
A Summary of Operator Overloading

David Kieras, EECS Dept., Univ. of Michigan
Prepared for EECS 381

8/27/2013

Basic Idea
You overload an operator in C++ by defining a function for the operator. Every operator in the
language has a corresponding function with a name that is based on the operator. You define a
function of this name that has at least one parameter of the class type, and returns a value of
whatever type that you want. Because functions can have the same name if they have different
signatures, the compiler will apply the correct operator function depending on the types in the
call of it.

Rule #1. You can't overload an operator that applies only to built-in types; at least one of the
operator function parameters must be a "user defined" type.

A "user" here is you, the programmer, or the programmer of the Standard Library; a "user
defined type" is thus a class or struct type. This means you can't overload operator+ to redefine
what it means to add two integers. Another, and very important case: pointers are a built-in type,
no matter what type of thing they point to. This means that operator< for two pointers has a
built-in meaning, namely to compare the two addresses in the pointers; you can't overload
operator< to compare what two pointers point to. The Standard Library helps you work around
this limitation.

You define operator functions differently depending on whether the operator function is a
member of your own type's class, or is a non-member function. A further variation is whether
the arguments are of the same or different types. We'll do this first for non-member functions,
then for member functions.

In schematic form, when you use a binary operator (op), there is a left-hand-side operand (lhs)
and a right-hand-side operand (rhs), and the whole expression has a value.

lhs op rhs --- has a value resulting from applying op to lhs and rhs

The operator function's first argument is the lhs operand, and the second is the rhs operand.
The name of the operator function is operator op, where op is the operator, such as '+', '*', etc.
The unary operators are almost all special cases, described later in this handout.

1

Non-member operator functions

Rule #2. A non-member operator overload function is just an ordinary function that takes at
least one argument of class type and whose name is of the form operator op.

A non-member operator overloading function simply has the operator function name and does
whatever you want with the lhs and rhs parameters. For example, suppose we have a simple
CoinMoney class that represents money that consists of collections of nickels, dimes, and
quarters. A CoinMoney object stores the number of coins of each type, and computes the
monetary value on request: A sketch of this class, leaving out members not immediately relevant,
is as follows:

class CoinMoney {
public:
! CoinMoney(int n = 0, int d=0, int q= 0) :
! ! nickels(n), dimes(d), quarters(q) {}

! int get_value() const
! ! {return nickels * 5 + dimes * 10 + quarters * 25;}
private:
! int nickels;
! int dimes;
! int quarters;
};

Suppose we want to be able to add two CoinMoney objects and get a third CoinMoney object
that has the sum of the number of nickles, dimes, and quarters from the two objects. We define
the function named operator+ that takes two arguments of CoinMoney type and returns a
CoinMoney object with the correct values. Because the CoinMoney members are private, they
will not be available to a non-member version of the function. We need to either add a friend
declaration or a bunch of readers functions to the class. Let's assume we have the readers. The
operator+ definition would then be:

CoinMoney operator+ (const CoinMoney& lhs, const CoinMoney& rhs)
{
! CoinMoney sum (
! ! (lhs.get_nickels() + rhs.get_nickels()),
! ! (lhs.get_dimes() + rhs.get_dimes()),
! ! (lhs.get_quarters() + rhs.get_quarters())
! !)
! return sum;
}

This function creates a new object initialized with the nickels value from the lhs and rhs objects,
and likewise for dimes and quarters, and returns the new object by value.
So now we can write sums of CoinMoney objects:

! m3 = m1 + m2;

2

The m1 + m2 will be compiled into a call to our operator+ function that takes two CoinMoney
objects as arguments. It returns an object containing the sum, whose values then get copied into
m3. Because operator+ is just another function, the following two statements do exactly the
same thing:

! m3 = m1 + m2;

! m3 = operator+ (m1, m2);

Explicitly calling operator functions is legal, and is sometimes done in special circumstances, but
usually programmers don't bother - that's why the operator was overloaded!

Left- and right-hand operands can be different types
At least one of the operator function parameters has to be of your class type, but the other one
can be of any other type, including a built-in type. For example:

CoinMoney operator* (CoinMoney lhs, double rhs)
{
! CoinMoney product(
! ! (lhs.get_nickels() * rhs),
! ! (lhs.get_dimes() * rhs),
! ! (lhs.get_quarters() * rhs)
! !)
! return product;
}

This overload means that we can write:

! m1 * 2.0;

This gives us a CoinMoney object that has double the number of each type of coin as m1.

Note that if we want to be able to write:

! 2.0 * m1;

We also have to define CoinMoney operator* (double lhs, CoinMoney rhs). The signature
is different!

Operator functions that are class member functions
If you write an operator function as a member function, then it automatically has access to all of
the member variables and functions of the class. Friend declaration or readers not needed! But
the complication is that the left-hand-side operand becomes the hidden "this" parameter of the
function - it is "this" object, the current one being worked on. So the member operator function
has only one argument, the right-hand-side operand. For example, the overload operator
function for + becomes:

3

class CoinMoney
{
...
! // declare the operator overload as a const member function
! CoinMoney operator+ (const CoinMoney& rhs) const;
...
};

CoinMoney CoinMoney::operator+ (const CoinMoney& rhs) const
{
! CoinMoney sum(
! ! (nickels + rhs.nickels),
! ! (dimes + rhs.dimes),
! ! (quarters + rhs.quarters)
! !);
! return sum;
}

The naked "nickels" is the member variable in the left-hand-side operand, "this" object. The
function has only one parameter, the right-hand-side operand. Because this function is a member
of the class, it has direct access to the member variables in "this" current object, and dot access to
the member variables in the other objects in the same class.

Since a member operator function is just an ordinary member function, the following statements
do the same thing:

! m3 = m1 + m2;

! m3 = m1.operator+ (m2);

The member version of an operator function is called to work on the left-hand operand, with the
right-hand operand being the function argument. Again, calling operator functions explicitly is
legal, but rare, and usually pointless.

Left-hand operand for member operator functions must be the class type.

Rule #3. An operator overload function written as a member function can only be applied if the
lhs is of the class type.

As with non-member operator overload functions, you don't have to have both arguments be the
same type. However, by definition, the left-hand operand for a member operator function must
be an object of the class that the function is a member of.

For example, suppose we wanted to be able to multiply CoinMoney objects by doubles as in the
above example. We can define operator* as a member function only if a CoinMoney object is
the left-hand operand, but not if a double is the left-hand operand.

4

That is, CoinMoney operator* (double x) can be defined as a member function of
CoinMoney, and so

m1.operator* (2.5);

is a legal call. But there is no way to write operator* as a member function of CoinMoney so that
you could write either one of

x = my_double_variable * m1;
x = my_double_variable.operator* (m1);

or if Thing is some other class type, the same applies:
x = my_thing * m1;

You can see why - if operator* is a member of CoinMoney, the lhs has to be a CoinMoney, not
a double or a Thing. What do you do in such cases? Simple: define this version of the operator
overload using a non-member function.

Then the member function handles

! m2 = m1 * my_double_variable;

and the non-member function handles

! m2 = my_double_variable * m1;

Which operators can and should be overloaded?
Almost all of the operators can be overloaded. But that doesn't mean you should overload them!
Good OOP practice is to overload operators for a class only when they make obvious sense. For
example, what would less-than mean for CoinMoney?

! m1 < m2

There are several reasonable ways that one collection of coins could be considered to be less than
another - total number, total value, number of highest value coin, even total weight! You would
define this operator only if there was only one reasonable interpretation in the problem domain
you are working in. Finally, there is no clue what some operators might mean, such as:

! (m1 % m2++) | m3

Note that you don't have to define both "ways" for an overloaded operator. For example, maybe
you want halve the value of the coins in a CoinMoney object:

! m1 / 2.0

5

This might make sense, but why would you want to divide by a CoinMoney object?

! 2.0 / m1 // What does this mean???

You only have to define the versions of the overloads that make sense and that you want to be
able to use.

However, common experience is that if it you find yourself writing the code to overload several
operators for a class, you should consider overloading all of them that are meaningful - the
additional overloads have a funny habit of being needed later!

Overloading the input/output operators

How do I overload the output operator to output objects of my own type?
Just like any other operator, but you have to get certain things right. Here's the basic pattern to
allow you to output CoinMoney objects like any other type, as in

cout << m1 << "Hello!" << my_int; // etc

ostream& operator<< (ostream& os, const CoinMoney& x)
{
! os << /* whatever you want to output about x */;
! return os;
}

An important benefit: Not only will this work to output to cout, but also to file output streams!
Here are the things you have to get right:

1. The operator<< function can't be a member of your own class, because the left-hand operand
is an ostream object - an existing class that you can't modify because it is in the Standard
Library.

2. The first parameter has to be a reference-type parameter because you want os to be the very
same stream object that the operator is applying to, and not a copy of it. Thanks to the reference,
inside the function, os is an alias, another name, for the original cout object.

3. If the object to be output is at all complex, the second parameter is usually written as
reference-to-const because this function normally treats the object to be output as read-only, so
there is no reason to make a copy of it.

4. The return type has to be a reference to an ostream object, so that each application of << will
produce the same ostream object that was originally on the left-hand side, so the next << will
take it as its left-hand operand. This is why you can cascade the output operator.

5. You have to be sure to return the ostream parameter object so that the cascading will work.

6

6. In the body of this function, apply the ordinary output operator to the supplied stream
parameter instead of cout. This allows the the operator to work with other streams. For example,

	

 os << x.nickels;

What if I have pointers instead of objects?
Often we have containers of pointers to objects in addition to objects; in such cases it can be very
convenient to define an additional overload of the output operator to take a pointer to an object.
This can be trivially implemented in terms of the usual overload of the object type. For example,
if we have pointers to CoinMoney objects, we can define:

ostream& operator<< (ostream& os, const CoinMoney* p)
{
! os << *p;
! return os;
}

and then if we have CoinMoney* m1_ptr; we can write:

cout << m1_ptr << endl;

Type safety from overloaded operators
The ostream class in the Standard Library includes an overload of operator<< for every built-in
type, as in:

ostream& operator<< (ostream& os, int x)
{/* output an integer */}
ostream& operator<< (ostream& os, double x)
{/* output a double */}
ostream& operator<< (ostream& os, char * x)
{/* output a C string */}

This is why output using the iostream library is type-safe - the compiler will make sure the right
output function is called for the type of object you are outputting.

How do I overload the input operator to input objects of my own type?
Overloading the input operator is very similar to overloading the output operator, but it is less
often done – usually, objects are created and have their values set using a constructor, rather than
being first created and then having their member variables set from file or keyboard input.

The key issues in writing an overloaded input operator are deciding whether you are going to
insist on a special format for the input, and how you are going to deal with erroneous input. For
present purposes, we will ignore these problems and assume for the sake of example that we will
read a CoinMoney object as three integers separated by whitespace. The basic pattern for
overloading the input operator is illustrated with this example:

7

istream& operator>> (istream& is, CoinMoney& m)
{
! /* whatever you want to input and store in m */
! is >> m.nickels >> m.dimes >> m.quarters;
! return is;
}

Such an operator definition would allow you to write code like:

CoinMoney m1;
cin >> m1;! // read member variable values
...

Here are the things you have to get right:

1. The second parameter, whose type is your own class, also has to be a reference-type
parameter, because you will be storing values in the caller's object. A call-by-value parameter
would just be a copy of the caller's object; you would store values in the copy, and then it would
get thrown away when the function returned. Oops! So this function has to modify the caller's
object.

2. The operator>> function can't be a member of your own class, because the left-hand operand
is an istream object.

3. If the operator>> function is going to set private member variables of your own class, it will
need to either have friend status (assumed here), or use public writer functions.

4. The first parameter, is, has to be a reference-type parameter because you want is to be the
very same stream object that the operator is applying to, and not a copy of it. Inside the function,
is is an alias, another name, for the original cin object.

5. The return type has to be a reference to an istream object, so that each application of >> will
produce the same istream object that was originally on the left-hand side, so the next >> will
take it as its left-hand operand. This is why you can cascade the input operator.

6. You have to be sure to return the istream parameter object so that the cascading in will work.

The Standard Library also includes an overloaded input operator for every built-in type, again
resulting in type-safety. The use of the reference parameter for the destination argument makes it
unnecessary to supply an address, as in C's scanf. In fact, getting neat and clean operator
overloading is a major reason why reference parameters were included in C++.

8

Overloading unary operators
For simplicity, this presentation started with binary operators - which have two arguments.
Overloading unary operators works the same way as binary operators, except there is only one
parameter to the operator function when it is a non-member, and no parameters when it is a
member. For example, suppose we wanted the negation operator (!) to return true if a
CoinMoney object was empty (all fields zero), and false otherwise. We just define a nonmember
function:

bool operator! (const CoinMoney& m)
{
! return (
! m.get_nickels() == 0 &&
! m.get_dimes() == 0 &&
! m.get_quarters() == 0
!);
}

or a member function:

bool operator! ()
{
! return (
! nickels == 0 &&
! dimes == 0 &&
! quarters == 0
!);
}

The istream and ostream classes typically have a similar definition of operator! to implement the
test of whether a stream is good by checking the stream object, as in:

if(!my_file) {/* oops! something is wrong! */}

Some useful special operator overloads

What about operator++? Which one am I overloading? And how do I do it?
The increment operator is commonly overloaded to mean "go to the next thing." But you can
write "++" either in front of (prefix) or after (postfix) a variable. Clearly, writing operator++
by itself is ambiguous. A kludge is used to distinguish the two:

• The prefix operator++, like all the other prefix operators, is just a unary operator (see above).
If we defined it to do something for CoinMoney (it's not obvious what it would be!), its signature
would be:

	

 CoinMoney& operator++ (CoinMoney&) if a non-member,
	

 CoinMoney& operator++ () if a member.

9

For the prefix version, the meaning is: increment the value before using it. Implementing this
operator is simple: just increment the relevant member variable(s) then return this object by
reference by simply returning *this.

• The postfix operator++ is the "odd" one. It has a dummy integer parameter which is never used,
but the different signature serves to distinguish its operator function from the prefix operator
function. Note that an unused parameter does not need a variable name - in fact this is the idiom
for saying that you have an unused parameter in a function, and the compiler will not complain
about an unused parameter designated this way. So the postfix increment operator's signature
would be

	

 CoinMoney operator++ (CoinMoney&, int) if a non-member,
	

 CoinMoney operator++ (int) if a member.

For the postfix version, the meaning is: increment the value after using it, where by "after using
it" we mean: make arrangements to set aside the previous value, then increment the member
variable(s), then return the previous value for the calling code to use. This means you have to
declare a local variable to hold the previous value so that you can return it after doing the
increment. You return this local variable by value (not by reference). You can see how postfix++
can be slower to execute than prefix++.

The same rules apply to the decrement operator, "--". Notice that these operator overloads
modify their objects, so they can't be const member functions or have const parameters.

Conversion operators - letting the compiler convert types for you
In the CoinMoney example, we might want to treat a CoinMoney object as a single numeric
value, say as a double, so we could compute the sales tax for a CoinMoney amount by:

tax = .06 * m1;

where we want to multiply .06 times the value of m1. If we tell the compiler how to turn a
CoinMoney object into a double, then the compiler can just generate code for the multiply easily.
We can do this by defining a conversion operator, which is a function whose name is operator
<type> and whose return type is always the <type> and so is not stated. We would write (say as
a member function):

operator double () const
{
! return get_value();
}

Conversion operators are notorious for surprising the programmer. For example, if we had both
this conversion operator and the operator* (double, CoinMoney) we now have an ambiguity
in how the compiler should analyze the above tax statement, producing an error message. So use
these very sparingly. Usually a specialized get_ function is a better choice because it makes the
intent more clear.

10

The istream and ostream classes typically contain a conversion operator to convert a istream
or ostream object into a bool, so that you can write:

if(my_input_file) {/* everything is good! */}

You aren't testing for whether the humongous istream object is true or nonzero - it's a big object
jammed full of data! Rather the function

operator bool (const istream& is) {whatever}

computes a true/false value based on the stream state bits, thereby allowing you to treat the
stream object as a single true/false value.

The compiler can use a constructor to convert types - the explicit keyword
Sometimes a constructor function plays the role of a conversion function. For example, consider
the following code sketch:

class Thing
{
blah blah
};

class Glob
{
! Glob(Thing t); // construct a Glob from a Thing
blah blah
};

void foo(Glob g); // function foo takes a Glob parameter

....
Thing my_thing;
...
foo(my_thing); // call foo with a Thing?
...

You can't call foo with a Thing as an argument; foo requires a Glob. But the compiler cleverly
notices that it can construct a Glob from a Thing, so it compiles the call as if the programmer had
written:

foo (Glob(my_thing));

This is called an implicit conversion. Often this is exactly what you want. Sometimes it is a
source of mysterious errors. The keyword explicit is used to prevent this use of a constructor,
meaning that you want the constructor used only for the purpose of explicitly constructing one
type from another. So if the Glob(Thing) constructor was defined as follows:

11

class Glob
{
! explicit Glob(Thing t); // construct a Glob from a Thing
blah blah
};

then the foo(my_thing) call would result in a compilation error.

Two unary operators used in "Smart Pointers".
Smart Pointers are template class objects that can be used syntactically as if they were built-in
pointers, but instead can do things like automatically manage memory. For them to behave
syntactically like pointers, the two key pointer operators must be overloaded. These are operator*
(unary) and operator-> (the "arrow" operator). Leaving out all the really interesting parts and just
focussing on the overloaded operators, here are the relevant guts of a Smart Pointer class
template. It stores a built-in pointer of the relevant type:

template typename<T>
class Smart_Pointer {
public:
! // don't worry for now about how the ptr member gets initialized

! // overloaded operators
! T& operator* () {return *ptr;}
! T* operator-> () const {return ptr;}
! // use the following with caution
! operator T*() const {return ptr;} ! // conversion to pointer type
private:
! T* ptr;
};

If you apply the dereference operator, operator*, to a Smart_Pointer object, the operator
function returns the dereferenced internal pointer, making the Smart_Pointer object behave just
like a built-in pointer in this regard. The arrow pointer, operator-> is more subtle. The
definition of this operator is that when overloaded, it needs to return something that another
operator-> can be validly applied to, which the compiler goes ahead and does. Thus this
function simply returns the internal pointer, and the compiler reapplies operator-> to it, in this
case, the built-in one for pointers. Again, the Smart_Pointer object behaves like a built-in pointer.
Finally, the conversion operator, operator T*, allows the compiler to convert a Smart_Pointer
to a built-in pointer, which can be convenient, but is also a source of errors, so many
Smart_Pointer classes do not supply it.

The function call operator - used in function object classes.
You can define an operator that allows an object of a class to be used syntactically just like a
function, but unlike a function, it can have member variables, constructors, and other member
functions, and other overloaded operators. These are very useful in the context of the Standard
Library containers and algorithms (a part of the Standard Library that for historical reasons is
often called the "Standard Template Library" or "STL").

12

The syntax for the function call operator is based on function declaration and function call
syntax. You declare a function by naming a return type, a function name, and then a list of
parameter type-name pairs enclosed in parentheses. You call a function by providing the name
followed by a list of arguments enclosed in parentheses. What bit of syntax stands out here? The
parenthesized list of parameters or arguments! So the name of the function call operator is
simply: operator()

The function call operator must always be a member function of the class, meaning that the
hidden "this" parameter is always the first parameter. Define a function call operator as a class
member by providing a return type, the operator name, then a parenthesized list of parameters
followed by the function definition:

return-type operator() (parameters) {function body}

Here is an example in which the function call operator takes two ints and returns a bool that is
true if the sum of the two ints is odd, false if it is even. The code using it first declares an object
of that type, and then applies it to input from the user.

// declare a function object class with function call operator
class My_FOC {
public:
! bool operator() (int i1, int i2) const
! {
! ! int sum = i1 + i2;
! ! return sum % 2;
! }
};

int main()
{
! My_FOC odd_tester;// create the function object
! int i1, i2;
! cin >> i1 >> i2;! // no error check - for brevity here
! // apply the function object just like a function
! bool result = odd_tester(i1, i2);

! if(result)
! ! cout << "sum is odd" << endl;
! else
! ! cout << "sum is even" << endl;

! return 0;
}

It is customary to declare the function call operator as a const member function if it does not
modify the state of its object - which is the case in this example.

13

In this simple example, the function object doesn't do any more than you can do with simple
function, or if you wanted to be more complicated, a function and a function pointer. However,
notice that the creation of the function object is syntactically much simpler than declaring and
initializing a function pointer - the class declaration and the function object declaration have all
the information that the compiler needs to set up the call to the function code. So even if you
could do it with a function pointer, the function object approach is generally easier to get right.
But because function objects can have other member variables and functions, they are potentially
much more powerful and useful than simple functions and function pointers.

14

