
AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

1

basic features of std. lib. algorithms

Standard Library function objects the make it easier to use the algorithms in a variety of situations

Your own custom function objects for specialized situations

Stroustrup chs. 32, 33 topics

Often, the easiest way to understand the specific algorithms and function objects is to see an example of how they are used.

See code examples on course web site

Lecture Outline - algorithms and function objects - highlights

e.g. *, =, ++, --, ->, etc

Use only the iterator interface to work

a begin and an end;

verbose, but general

often these are a container begin() and end(), but not always.

algorithms all work on a range specified by two iterators

a specialized topic in template programming ... not covered here.

template system used to define iterator "traits" so that compiler can choose different instantiations depending on the types of
the iterators.

restrictions based on what kind of iterator is suitable - e.g. some require random-access iterators (like subscripts or pointers),
others do not.

pointers are recognized as a random access iterator!

but algorithms will work on built-in arrays - you supply a pointer.

this way the algorithms will work for ANY suitable container

Std Lib algorithms are all defined as function templates that take iterators as arguments

// for_each
template<class InputIterator, class Function>
inline
Function
for_each(InputIterator first, InputIterator last, Function f)
{
 for (; first != last; ++first)
 f(*first);
 return f;
}

Why is "f" returned - come back to later, when discuss function objects

look at how the for_each algorithm is actually implemented (can differ in details)

Now what happens when the template is instantiated:

Good way to understand is to look at an implementation

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

2

void print_int(int i)
{cout << i << end;}

list<int> int_list = {1, 3, 5, 7, 9};

for_each(int_list.begin(), int_list.end(), print_int);
/* compiler instantiates the template with:
typename InputIterator is list<int>::iterator
typename Function is void(*)(int) (because it knows the type of print_int)
and creates the function: */
for_each(list<int>::iterator first, list<int>::iterator last, void(*f)(int))
{
 for (; first != last; ++first)
 f(*first);
 return f;
}

// Calling this function has the same effect as if WE had written:
 list<int>::iterator first = int_list.begin();
 list<int>::iterator last = int_list.end();
 for(; first != last; ++first)
 print_int(*first);

// find - note: operator== for the type must be defined
template <class InputIterator, class T>
inline
InputIterator
find(InputIterator first, InputIterator last, const T& value)
{
 while (first != last && !(*first == value))
 ++first;
 return first;
}

// find_if - note: the Predicate type returns a bool (or a type convertible to bool)
template <class InputIterator, class Predicate>
inline
InputIterator
find_if(InputIterator first, InputIterator last, Predicate pred)
{
 while (first != last && !pred(*first))
 ++first;
 return first;
}

// copy - note: dereferencing result iterator must always be well-defined
template <class InputIterator, class OutputIterator>
inline
OutputIterator
copy(InputIterator first, InputIterator last, OutputIterator result)
{
 for (; first != last; ++first, ++result)
 *result = *first;
 return result;
}

Some additional examples - most algorithms are pretty simple

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

3

sort , merge - several variations: partial_sort, partition

binary_search, lower_bound - do a binary search of a sorted sequence or tell you where a new item should be inserted

unique - removes duplicates

random_shuffle - randomly permute a sequence

next_permutation - start with a sorted sequence, generates each permutation, tells you when it is done

But some algorithms are a lot more more subtle, or relieve a lot of tedium

void print(int i)
{cout << i << endl;}

int main()
{
 vector<int> vi = {1,2,3,4,5,6,7,8,9,10};
 int ai[10] = {1,2,3,4,5,6,7,8,9,10};

 for_each(vi.begin(), vi.end(), print);

 for_each(ai, ai+10, print);
}

vector vs. built-in array - iterator interface works with anything that behaves like an iterator - e.g. a pointer

you can write a for loop that iterates through a container or built-in array in a super-compact form:

for(type variable : container) {code using variable}

The compiler will generate the code corresponding to a for loop that iterates through the whole container and assigns the
dereferenced iterator value to the variable on each iteration.

auto can be used here to automatically declare the type

auto& to declare a reference type variable

The type of the variable needs to match the type of the dereferenced iterator.

The container can also be a built-in array if the declaration of the array is in scope.

if the container is a built-in array, they return a pointer to the first cell of the array, and a pointer to one past the last cell of the
array.

if the container is a container class (like vector<>), they return the iterator provided by the .begin() and .end() member
functions.

This is implemented in terms of two templates: std::begin() and std::end().

The container has a .begin() and .end() member function that returns something that behaves like an iterator - it has increment
operators, dereference operators, assignment operator, == and != operators,

This works for any container (including your own, such as Ordered_iist<> in project 2), as long as:

Range for - new in C++11- similar to algorithms - uses iterator interface

In other words, an algorithm can not change the number of elements in the container!

Consequence of iterator interface: an algorithm cannot directly insert or erase elements from the
container!

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

4

These operations have to be done by a container member function!

Why there is no "insert" algorithm in the std lib algorithms

Logic is to copy/move items to the front to overwrite unwanted items, and return a new “end” to mark the end of the desired
contents; the rest of the container has the original items that were there (or their moved replacements)

remove algorithm is thus easy to misunderstand - it just copies or moves contents around, doesn’’t take anything out of the
container.

Example:
int main()
{
 vector<int> vi = {1,2,2,3,4,2,5,2,6};
 cout << "\nOriginal contents of container from begin to end:\n";
 copy(vi.begin(), vi.end(), ostream_iterator<int>(cout, " "));
 cout << endl;

 cout << "\nCall remove algorithm to \"remove\" all 2s\n";
 auto new_end = remove(vi.begin(), vi.end(), 2);

 cout << "\nNew contents of container from begin to new end:\n";
 copy(vi.begin(), new_end, ostream_iterator<int>(cout, " "));
 cout << endl;

 cout << "\nComplete contents of container from begin to end:\n";
 copy(vi.begin(), vi.end(), ostream_iterator<int>(cout, " "));
 cout << endl;
}

/* Output:

Original contents of container from begin to end:
1 2 2 3 4 2 5 2 6

Call remove algorithm to "remove" all 2s

New contents of container from begin to new end:
1 3 4 5 6

Complete contents of container from begin to end:
1 3 4 5 6 2 5 2 6
*/

unique algorithm is similar - duplicates overwritten with following items.

Some algorithms appear to remove items from sequence containers, but not really:

int main()
{
 vector<int> v1 = {1,2,3,4,5,6,7,8,9,10};
 vector<int> v2 = {1,2,3};

 // copy part of v1 into v2 - there is space for it
 copy(v1.begin(), v1.begin()+3, v2);

 // copy all of v1 into v2 - oops!
 copy(v1.begin(), v1.end(), v2);
}

copy algorithm is often a problem about this - has to be room at the destination

can create a vector of a certain size, then iterator can be used to fill those already-created places.

Filling a container can't be done just with the regular iterators unless space has already been created at every possible
iterator position

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

5

But some cute template tricks available using the STL iterator adapters

wrap an iterator interface around the desired operations

So can use them in the iterator slots of the STL algorithms

 e.g. insert iterators - wrap an iterator interface around a function like push_back

int main()
{
 vector<int> vi;
 int ai[10] = {1,2,3,4,5,6,7,8,9,10};

 // copy ai into vi, making space as needed
 copy(ai, ai + 10, back_inserter(vi));
}

in tne function object class back_insert_iterator (instantiated by back_inserter template
function):

template <class Container>
inline
back_insert_iterator<Container>&
back_insert_iterator<Container>::operator=(typename Container::const_reference value)
{
 container->push_back(value);
 return *this;
}

back_inserter defines operator= so that the expression in copy: *result = *first gets turned into the call: vi.push_back(*first);

Call the container member functions to put objects in the container

to fill a sequence container with copy, use a front_inserter or back_inserter

to fill a set container, use inserter; supply an iterator that "hints" where the item might go to speed things up, but it always
goes into the right place.

turns iterator dereference into an input operator call, assignment into an output operator call

idea is to allow a stream to be used as a source or destination in an algorithm, by giving the stream an iterator interface. Can be
real handy - turns an i/O loop into a one-liner

vector<int> stuff;
/* put a bunch of ints into stuff with e.g. push_back */

// create an output stream iterator - the stream followed by a delimiter character
ostream_iterator<int> outiter(cout, ":")
// write the integers with a ':' after each one
copy(stuff.begin(), stuff.end(), outiter);
cout << endl;

// write the integers one per line, declare iterator in place
copy(stuff.begin(), stuff.end(), ostream_iterator<int>(cout, "\n"));

example of output stream iterator

example of input stream iterator - note how the "end" is done.

stream iterators

Insert iterators

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

6

ifstream input_file;
// open the input file

vector<int> stuff;
// read a bunch of ints until end of file, fill the vector
istream_iterator<int> initer(input_file);
// default ctor'd stream input iterator works as end of file "end" value.
istream_iterator<int> eofiter;

copy(initer, eofiter, back_inserter(stuff));

// as a one-liner
copy(istream_iterator<int>(input_file), istream_iterator<int>(), back_inserter(stuff));

The point is that they look like an iterator in a Std. Lib. algorithm. No value otherwise - just obfuscates the code.

DO NOT USE THESE STANDALONE! ONLY USE IN ALGORITHMS!

// for_each
template<class InputIterator, class Function>
inline
Function
for_each(InputIterator first, InputIterator last, Function f)
{
 for (; first != last; ++first)
 f(*first);
 return f;
}

See how f is returned? Not very useful if f is a function, but if it is a function object with state, then you get a copy back from
for_each and can access its state!

Can pass a function object over the contents of a container and get the results back in one line of code!

My_FO_type results = for_each(container.begin(), container.end(), My_FO_type());

Note that move semantics means can be very little overhead in copying out even complex objects;!

This is the idiom: Use it!

Function objects with state: for_each gives it back to you!

class My_function_object_class {
public:
 return-type operator() (parameter-list)
 { do whatever any normal function would do}
};

My_function_object_class fo; // an instance of the class

x = fo(args); // use like a function!

Definition: an object whose class overloads the function call operator: operator(), and so can be used like a function.

Especially: a constructor with parameters to provide values for the function call operator to use

Otherwise, just a class - can have other member variables and functions.

A simple one often declared with struct to make all members public

Function objects

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

7

if object appears as a function call, compiler looks at the class's declaration for operator() to get the prototype information

void foo(char * s1, char * s2, int (*fp) (const char *, const char *) {
 int result = fp(s1, s2);

void foo(char *s1, char * s2, Function_object_type fo) {
 int result = fo(s1, s2);

it will work if the result compiles!

so unlike function pointers, you don't have to worry about declaring them, or casting, to get function information into another
function!

Can use a function object like a function pointer, but easier: Just name the class! The compiler can then get all the
information necessary to compile the call.

for_each(x.begin(), x.end(), func_ptr);

for_each(x.begin(), x.end(), func_object); or

for_each(x.begin(), x.end(), func_object_class_name()); // create an unnamed object of the
class

STL algorithms is work equally well with function pointers and function objects

defaults to less<T>, which is a Std. Lib. class template for a function object class that defines an operator() that applies T's
operator< between two T objects

set<int> si; // set of ints in default operator < order

struct RevInt { bool operator() (int i1, int i2) const {return i2 < i1;} // reverse order of
integers

set<int, Revint> sri; // set of ints in reverse order

map<int, string, Revint> mri; // map of ints to strings, but with the ints in reverse order

Examples:

If you want to use a function pointer, you have to specify the function pointer type in this slot, then provide the function pointer
itself as a constructor parameter.

bool rev_comp (int i1, int i2) const {return i2 < i1;} // reverse order of integers

set<int, bool (*) (int, int)> sri (rev_comp); // set of ints in reverse order

Example:

won't accept a function pointer in this slot in the declaration.

Preferred: use the function object class in the declaration. Simplest syntax.

Only reason to use a function pointer: can specify the actual ordering function at runtime (unusual).

Associative containers normally take a function object class name as an optional template parameter in the declaration to
specify the ordering relation

a lot more sophisticated than function pointers

REALLY BIG advantage over function pointers is that the object can have member variables and other member functions!

Another advantage: The function code is often inlined, meaning that code using a function object will often be faster than
code doing an ordinary function call, or a call using a function pointer.

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

8

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;
// a function object class that calculates a mean, accumulating every supplied value

class Calc_Mean {
public:
 Calc_Mean() : sum(0.), n(0) {}
 void operator() (double x) // accumulate the supplied value
 {
 n++;
 sum += x;
 }
 double get_mean() const
 {return sum / double(n);}
 int get_n() const
 {return n;}
private:
 double sum;
 int n;
};

// prototypes
void test1();
void test2();

int main()
{
 test1();
 test2();
}

void test1()
{
 cout << "Enter a bunch of values, or a non-number when done:" << endl;

 double x;
 Calc_Mean cm;

 while (cin >> x)
 cm(x); // use like an ordinary function

 cout << endl;
 cout << "mean of " << cm.get_n() << " values is " << cm.get_mean() << endl;
}

void test2()
{
 cout << "Enter a bunch of values, or a non-number when done:" << endl;
 vector<double> data;
 double x;
 while (cin >> x)
 data.push_back(x);

 // use with an algorithm
 Calc_Mean cm = for_each(data.begin(), data.end(), Calc_Mean());

 cout << endl;
 cout << "mean of " << cm.get_n() << " values is " << cm.get_mean() << endl;
}

Example 1 a function object with state

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

9

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// a function object class that calculates a mean, accumulating every supplied value,
// but it takes an optional baseline value when initialized that is subtracted
// from every value
class Calc_Mean {
public:
 Calc_Mean(double in_baseline = 0.) : sum(0.), n(0), baseline(in_baseline) {}
 void operator() (double x) // accumulate the supplied value
 {
 n++;
 x = x - baseline;
 sum += x;
 }
 double get_mean() const
 {return sum / double(n);}
 int get_n() const
 {return n;}
private:
 double sum;
 int n;
 double baseline;
};

// prototypes
void test1();
void test2();

int main()
{
 // test1();
 test2();
}

void test1()
{
 double b;
 cout << "Enter baseline value:";
 cin >> b; // no error check
 cout << "Enter a bunch of values, ^D (EOF) when done:" << endl;

 Calc_Mean cm(b);

 double x;
 while (cin >> x)
 cm(x); // use like an ordinary function
 cout << endl;

 cout << "mean of " << cm.get_n() << " values is " << cm.get_mean() << endl;
}

void test2()
{
 double b;
 cout << "Enter baseline value:";
 cin >> b; // no error check

 cout << "Enter a bunch of values, ^D (EOF) when done:" << endl;

Example 2 a function object with state including an initial value

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

10

 cout << "Enter a bunch of values, ^D (EOF) when done:" << endl;
 vector<double> data;
 double x;
 while (cin >> x)
 data.push_back(x);

 // use with an algorithm
 Calc_Mean cm = for_each(data.begin(), data.end(), Calc_Mean(b));
 cout << endl;
 cout << "mean of " << cm.get_n() << " values is " << cm.get_mean() << endl;
}

/* Output
Enter baseline value: 10
Enter a bunch of values, ^D (EOF) when done:
10 20 30

mean of 3 values is 10
*/

// demonstration of a basic template magic trick:
// using a function template to create a function object from a template,
// with the function arguments specifying which template to instantiate

#include <iostream>
#include <string>
#include <vector>

using namespace std;

// a function object class that accumulates and prints the "sum" of its argments
// the template parameter is the type of the input.
template<typename T>
class Summer {
public:
 Summer(const T& initial_value) : sum(initial_value) {}
 void operator() (const T& x)
 {
 sum += x;
 cout << sum << endl;
 }
private:
 T sum;
};

// a function template that has the compiler deduce how to instantiate the
// function object class
template <typename X>
Summer<X> make_Summer(const X& x)
{
 return Summer<X>(x);
}

int main ()
{
 for(int i = 0; i < 4; i++)
 vi.push_back(i+1);
 vector<string> vs;
 vs.push_back("Now ");
 vs.push_back("is ");
 vs.push_back("the ");

Magic Trick #1: Use a function template to instantiate the function object template using the function parameters:

Function objects can be templated

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

11

 vs.push_back("the ");
 vs.push_back("time.");
 string start("OK! ");

 // instantiate the function object class directly
 for_each(vi.begin(), vi.end(), Summer<int>(10));
 for_each(vs.begin(), vs.end(), Summer<string>(start));

 // instantiate the function object class using the supplied parameter type
 for_each(vi.begin(), vi.end(), make_Summer(10));
 for_each(vs.begin(), vs.end(), make_Summer(start));
}

/* output:
11
13
16
20
OK! Now
OK! Now is
OK! Now is the
OK! Now is the time.
11
13
16
20
OK! Now
OK! Now is
OK! Now is the
OK! Now is the time.
*/

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

12

// A straightforward way to do it with a class template

template<typename T>
class Delete {
void operator() (const T* ptr) const
 {
 delete ptr;
 }
};

for_each(ptrs.begin(), ptrs.end(), Delete<Thing>());

instantiates into
class Delete {
void operator() (const Thing * ptr) const
 {
 delete ptr;
 }
};

// expands into: (pseudocode)

void Delete<Thing>::operator() (const Thing * ptr) {delete ptr;} // a_Delete_object

for_each(list<Thing *>::iterator first, list<Thing *>::iterator last, a_Delete_object)
{
 for (; first != last; ++first)
 a_Delete_object(*first);
 return a_Delete_object;
}

// the loop expands/inlines then into:

 for (; first != last; ++first)
 delete *first;

// but Delete<Thing>(); sure is clumsy!
// Use a member function template

/* See Scott Meyers, Effective STL, Item 7 for a discussion
of this general purpose Function Object class - will work for deleting any pointer */

struct Delete {
template<typename T>
void operator() (const T* ptr) const
 {
 delete ptr;
 }
};
// The class has a member function template - the compiler can deduce the type T from
// the call.

// note that you can't call delete as a function! It is an operator!
// list<Thing *> ptrs is a container of pointers to objects

for_each(ptrs.begin(), ptrs.end(), Delete()); // is that easy, or what?

// expands first into: (pseudocode)

template <typename T> void Delete::operator() (const T * ptr) {delete ptr;} //
a_Delete_object

A simple example of the concept - a handy function object class for deleting pointers in a container - note that you can't call
"delete" as a function - it is an operator in the language, not a function!

Magic Trick #2: Often handy to use a template member function in a function object class!

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

13

template <typename T> void Delete::operator() (const T * ptr) {delete ptr;} //
a_Delete_object

// possibly other overloaded function-call operators!

for_each(list<Thing *>::iterator first, list<Thing *>::iterator last, a_Delete_object)
{
 for (; first != last; ++first)
 a_Delete_object(*first);
 return a_Delete_object;
}

// the loop expands/inlines then into:

 for (; first != last; ++first)
 delete *first;

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

14

Algorithm doesn't care whether Function parameter is a function pointer or function object

Calling an ordinary function that has two arguments - e.g. first is the dereferenced iterator, the second is something else.

The algorithm calls your function with the dereferenced iterator as the only argument - what if you need more arguments?
What if the first argument is not the dereferenced iterator?

for_each_with_1_additional_arg(my_list.begin(), my_list.end(), my_function, 42)

f(*first, function_second_arg)

Could have done:

Instead, keep the single "slot" for the function, but use function objects to get that second argument in there.

Create a function object that saves the second argument value in a member variable, and a pointer to the function, and whose
operator() accepts the dereferenced iterator and calls the function with that value for tirst argument and the stored value for the
second argument.

template class<F, P, DI>
class Binder {
public:
 Binder(F f_ptr, P p_value) :
 saved_f_ptr(f_ptr), saved_p_value(p_value)
 {}
 void operator() (DI x)
 {
 saved_f_ptr(x, saved_p_value);
 }
private:
 F saved_f_ptr
 P saved_p_value;
};

semipseudocode of a simple two-argument binder that saves a second argument and accepts the first

No place in the for_each or other algorithms to supply the second parameter:

Using algorithms and adapters with ordinary functions

Generates function objects containing some parameters in the operator() definition, and storing some “bound” values in
member variables, along with a pointer to the function. Works for a lot of parameters - amazing

See handouts on web site for gruesome details about C++98 adapters and binders.

These are deprecated in C++11 because std::bind is much more general and powerful - see the handout.

std::bind is a super-general function object generator

declaration syntax: function<return_type (parameter types)>

double func(int i, double d) {return i+d;} // func has type function return double, taking an
int and double.

struct FOC {double operator() (int i, double d) {return i+d;}}; FOC fo; // fo has type FOC.

E.g. a function pointer void (*fp) (int, double) is not the same type as [] (int, double) { /*
code */} or some funcion object.

Notice that functions, function pointers, function objects, lambdas, bind function objects, etc all have their own types
depending not just on return and parameter types, but also what kind of thing they are:

std::function<> is a template that creates function objects that wrap a callable object of any type, as long
as it can be called with the specified return type and parameters.

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

15

[](int i, double d){return i+d;} // has unspecified (unknown to programmer) type

bind(f, _1, _2) // has unspecified (unknown to programmer) type

double result = something (intv, doublev);

but all of these can be called the same way, even though they are different types!

but because they have diferent types, can not store these different callable things in an STL container - containers are
homogenous - all the items must have the same type.

std::function<double (int double)) f;

f = func; // store as a function pointer

f = fo; // store the function object of type FOC

f = [](int i, double d){return i+d;}; // store the lambda expression function object

f= bind(func, _1, _2); // store the bind function object

f always has type function<double (int double)> regardless of what you store in it

std::function<> allows you to store any kind of callable type and then call it through an object of a single type:

e.g. list<function<double (int, double)>> callables;

callables.push_back(func);
callables.push_back(fo);
callables.push_back([](int i, double d){return i+d;})
callables.push_back(bind(func, _1, _2));

for(auto callable : callables)
 double result = callable(intvar, doublevar);

This means you can have an STL container of function<double (int, double)> objects - all the same type, but each of which
calls something that has a different type.

creates a base class to provide the common interface, and a derived class to wrap each type of callable object - virtual
functions used to map from the base interface class to the specific callable object class

may dynamically allocate a derived class object to hold the callable object you store

function<> does some pretty heavy-weight stuff using inheritance and virtual functions:

For example, can often use a function template and give it bind function objects to allow calling functions that differ in number
of parameters.

Do not use function<> if something simpler, more efficient will work instead.

This type-hiding ability is the key feature of std::function<> . Use it only when that is what you need.

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

16

You have a container of objects or pointers to objects.

You use an algorithm to iterate over the container.

The dereferenced iterator is an object or pointer to the object

You want to call a member function of the object.

The situation:

The call can't be f(the object) or f(the pointer), but has to be theobject.f() or thepointer-
>f();

A member function adapter does this - different flavors depending on whether the dereferenced iterator is an object reference or an
object pointer.

But like ordinary functions, the first step is a function pointer, but it is a pointer to member function, which is different from an
ordinary function pointer.

See the handout for a summary of what is presented here.

The situation is different beause the first function parameter is the (hidden) "this" pointer.

Pointers to member functions are not like regular pointers to functions, because member functions have a hidden "this" parameter
as the first parameter, and so can only be called if you supply an object to play the role of "this", and use some special syntax to
tell the compiler to set up the call using the hidden “this” parameter.

You declare a pointer-to-member-function just like a pointer-to-function, except that the syntax is a tad different: it looks like
the verbose form of ordinary function pointers, and you qualify the pointer name with the class name, using some syntax that
looks like a combination of scope qualifier and pointer.

return_type (*pointer_name) (parameter types)

Declaring a pointer to an ordinary function:

The odd-looking "::*" is correct.

return_type (class_name::*pointer_name) (parameter types)

Declaring a pointer to a member function:

Declaring pointers-to-member-functions

You set a pointer-to-member-function variable by assigning it to the address of the class-qualified function name, similar to an
ordinary function pointer.

pointer_name = function_name; // simple form

pointer_name = &function_name; // verbose form

Setting an ordinary function pointer to point to a function:

pointer_name = &class_name::member_function_name;

Setting a member function pointer to point to a member function:

Setting a pointer-to-member-function

Using a pointer-to-member-function to call a function

Pointer-to-member-functions

Algorithms and member functions

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

17

You call a function with a pointer-to-member-function with special syntax in which you supply the object or a pointer to the
object that you want the member function to work on. The syntax looks like you are preceding the dereferenced pointer with an
object member selection (the “dot “operator) or object pointer selection (the “arrow” operator).

pointer_name(arguments); // short form, allowed

or

(*pointer_name)(arguments); // the more verbose form

Calling an ordinary function using a pointer to ordinary function:

(object.*pointer_name)(arguments);

or calling with a pointer to the object

(object_ptr->*pointer_name)(arguments);

Again, the odd looking things are correct: ".*" and "->*". The parentheses around the whole pointer-to-member construction
are required because of the operator precedences.

Calling the member function on an object using a pointer-to-member-function

class A {
 void f();
 void g();
};

void A::f()
{
 // declare pmf as pointer to A member function,
 // taking no args and returning void
 void (A::*pmf)();
 // set pmf to point to A's member function g
 pmf = &A::g;

 // call the member function pointed to by pmf points on this object
 (this->*pmf)(); // calls A::g on this object
}

// using a typedef to preserve sanity - same as above with typedef

// A_pmf_t is a pointer-to-member-function of class A
typedef void (A::*A_pmf_t)();

void A::f()
{
 A_pmf_t p = &A::g;

 (this->*p)(); // calls A::g on this object
}

This seems confusing but actually is just an application of the pointer to member syntax with “this” object playing the role of the
hidden this parameter. If you want a member function f of Class A to call another member function g of class A through a
pointer to member function, it would look like this:

Calling a member function from another member function using pointer to member

The function call in the for_each function won't work - you can't call a member function that way.

Need a function object that stores the pointer-to-member-function, and then the function call operator parameter is used as
"this" object in a call using the pointer to member function.

Using algorithms to call member functions

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

18

template class<F, P, DI>
class Binder {
public:
 Binder(F mf_ptr, P p_value) :
 saved_mf_ptr(mf_ptr), saved_p_value(p_value)
 {}
 void operator() (DI x) // use x as the object pointer
 {
 x->*saved_mf_ptr(saved_p_value);
 }
private:
 F saved_mf_ptr
 P saved_p_value;
};

semipseudocode of a simple member function binder that accepts the dereferenced iterator as a object pointer used for the
member function call, with the saved value as the single argement.

C++11 has std::mem_fn adapter for this (see the std::bind handout) if there are no ordinary parameters to the member
function.

std::bind will handle all cases - the first parameter is the "this" object, the remainder are the other parameters. See the bind
handout.

The dereferenced iterator is a pair; often you want to work with the .second of the pair, but the function gets the pair anyway.

note: smap<string, Thing>::value_type is a typedef/type alias for type of the items in the
container, namely std::pair<const string, Thing>. Use this Standard alias to save typing
misery!

Use a type alias for the map type to save more typing:
using Things_t = std::map<std::string, Thing>;

std::map<std::string, Thing> and Thing::print() is what you want to call.

void Thing_print_helper(const Things_t::value_type& thePair)
{the_pair.second.print();}
for_each (my_map.begin(), my_map.end(), Thing_print_helper);

write a helper function

struct Thing_printer {
 void operator() (const Things_t::value_type& thePair)
 {thePair.second.print();}
 }
for_each (my_map.begin(), my_map.end(), Thing_printer());

write a function object class helper

for_each (my_map.begin(), my_map.end(),
 [](const Things_t::value_type& thePair)
 {thePair.second.print();}
);

use a lambda expression

Ways to solve it

See handout and examples on course website.

std::bind will do it, but it's ugly!

Using algorithms with map container is a pain

AlgorithmsFunctionObjects Lecture Outline 10/11/16, 9:46:27 PM

19

// call a member function that takes the second of the pair as an argument:
obj_map<int, Thing>;
...

for_each(obj_map.begin(), obj_map.end(),
 bind(&Thing::print,
 bind(&map<int, Thing>::value_type::second, _1)));

// call a non-member function that prints the second of each pair
for_each(obj_map.begin(), obj_map.end(),
 bind(&print_Thing,
 bind(&map<int, Thing>::value_type::second, _1)));

// call a member function that takes a second argument
ptr_map<int, Thing *>
for_each(ptr_map.begin(), ptr_map.end(),
 bind(&Thing::set_value,
 bind(&map<int, Thing *>::value_type::second, _1),
 new_value));

// Note how basic syntax is the same for both Thing and Thing* containers and member and non-
member functions!

