
Using “using” - How to Use the std Namespace
David Kieras, EECS Department, University of Michigan

Febrary 2015

Why Namespaces?
When programs get very large and complex, and make heavy use of libraries from a variety of sources, the possibility of name

collisions rears its incredibly annoying head. A name collision is when an identifier (say a function name) is used in one part of the
code to refer to something, but that same identifier already is being used in a different part of the code to refer to something else. Often
the programmer can just use a different name for one of them, but if the two conflicting names are defined in two big expensive librar-
ies that are both needed for the project, the programmer is stuck — the compiler won’t let the same name be used for two different
things!

A good example is a class or struct for representing points in Cartesian space with x, y coordinates. What’s the obvious name for
this? “Point”, or perhaps “point”. Where might such a thing be used? In the GUI library, to refer to points on the display, normally as a
pair of integers. Also in say a geometry/trigonometry library to refer to points on the plane, normally as a pair of double-precision
floating point numbers. Oops! Two definitions of “Point” are now in play. If we want to write code using the trig library to determine
lines and shapes to put on the display, we are stuck with using both versions of Point at once, so the name collision can’t be avoided. If
we are lucky, we won’t have the problem because one of the library developers used something like CPoint instead of Point, but that is
purely a matter of luck. Namespaces can solve the problem in the absence of luck.

The Namespace Concept
The namespace idea originated in other languages (e.g. LISP). The idea is that identifiers can be grouped into separate sets, each

set associated with a particular library or body of code, and each such set, or namespace, itself has a name. Thus if the same names
appear in two libraries, each of which are in their own namespace, the collision can be resolved by qualifying the names with the
namespace name. For example, if we want a GUI point, we might write GUILib::Point, and we might designate a trig library
point with TrigLib::Point. Note how this is using the double colon (::), the scope qualification operator, analogously to how it
is used for class member names.

To avoid the inconvenience of writing the namespace name all the time, we might want to specify that an unqualified Point means
the Point from TrigLib. Then if we want a GUILib Point, we have to use the qualified GUILib::Point name. C++ has “using”
statements that provide this convenience.

The global namespace is where names reside if you don’t put them into a specific namespace. All of the code you normally write
will declare functions whose names are in the global namespace. Such names can almost always be used without qualification, but
sometimes you have to tell the compiler that a name is in the global namespace to avoid a collision with the same name in another
scope or namespace. The name of the global namespace is nothing - literally no name at all – you qualify a name in the global
namespace by writing the :: operator with nothing to its left. For example, if “int foo(int);” is the prototype of a function in the
global namespace, and we need to inform the compiler of that fact, we would write:
	

 ::foo
for the name of the function, as in

	

 int result = ::foo(i);

It appears at this time in the evolution of C++ programming, that the main reason for creating a namespace is to package a large
and complex library to help prevent name collisions and make it easier to tell what is part of the package. However, creating a library
is a relatively unusual activity for most programmers, compared to using existing libraries to solve application problems. Thus almost
all of the time, your use of namespaces is limited to making use of libraries that declare namespaces. Therefore, this document does
not deal with how you declare a namespace or put things into a namespace, only with how to use an existing namespace. The Standard
Library namespace, std, is the most important existing namespace, but the concepts and guidelines in this document apply to using
any predefined library namespace.

Here is a good place to point out that programmers should never put something of their own in the std namespace - this
namespace is reserved for use only by the official Standard Library. It is a good thing namespaces were invented, because the Stan-
dard Library is very large, and its developers did not hesitate to make use of many “good” names for things - so a name collision with
the Standard Library can easily happen.

But to use the Standard Library, you have to tell the compiler in some way that you are using names in the std namespace. In
fact, in an up-to-Standard compiler and library, you can’t even write the “Hello, world!” program without making use of the std
namespace explicitly! This document presents the recommended ways to do it.

1

Namespace Using Directives and Declarations
The “full name” of something in the Standard Library has std:: at the beginning. You can always refer to something in the

Standard Library with its fully qualified name, as in:
	

 std::cout << “Hello, World!” << std::endl;

Needless to say, this is awkward and verbose, so there are ways to tell the compiler that you are “using” certain names throughout
your code file. This is the "namespace using” statement, which comes in two forms:

(1) A namespace using directive says you are using an entire namespace, as in:
	

 using namespace std;

You are directing the compiler to make all of the names in the std namespace part of the global namespace, and thus they can be
referred to without qualification in the rest of your source code file. They will now collide with any names that your own code uses.
This takes effect only for the current compilation unit (the file that is being compiled).

(2) A namespace using declaration says you are using only a single name from a namespace, as in:
	

 using std::cout;

This declares that the “cout” you are referring to is the “std” cout, which is now in the global namespace. Now you can use
“cout” without qualification, but no other std names have been made part of the global namespace. This also takes effect only for
the current compilation unit.

Important: the keyword using is also used in type aliases (the C++11 improvement over typedef). This document does not
apply to type aliases, but only to namespace using directives and declarations. A type alias can appear wherever it needs to.

The rules and guidelines presented next are ways to make use of these three forms of namespace using statements in the way that
minimizes name collision possibilities and maximizes code clarity and writing convenience. The rules differ for header files (.h files)
and source (or implementation, .cpp) files.

Guidelines for Header files
#1. Do not put any form of namespace using statement at the top level in a header file. The reason? Anybody wanting to use

your component has to #include your header file. If you have namespace using statements in it, then these statements become part
of their code, appearing at the point your header file was included. They are stuck with whatever namespace using decision you made,
and can’t override it with their own. Furthermore, the using statement will take effect at the point where it appears in the code that
#included the header, meaning that any code appearing before that might get treated differently from code appearing after that
point. There might be a hodgepodge of which headers and code gets interpreted in terms of your namespace decision.

A single using namespace std; statement in a single header file in a complex project can make a mess out of the
namespace management for the whole project. So, no top level namespace using statements in a header file!

Narrowly-scoped namespace using statements are OK. Why "top level" in the this guideline? Occasionally it is useful or neces-
sary to have a namespace using statement whose scope is within a class declaration or function definition. Because these statements
have a limited scope, they do not affect the entire compilation unit, and so present no problem.

#2. Use fully qualified names for Standard Library names in header files. Of course, if you have classes or functions that refer
to the Standard Library classes, you have to be able to name them in the header file. Since you can’t put a namespace using statement
at the top level of the header file, you must use a fully qualified name for Standard Library classes or objects in the header file. Thus,
expect to see and write lots of std::string, std::cout, std::ostream, etc. in header files. While you might be able to elimi-
nate some of these with narrowly-scoped namespace using statements, do so only if most of the explicit qualifications would disap-
pear.

Guidelines for Source (Implementation) Files
#3. Put all namespace using statements after all #includes. This first rule is related to the “no top level using statements in head-

ers” rule: Do not put any namespace using statements before any #includes of header files; all namespace using statements should
come after all of the #includes. For example, suppose you break this rule as follows:
! #include <iostream>
! using namespace std; ! // Warning! Danger! Potential Evil!
! #include <GUILib.h>

Recall that what #include does is essentially a copy-paste of the entire text of the header file into that place in this file, and
then the compiler processes this entire mass of text. By putting the using namespace std; before the GUILib #include, you
have a situation in which the GUILib.h header file (and all the headers it includes) will be interpreted in a context where all of the std
namespace names are in the global namespace. This has essentially the same potential for evil as putting using namespace
std; directly in the GUILib.h file itself.

2

Instead, the above should be:
! #include <iostream>
! #include <GUILib.h>
! // all other #include’s
! using namespace std;! // no harm done to headers

The same rule applies for using declarations such as using std::cout; although the potential for mischief is lower.

#4. Say using namespace std; for maximum clarity and convenience and no collision protection. You have a choice for
how much of std you want to put into the global namespace: all, part, or none. The namespace directive using namespace std;
puts all of the std namespace into the global namespace, meaning that you can freely refer to everything in the Standard Library
without having to do any qualifications.

This blanket using directive by far makes your code easiest to write and generally easiest to read (if the code reader is familiar
with the Standard Library). However, namespace collisions are now more likely and you will have to deal with them. But you can’t
beat the clarity and convenience; you’ll find lots of people doing this, especially for code that uses the Standard Library very heavily.

#5. Use fully qualified names everywhere only if you like colons poking you in the eye and like to frustrate other people, one of
whom is me, who doesn’t like it at all, and gets annoyed while grading projects. Some people like to put none of std into the global
namespace, and so they never use a namespace using statement – they like to write fully qualified names throughout their code, in-
cluding their implementation files. They never have to worry about name collisions because they never use a name that might collide!
Such code is full of std:: as in:
std::string foo(std::map<std::string, std::greater<std::string>, std::string>& table)
{
std::string s1, s2;
std::cout << “Enter two strings:” << std::endl;
std::cin >> s1 >> s2;
std::map<std::string, std::greater<std::string>, std::string>::iterator it = table.find(s1);
// etc.

When you read such code, the colons tend to stand out and produce a remarkably distracting effect like the page has been
machine-gunned. Most people find such code much harder to read. Others apparently enjoy it - the sheer geekiness of it is amazing. It
does make it painfully obvious which things are from the Standard Library, and so can help the reader who is less familiar with the
Standard Library. But it is also a lot more typing. My recommendation is not to use this approach; it is legal, but it is overkill, and
some people (like me) absolutely hate it. Bottom line: Don’t do it in this course.

#6. Recommended: Use specific using declarations for just the names you need. Instead of a blanket using namespace
std; directive, write using declarations for only the components of the Standard Library that your code is actually using in this file.
This provides complete name collision protection for all of the other names, and with no loss of clarity and convenience in the code
itself. The reader who is not completely familiar with the Standard Library can look at the using declarations for clues about which
names are coming from the Standard Library.

This is not as much work as it might seem. Notice that using a class automatically results in using all of its members; so to use all
of std::string, a single

! using std::string;

will suffice. Unfortunately, using console I/O involves listing all of the objects and manipulators, because they aren’t all members of a
single class:

! using std::cin; using std::cout; using std::endl;

I like to group the using declarations for related names on a single line.

My experience has been that often you don’t need very many using declarations, even in code that makes heavy use of the Stan-
dard Library. If you would need a very large number of using declarations, then the full using directive might be a better idea.

3

