer that returns Result type,
given Arg1 and Arg2 type arguments. The constructor (tagged "explicit") simply initializes the
function pointer member variable using a supplied function pointer, such as a function name. The
function call operator simply calls the function using the two arguments x and y, which
must be of type Arg1 and Arg2.

One more template, a function template, is necessary to get us to the first instantiation in the target
statement.

template <class Arg1, class Arg2, class Result>
inline
pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*f)(Arg1, Arg2))
{

return pointer_to_binary_function<Arg1, Arg2, Result>(f);
}

This is a function template that uses Template Magic Trick #1: Use a function template
to create and return a class template object. The compiler will figure out what the template
parameters are simply from the expression using the function template, and these can be
used to easily instantiate a class template with the desired parameters.

If you call the template function ptr_fun with a function pointer argument (such as a function
name), because the compiler knows the function declaration, it knows the return type
and parameter types. So it can then instantiate the pointer_to_binary_function class with
the corresponding template parameters, and create an object of that type, initialized with
the supplied function pointer.

Let’s stop and apply this much to the target expression:

for_each(v.begin(), v.end(), bind1st(ptr_fun(foo), 'c'));

ptr_fun(foo) results in a template instantiation for ptr_fun that looks something like this:

pointer_to_binary_function<char, int, void> // type of returned object
ptr_fun(void (*f)(char, int))
{return pointer_to_binary_function<char, int, void>(f); }

2

which when executed, creates and returns an object whose class name is
pointer_to_binary_function<void, int, char>
and is instantiated as:

class pointer_to_binary_function : public binary_function<char, int, void> {
public:

typedef char first_argument_type; // inherited from binary_function
typedef int second_argument_type;
typedef void result_type;

explicit pointer_to_binary_function(void (*fptr_)(char, int)) : fptr(fptr_) {}
void operator()(char x, int y) const {return fptr(x, y);}

private:
void (*fptr)(char, int);

};

where the fptr member has been initialized to be the address of function foo. Note that if we use an
object of this class like a function, we will actually be calling foo, and still need to supply two
arguments: a char and an int. So now we have a function object that we can use like a function, but
we still have to supply two arguments. We want to be able to call that function with the first
argument always being the same value, and the second being available to be set to whatever value the
iterator points to in the for_each.

We’ll do this with yet another function object class, in which we will save the first value, and then
the function call operator will accept a value for the second argument only, and then call the function
with the saved first argument and the supplied second object. This second function object is what
actually gets used as the third argument in the for_each, playing the role of the function that gets
applied to every element of the container.

This function object class is called binder1st - it does the "binding" so it is called a "binder". The
binder1st is a class template that just takes an Operation as a template parameter. This operation will
in fact be the pointer_to_binary_function object we have just created. Look back at that class and
you will see that it has ended up with typedefs for the first and second argument types and the
return type. These will be used as the argument type and returned type for the single-argument
function object we will define:

template <typename Operation>
class binder1st {
public:

binder1st(const Operation& x, const typename Operation::first_argument_type& y)
: op(x), value(y) {}

typename Operation::result_type
operator()(const typename Operation::second_argument_type& x) const

{return op(value, x);}
private:

Operation op;
typename Operation::first_argument_type value;

};

The constructor initializes the function object with an Operation object, stored as the member
variable op, and a value, stored as the member variable value, to use as the argument to be the first
argument every time we call the function. The type of this value is that supplied by the
first_argument_type typedef belonging to Operation.

3

The function call operator returns a value whose type is also supplied by Operation, and takes a
single parameter, whose type is supplied by Operation as the second argument type. The function
call operator simply calls the Operation function object op using the stored value, and the single
argument from binder1st function call operator.

The last step is to create a binder1st object easily, using another case of Template Magic Trick #1.
This is the bind1st function template:

template <class Operation, class T>
inline
binder1st<Operation>
bind1st(const Operation& op, const T& x)
{

return binder1st<Operation>(op, typename Operation::first_argument_type(x));
}

Analogous to the first Magic Trick, when bind1st is called with a function object op, it will create
and return a binder1st object using the Operation type as the template parameter, initialized with op
and an object of the first argument type initialized by the supplied value of x.

So, lets go back to the target statement:

for_each(v.begin(), v.end(), bind1st(ptr_fun(foo), 'c'));

Look back and see that the expression
ptr_fun(foo)
resulted in a pointer_to_binary_function object whose class name is
pointer_to_binary_function<chair, int, void> and whose first_argument_type is char,
second_argument_type is int, and result_type is void, and whose function call operator calls foo with
the supplied arguments.

Now, the bind1st call is analyzed by the compiler: it sees that the first argument op has the type and
value from the ptr_fun, namely a pointer_to_binary_function<char, int, void> object that has been
initialized with the function pointer to foo, and the second argument has type char. So the compiler
instantiates the bind1st call as something like:

binder1st<pointer_to_binary_function<char, int, void> > // returned type
bind1st(const pointer_to_binary_function<char, int, void>& op, const char & x)
{
return binder1st<pointer_to_binary_function<char, int, void> > (op, char(x));
}

This creates a binder1st object instantiated with the supplied function object (from ptr_fun(foo))
and the supplied char value, 'c'. So the result of bind1st is an object of type binder1st, whose
instantiation looks something like this:
class binder1st {
public:
binder1st(const pointer_to_binary_function<char, int, void>& x, const char& y)

: op(x), value(y) {}
void operator()(const int& x) const {return op(value, x);}

private:
pointer_to_binary_function<char, int, void> op;
char value;

};

4

The object itself is initialized with 'c' for the char value, and a function object op that simply wraps
a function pointer to foo. The function call operator simply calls foo with the char value, and the
int argument x.

And there it is, folks! This is a function object, that when called as a function with a single
parameter x, calls a two-argument function, using a stored value for the first argument, and x for the
second argument! At this point, the for_each instantiation proceeds normally, with the binder1st
function object simply playing the role of the usual function pointer or function object. The
for_each template

template<class InputIterator, class Function>
inline
Function
for_each(InputIterator first, InputIterator last, Function f)
{

for (InputIterator it = first; it != last; ++it)
f(*it);

return f;
}
will get instantiated as:

inline
binder1st<pointer_to_binary_function<char, int, void> // returned type
for_each(vector<int>::iterator first, vector<int>::iterator last,
binder1st<pointer_to_binary_function<char, int, void> f)
{

for (vector<int>::iterator it = first; it != last; ++it)
f(*it);

return f;
}
So the binder1st object gets applied to each dereferenced value in the vector.

This seems incredibly convoluted, but once the compiler has instantiated this code, it gets compiled,
and then the normal optimizations will kick in. Note the "inline" declaration on the function
templates, and the fact that the constructors and function call operators in the function object classes
will normally be inlined as well. By the time the compiler is finished, the code that you wrote:

for_each(v.begin(), v.end(), bind1st(ptr_fun(foo), 'c'));

will in fact end up essentially as if you wrote:

for(vector<int>::iterator it = v.begin(); it != v.end(); ++it)
foo('c', *it);

In other words, all of the template instantiation stuff is gone! It was just a massive Magic Trick to
make the compiler create the code we wanted!

Note: This explanation is based on somewhat simplified declarations from the Metrowerks version
of the C++ Standard Library. Other implementation may differ in details or specifics, but the
overall principle is the same.

5

