
Basic Class Design 10/13/17, 11:36:33 AM

1

Goal of OOP: Reduce complexity of software development by keeping details, and
especially changes to details, from spreading throughout the entire program.

Originally, "structured programming" means using the information-hiding abilities of
subroutines (functions) to help organize the code; a subroutine can be modified internally
without requiring the calling code to change.

Then, "modular programming" means breaking up the program into separate modules
that can be developed and modified separately, and perhaps even re-used - like a library.
A library is just a generally useful module.

Actually, the same goal as software design concepts throughout:

Client Code - the code that uses the classes under discussion.

Change in one forces rewrite (horrible!), or recompile (annoying), of code in the other.

Coupling - code in one module depends on code in another module

Definitions

Basic Class Design

A class provides some services, takes on some responsibilities, that are defined by the
public interface. How it works inside shouldn’t matter.

Client should be able to use just the public interface, and not care about the
implementation.

Abstraction - responsibilities (interface) is different from implementation. Distinguish
between interface and implementation.

Developer of a class can guarantee behavior of a class only if the internals are protected
from outside interference. Specifying private access for the internals puts a wall around
the internals, making a clear distinction between which code the class developer is
responsible for, and which code the client is not supposed to know or care about.

Encapsulation - guarantee responsibilities by protecting implementation from interference

Don't need to know about the implementation;

Can't accidentally interfere with it or depend on it.

Both are ways of decoupling the client code from the class implementation:

Objects interact with each other, contain each other, refer to each other.

Here, only concerned with ”Concrete" classes - no inheritance or polymorphism involved.

A class is a software component that consists of some data and some procedures, coupled
together, with an interface that abstracts and encapsulates the data and procedures,
insulating the client from the details of implementation.

Two of the Four key concepts of OOP

Basic Class Design 10/13/17, 11:36:33 AM

2

Main program causes initial objects to be created, delegates work to objects as
needed.

Managing Media: Records, Collections

Managing meeting schedule: Rooms, Meetings, Persons

Banking: Customers, accounts, banks

Objects that are in the problem domain.

E.g. String, Ordered_list, std::map<>, etc

Choose these to best get the work done.

But you have to understand what the actual work is first!

Objects that support the domain objects (useful to implement them).

Two kinds of classes:

Basic Class Design 10/13/17, 11:36:33 AM

3

Start with thinking about the objects, then group into classes.

Which classes to they naturally belong to?

What kinds of objects are in the domain?

Member variables - the data

Member functions - operations on the data

These are about the domain, not the implementation!

What characterizes each domain object?

Part-of relation versus "using" or "interacts with"

One-way: An object points to another object, but which does not point back

Two-way: An object points to a second object which points back to the first

harder to work with, so do not use unless they represent the domain exactly

have to ensure cross-pointers are valid, and no dangling pointers left.

Classes with two-way associations are:

Do objects “know” about each other? one-way, or two-way?

Inclusion versus association -

Do they exist independently of each other?

Relative lifetimes -

How are different kinds of objects related to each other?

Designing Domain classes

Main code should delegate the work down into the classes that have the information.

Make classes responsible for working with their own data.

Most general rule: who has the data? That component is probably the best one to do
the work. Classes generally should be responsible for their data, and the work done
with the data.

If client code is doing the work, something is probably wrong - rethink it!

Deciding which class or module should be responsible for the work.

If class responsibilities can't be made clear, then OOP might not be a good solution

Design a class by choosing a clear set of responsibilities for it.

Guidelines for Designing Individual Classes

Basic Class Design 10/13/17, 11:36:33 AM

4

Making this distinction is critical to understanding the difference between traditional
procedural programming and OOP.

Lots of problems work better in procedural programming than in OOP, so there is no
need to force everything into the OO paradigm.

Anthropomorphize it - e.g. in P2, imagine a person playing the role of each class
object. What is her job? How does she interacted with other objects?

But often, you just need to think about it more carefully.

Sometimes you need simple “holders of data” - no associated functions or operations
- if so, then it should not be a class.

Or, you’ve mis-assigned responsibilities - maybe this class should be doing the work,
but some other component is doing it instead.

If it is a simple bundle of data, define it as a simple struct.

If there are functions that operate on the data, maybe they should be member
functions, and maybe these objects really are responsible for something.

Is it really a "Plain Old Data" object, like C struct, or did you overlook something?

Beware of classes that do nothing more than hold data, like a C struct type.

Almost always, a class represents a kind of object that we will have many of, so a
class that is supposed to correspond to only one object is suspicious.

Used to clearly delimit responsibilities, separate concerns.

There are important design patterns in which having only one object is the concept.

But can be over-used - unless you are using one of the design pattern concepts, don’t
use a one-instance class - probably a bad idea.

E.g. maybe there is only one of these objects because it is trying to do a whole bunch
of things - like replace the main function. Maybe it is a “god” class - see below.

Beware of classes that are only supposed to get instantiated once during the program
execution.

Basic Class Design 10/13/17, 11:36:33 AM

5

encapsulation - making member data private- is the basic step that makes this
guarantee possible - prevents other code from tampering with the data.

Concept: Programmer of a class has to be able to guarantee that class will fulfill its
responsibilities - do what he/she says it will do.

No public member variables.

Beware of get_ functions that return a non-const pointer or reference to a private
member variable - breaks the encapsulation!

Be careful if it is necessary to return a non-const reference or pointer to an item in a
container member variable - even if client can't alter the container, might be able to alter
the item in a way that violates design intent - or disorder the container!

Make all member variables private in each class

Amounts to making the member variables public - why is this needed?

if not const iterators, allows client code to modify private data

regardless, client has to know an implementation detail - coupled to the choice of
container for the member variable - why is this something the client needs to know?

Similar problem: providing getters that return iterators pointing into a container member
variable

why does somebody else have to put data in and pull data out of the object?

why aren’t the class’s member functions doing the work?

If you have to do this, something is probaby wrong with your design -

Resist the temptation to provide getters/setters for everything.

Functions that are only helpers for the implementation should be private.

should be private in the class if only the implementation needs them

public in the class if the class client needs them

at top level of header file ony if needed independently of any class - if so, why are
they in the same header as the class declaration?

constants and enum types:

Put in the public interface only the functions and declarations that clients can meaningfully
use.

Friend classes and functions are actually part of the public interface of the class, and belong
with the class.

Some specific rules for class design - if breaking these, there might be something
wrong with the design.

Basic Class Design 10/13/17, 11:36:33 AM

6

Friend class or function must be part of the same module or component.

Most clear if declaration and implementation is in the same .h and .cpp files.

A class developer should declare a class or functions to be a friends only if he/she/they
are also responsible for, and have control over, that class or function.

If class A uses class X for its internal work, and the client shouldn't have to see class X,
then consider declaring class X as a private member of class A rather than have X be
visible to the client with a friendship relation to A.

Don’t use mutable to fake a const member function in this course.

Make member functions const if they do not modify the logical state of the object.\

It is error-prone and bad design if the client has to "stuff" initial data into the object.

Only supply these where necessary - if the member variable is a class type, the
compiler will call its default constructor for you.

Take care that all member variables get a good initial value.

e.g. a set_pointer() function to store the address of some other object in a pointer
member variable.

Sometimes required for designs in which objects point to each other

Use initialize to nullptr in constructor, and then assertions to make sure pointer has
been set to a real value before any code tries to use it.

Take care if the class design requires post-creation intialization - e.g. an initialization
function called after construction

Make a class fully responsible for initializing itself with constructor functions.

Especially when revisions are made!

E,g, did you remember to fix the copy constructor when adding another member
variable?

Unnecessary code is simply places for bugs to hide!

Let the compiler do the work as much as possible - it will automatically respond to
changes in the code.

Do not write constructors, assignment operators, or destructors when the compiler-supplied
ones will work correctly.

Do not write code that the compiler will supply.

Unnecessary code is an unnecessary source of bugs.

Explicitly decide whether the compiler-supplied “special member functions” (the destructor
and the copy/move functions) are correct, and let the compiler supply them if so.

Basic Class Design 10/13/17, 11:36:33 AM

7

“Declare” here means to either declare and define your own version of the functions, or
declare what you want the compiler to do with =default or =delete.

If you have to write even one of these functions for some reason, explicitly declare the
status of the rest of them to avoid confusion or possible undesired behavior.

If you have to write your own destructor function to manage a resource (like memory),
you almost certainly have to either write your own copy/move functions or tell the
compiler not to supply them (with =delete).

In writing a copy constructor, remember to copy over all member variables - a common
error.

Try to follow the “Rule of five or zero” - either explicitly declare all five of the special member
functions, or declare none of them and let the compiler supply them automatically.

For example, to enforce the concept that objects in the domain are unique.

In C++11, disable compiler-supplied copy and move functions with the =delete syntax.

If copy or move operations are not meaningful for a class, explicitly prevent the compiler
from supplying them.

Basic Class Design 10/13/17, 11:36:33 AM

8

“Yes, it is more complex, but if I do it this way, then in the future, it will be easier to
do yada-yada.” - but will this be needed?

Problem: the code is harder to work with NOW, and you don’t actually know
whether you will need to do the future thing.

“YAGNI” principle - “you aren’t going to need it”.

Often a result of anticipating future needs inappropriately.

Wisdom of the gurus: If the code is a simple solution that is clear and well-designed, it
will be easy to change it in the future if necessary.

So design and code a current solution well, instead of making a mess trying to
anticipate an unknown future.

Overengineering - a more complex solution than necessary.

Another reason: Just getting complex without thinking through what the responsibilities of
the classes really are - misdelegating, misassigning - the result is simply unnecesssarily
complex.

General Don’t: Don’t overengineer -

If a class does everything, it is probably a bad design. Either you have combined things
that should be delegated to derived classes or peer classes, or you have misunderstood
the domain.

Contrast with a god-like main module that knows how Persons and Meetings and
Rooms / Records and Collections are structured, and what the details of what data file
looks like - it reads the data, validates it, creates objects, and stuffs the data into them
from the outside while they just sit there passively. If a member variable is added to
Person/Record, both the Person/Record declaration and the main module code would
need to be changed.

Example: In project 2’s restore function, the work of reading and interpreting the data file,
and creating the right objects or relationships, was delegated to the Person/Meeting/
Room or Record/Collection classes, which do all the work, and just signal a problem if
they can’t. Only thing the main module knew is that Person/Record data comes first, then
Room/Collection data. If a member variable was added to Person/Record, only the
Person/Record class class would need to be changed.

General Don’t: Don’t create heavy-weight, bloated, or "god" classes - prefer clear limited
responsibilities.

A couple of General DO NOT rules

Basic Class Design 10/13/17, 11:36:33 AM

9

Some Top-level Design suggestions

Don’t get bogged down in implementation details like “I can do with this with a map
container and a deque!”

Class X is responsible for …., class Y for ….

When an X object needs … it calls the public member function … of the appropriate Y
object with … as parameters, which returns …

Think only about what the class responsibilities are and what they do in their public
interfaces:

Try writing pseudo code just for the interactions between class objects through their public
interfaces.

Keep this up until you can’t stand it any more, only then make implementation choices and
write the code.

Do the class design work at the level of the public interfaces, not the private
implementations.

“Reasonable” here means “not obviously stupid.”

Don’t just jump on the first design you think of and hack it out.

All designs are imperfect - they all involve trade-offs. They are good in some ways, bad in
others.

A good design is good in the most important ways, and bad in the less important ways.

But there might be more than one good design - just different in the specific tradeoffs.

You can’t make an intelligent choice if you have only thought of one design - there could be
another, better, simpler one.

Continue design thinking until you have thought of at least two reasonable ways to
solve each design problem.

Generally, good designs code easily, but bad designs tend to make such a mess of the code
that it becomes harder and harder to complete it and debug it. Stop before it gets worse!

If this happens, do not panic! Go back and rethink the design using what you now know
about the problem. This should be relatively easy because the original design thinking is
still helpful. But perhaps you made some assumptions or overlooked some issue; be
prepared to revise the design, or consider a new one.

It is impossible to anticipate every issue at the design stage - sometimes you do not
discover important facts about the problem until you try to implement the design.

Fixing a bad design is usually a better strategy than try to push through the messy
implementation of a bad design.

If the implementation turns out to be difficult or confusing to code, the reason might be
a defective design - step back and rethink the design!

Basic Class Design 10/13/17, 11:36:33 AM

10

Even if none of the previous code can be used, the coding of the new design goes faster
once the design is clarified or corrected - you understand the problem better and are
more clear about what has to be done.

