
BasicFacilites 2/3/15, 12:29:59 PM 1

• S 6. Look for the new C++11 concepts.
• S 7 but skim 7.3.2.1 raw string literals, skim 7.3.2.2 unicode topics, slow down and read carefully 7.7 on rvalue
reference - new in C++11.
• S 8 skim 8.2.6 on POD, skim 8.2.7 Fields, skim 8.3 Unions introduction, then skip 8.3.1 and 8.3.2.
• S 9. should be very familiar.
• S 10 but skim 10.2 calculator example - read for concepts involved, not details.
• S 11 Skip 11.2.4 on overloading new. 11.3 "Lists" are C++11's initialization lists. Skip 11.4 Lambda Expressions - we'll
come back.
• S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

Basic Facilities

we'll be using plain char throughout, as recommended (p. 143), and you should avoid doing arithmetic with
char values - not needed; let stdlib do the relevant work for you.

char type

we won't be using unsigned types (except via size_t or similar definied types), and plain int only.

int type

literal types - new in C++11 - we won't be using

optional specifier, base type, declarator, initializer

specifier is non-type modifier

base type is the type

postfix bind tighter than prefix - *kings[] is an array of pointers

sometimes need parentheses

declarator is a name and optional operators: *, * const, &, [], () both prefix and postfix, like use in
expressions is the idea

auto i = 42; // i is an int
auto x = 3.14; // double
auto x = foo(); // x is whatever type foo() returns

using the now obsolete "auto" keyword for the type of a variable means to use the type of the initializer.

map<int, string, Cmp>::const_iterator it = container.begin();
auto it = container.begin(); // it has whatever iterator type the container begin() returns

especially useful later when types are complicated:

my advice - save auto for special occasions, especially when type name is either very complex or
totally redundant; best to be explicit about simple types for most variables.

New in C++11 automatic type deduction in declarations

declaration terminology

function parameter names are actually declared in the outer most block of a function

block - or local scope

member names

class scope

namespace scope

global namespace is a namespace

scope resolution operator can unhide a global name (p 158)

global - outside any function, class, or namespace

try to avoid hiding names by choosing global or outer scope names carefully

globals have a global scope, can use the scope resolution operator to specify them

struct Thing * p ... declares the incomplete type struct Thing

names come into scope after the complete declarator and before the initializer

scope

if no initializer, and the variable is global or local static (just static actually), it gets initialized to the
appropriate flavor of zero; ditto for global or local static structs or arrays. User defined types are default
initialized.

arrays and structs can be initialized by lists of values in { }

Point p(1, 2);

note int f(); is a function declaration

Point p(); declares "p" to be a function with no arguments that returns a Point!

Point p; would default initialize p, not Point p();

for user defined types, "function style initializer" from invoking a possibly implicit constructor

uniform 3 with {curly braces} added to the language - can do all initializations with { }, like you can with
arrays and structs in C and C++98.

Point p1; // default intialize
Point p1{}; // default intialize - now distriguishable from function declaration syntax!
Point p{1, 2};
Point p1 = {1, 2};

int* a = new int[3] {3, 2, 1}; // peviously no way to do this

// narrowing conversions are an error with {} initialization
 int i{4};
 int ii = {4};
// int iii{1.2}; // not allowed

int iiii = 1.2; // legal, but possible error
 double d{3};
 float f{3};

complex classes like vector can now be initialized with { } analogous to arrays - later

New in C++11:

 initialization

Point p1(12, 23);

This declares and defines Point object named "p1" initialized with 12 and 23;

Suppose we have a class Point that we can initialize with x, y values as in:

Point(12, 23);

This declares and defines a Point object initialized with 12 and 23 that has no name, a temporary
object.

Compiler creates these as temporary object in an expression or function call

x + y creates a temporary object, used to hold the "hello,world" long enough to initialize z, then it
is gone

can be a performance issue with user-defined types, but rarely for built-in types

C++11 enables "move semantics" that alleviate unnecessary copying of data from temporary
objects

Example
string x ="hello,";
string y = "world";
string z = x + y;

foo(x + y); // where foo is foo(string s); or foo(const string& s);

Examples

// new_location is (12, 23) translated by vector1.
Point new_location = Point(12, 23) + vector1;

double distance(Point p1, Point p2); // calculates distance between two points
d = distance(Point(12, 23), Point(58, 14));

Point get_Point()
{

/* get x and y values from the user */
return Point(x, y); // temporary Point object to copy for return

}

Temporary objects disappear once you leave the "full expression" they are in.

Unnamed objects are very commonly used in some contexts.

If you leave out the name, then you are declaring an "unnamed" object.

Unnamed objects

basic notion - you can store somethig there, or use its address

roughly the l in lvalue is for left hand side of an assignment

usually it has a name - like a variable name

actually, if it has a variable name, it is treated as an lvalue by the compiler

but some lvalues can't be used there, and some lvalues refer to a constant

an "object" is a piece of memory; an "lvalue" is an expression that designates a piece of memory

roughly speaking, the r iin rvalue is for right hand side of an assignment

temporary unnamed variables are rvalues
example: x = y + z; // the y + z is in an rvalue

C++98 disallows modifying an rvalue

it is a place in memory whose value you can always read, but normally it doesn't make any sense to
store something there because it will soon disappear.

But there are a couple of important occasions for making the lvalue/rvalue distrinction, and modifying
what is stored in an rvalue - later!

New in C++11 - important role for rvalues

objects can have identity; objects can be moved from rather than just copied.

3 of the four combinations are used:

lvalue xvalue prvalue
 glvalue rvalue

prvalue - pure rvalue, like function return value,, expression value - no name, can be moved from

xvalue - has name, but can be moved from (e.g. std::move applied to iit_

glvalue - generalized lvalue - has identity either movable or not

rvalue - can be moved from

See chart p 166

objects and lvalues

automatic

stastic

free store (dynamic)

if bound to a reference, lifetime of reference, otherwise end of full expresssion, typically automatic.

temporary

lifetime

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template
*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Type aliases

S 6 Types and Declarations:

BasicFacilites 2/3/15, 12:29:59 PM 2

we'll be using plain char throughout, as recommended (p. 143), and you should avoid doing arithmetic with
char values - not needed; let stdlib do the relevant work for you.

char type

we won't be using unsigned types (except via size_t or similar definied types), and plain int only.

int type

literal types - new in C++11 - we won't be using

optional specifier, base type, declarator, initializer

specifier is non-type modifier

base type is the type

postfix bind tighter than prefix - *kings[] is an array of pointers

sometimes need parentheses

declarator is a name and optional operators: *, * const, &, [], () both prefix and postfix, like use in
expressions is the idea

auto i = 42; // i is an int
auto x = 3.14; // double
auto x = foo(); // x is whatever type foo() returns

using the now obsolete "auto" keyword for the type of a variable means to use the type of the initializer.

map<int, string, Cmp>::const_iterator it = container.begin();
auto it = container.begin(); // it has whatever iterator type the container begin() returns

especially useful later when types are complicated:

my advice - save auto for special occasions, especially when type name is either very complex or
totally redundant; best to be explicit about simple types for most variables.

New in C++11 automatic type deduction in declarations

declaration terminology

function parameter names are actually declared in the outer most block of a function

block - or local scope

member names

class scope

namespace scope

global namespace is a namespace

scope resolution operator can unhide a global name (p 158)

global - outside any function, class, or namespace

try to avoid hiding names by choosing global or outer scope names carefully

globals have a global scope, can use the scope resolution operator to specify them

struct Thing * p ... declares the incomplete type struct Thing

names come into scope after the complete declarator and before the initializer

scope

if no initializer, and the variable is global or local static (just static actually), it gets initialized to the
appropriate flavor of zero; ditto for global or local static structs or arrays. User defined types are default
initialized.

arrays and structs can be initialized by lists of values in { }

Point p(1, 2);

note int f(); is a function declaration

Point p(); declares "p" to be a function with no arguments that returns a Point!

Point p; would default initialize p, not Point p();

for user defined types, "function style initializer" from invoking a possibly implicit constructor

uniform 3 with {curly braces} added to the language - can do all initializations with { }, like you can with
arrays and structs in C and C++98.

Point p1; // default intialize
Point p1{}; // default intialize - now distriguishable from function declaration syntax!
Point p{1, 2};
Point p1 = {1, 2};

int* a = new int[3] {3, 2, 1}; // peviously no way to do this

// narrowing conversions are an error with {} initialization
 int i{4};
 int ii = {4};
// int iii{1.2}; // not allowed

int iiii = 1.2; // legal, but possible error
 double d{3};
 float f{3};

complex classes like vector can now be initialized with { } analogous to arrays - later

New in C++11:

 initialization

Point p1(12, 23);

This declares and defines Point object named "p1" initialized with 12 and 23;

Suppose we have a class Point that we can initialize with x, y values as in:

Point(12, 23);

This declares and defines a Point object initialized with 12 and 23 that has no name, a temporary
object.

Compiler creates these as temporary object in an expression or function call

x + y creates a temporary object, used to hold the "hello,world" long enough to initialize z, then it
is gone

can be a performance issue with user-defined types, but rarely for built-in types

C++11 enables "move semantics" that alleviate unnecessary copying of data from temporary
objects

Example
string x ="hello,";
string y = "world";
string z = x + y;

foo(x + y); // where foo is foo(string s); or foo(const string& s);

Examples

// new_location is (12, 23) translated by vector1.
Point new_location = Point(12, 23) + vector1;

double distance(Point p1, Point p2); // calculates distance between two points
d = distance(Point(12, 23), Point(58, 14));

Point get_Point()
{

/* get x and y values from the user */
return Point(x, y); // temporary Point object to copy for return

}

Temporary objects disappear once you leave the "full expression" they are in.

Unnamed objects are very commonly used in some contexts.

If you leave out the name, then you are declaring an "unnamed" object.

Unnamed objects

basic notion - you can store somethig there, or use its address

roughly the l in lvalue is for left hand side of an assignment

usually it has a name - like a variable name

actually, if it has a variable name, it is treated as an lvalue by the compiler

but some lvalues can't be used there, and some lvalues refer to a constant

an "object" is a piece of memory; an "lvalue" is an expression that designates a piece of memory

roughly speaking, the r iin rvalue is for right hand side of an assignment

temporary unnamed variables are rvalues
example: x = y + z; // the y + z is in an rvalue

C++98 disallows modifying an rvalue

it is a place in memory whose value you can always read, but normally it doesn't make any sense to
store something there because it will soon disappear.

But there are a couple of important occasions for making the lvalue/rvalue distrinction, and modifying
what is stored in an rvalue - later!

New in C++11 - important role for rvalues

objects can have identity; objects can be moved from rather than just copied.

3 of the four combinations are used:

lvalue xvalue prvalue
 glvalue rvalue

prvalue - pure rvalue, like function return value,, expression value - no name, can be moved from

xvalue - has name, but can be moved from (e.g. std::move applied to iit_

glvalue - generalized lvalue - has identity either movable or not

rvalue - can be moved from

See chart p 166

objects and lvalues

automatic

stastic

free store (dynamic)

if bound to a reference, lifetime of reference, otherwise end of full expresssion, typically automatic.

temporary

lifetime

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template
*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Type aliases

S 6 Types and Declarations:

BasicFacilites 2/3/15, 12:29:59 PM 3

we'll be using plain char throughout, as recommended (p. 143), and you should avoid doing arithmetic with
char values - not needed; let stdlib do the relevant work for you.

char type

we won't be using unsigned types (except via size_t or similar definied types), and plain int only.

int type

literal types - new in C++11 - we won't be using

optional specifier, base type, declarator, initializer

specifier is non-type modifier

base type is the type

postfix bind tighter than prefix - *kings[] is an array of pointers

sometimes need parentheses

declarator is a name and optional operators: *, * const, &, [], () both prefix and postfix, like use in
expressions is the idea

auto i = 42; // i is an int
auto x = 3.14; // double
auto x = foo(); // x is whatever type foo() returns

using the now obsolete "auto" keyword for the type of a variable means to use the type of the initializer.

map<int, string, Cmp>::const_iterator it = container.begin();
auto it = container.begin(); // it has whatever iterator type the container begin() returns

especially useful later when types are complicated:

my advice - save auto for special occasions, especially when type name is either very complex or
totally redundant; best to be explicit about simple types for most variables.

New in C++11 automatic type deduction in declarations

declaration terminology

function parameter names are actually declared in the outer most block of a function

block - or local scope

member names

class scope

namespace scope

global namespace is a namespace

scope resolution operator can unhide a global name (p 158)

global - outside any function, class, or namespace

try to avoid hiding names by choosing global or outer scope names carefully

globals have a global scope, can use the scope resolution operator to specify them

struct Thing * p ... declares the incomplete type struct Thing

names come into scope after the complete declarator and before the initializer

scope

if no initializer, and the variable is global or local static (just static actually), it gets initialized to the
appropriate flavor of zero; ditto for global or local static structs or arrays. User defined types are default
initialized.

arrays and structs can be initialized by lists of values in { }

Point p(1, 2);

note int f(); is a function declaration

Point p(); declares "p" to be a function with no arguments that returns a Point!

Point p; would default initialize p, not Point p();

for user defined types, "function style initializer" from invoking a possibly implicit constructor

uniform 3 with {curly braces} added to the language - can do all initializations with { }, like you can with
arrays and structs in C and C++98.

Point p1; // default intialize
Point p1{}; // default intialize - now distriguishable from function declaration syntax!
Point p{1, 2};
Point p1 = {1, 2};

int* a = new int[3] {3, 2, 1}; // peviously no way to do this

// narrowing conversions are an error with {} initialization
 int i{4};
 int ii = {4};
// int iii{1.2}; // not allowed

int iiii = 1.2; // legal, but possible error
 double d{3};
 float f{3};

complex classes like vector can now be initialized with { } analogous to arrays - later

New in C++11:

 initialization

Point p1(12, 23);

This declares and defines Point object named "p1" initialized with 12 and 23;

Suppose we have a class Point that we can initialize with x, y values as in:

Point(12, 23);

This declares and defines a Point object initialized with 12 and 23 that has no name, a temporary
object.

Compiler creates these as temporary object in an expression or function call

x + y creates a temporary object, used to hold the "hello,world" long enough to initialize z, then it
is gone

can be a performance issue with user-defined types, but rarely for built-in types

C++11 enables "move semantics" that alleviate unnecessary copying of data from temporary
objects

Example
string x ="hello,";
string y = "world";
string z = x + y;

foo(x + y); // where foo is foo(string s); or foo(const string& s);

Examples

// new_location is (12, 23) translated by vector1.
Point new_location = Point(12, 23) + vector1;

double distance(Point p1, Point p2); // calculates distance between two points
d = distance(Point(12, 23), Point(58, 14));

Point get_Point()
{

/* get x and y values from the user */
return Point(x, y); // temporary Point object to copy for return

}

Temporary objects disappear once you leave the "full expression" they are in.

Unnamed objects are very commonly used in some contexts.

If you leave out the name, then you are declaring an "unnamed" object.

Unnamed objects

basic notion - you can store somethig there, or use its address

roughly the l in lvalue is for left hand side of an assignment

usually it has a name - like a variable name

actually, if it has a variable name, it is treated as an lvalue by the compiler

but some lvalues can't be used there, and some lvalues refer to a constant

an "object" is a piece of memory; an "lvalue" is an expression that designates a piece of memory

roughly speaking, the r iin rvalue is for right hand side of an assignment

temporary unnamed variables are rvalues
example: x = y + z; // the y + z is in an rvalue

C++98 disallows modifying an rvalue

it is a place in memory whose value you can always read, but normally it doesn't make any sense to
store something there because it will soon disappear.

But there are a couple of important occasions for making the lvalue/rvalue distrinction, and modifying
what is stored in an rvalue - later!

New in C++11 - important role for rvalues

objects can have identity; objects can be moved from rather than just copied.

3 of the four combinations are used:

lvalue xvalue prvalue
 glvalue rvalue

prvalue - pure rvalue, like function return value,, expression value - no name, can be moved from

xvalue - has name, but can be moved from (e.g. std::move applied to iit_

glvalue - generalized lvalue - has identity either movable or not

rvalue - can be moved from

See chart p 166

objects and lvalues

automatic

stastic

free store (dynamic)

if bound to a reference, lifetime of reference, otherwise end of full expresssion, typically automatic.

temporary

lifetime

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template
*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Type aliases

S 6 Types and Declarations:

BasicFacilites 2/3/15, 12:29:59 PM 4

we'll be using plain char throughout, as recommended (p. 143), and you should avoid doing arithmetic with
char values - not needed; let stdlib do the relevant work for you.

char type

we won't be using unsigned types (except via size_t or similar definied types), and plain int only.

int type

literal types - new in C++11 - we won't be using

optional specifier, base type, declarator, initializer

specifier is non-type modifier

base type is the type

postfix bind tighter than prefix - *kings[] is an array of pointers

sometimes need parentheses

declarator is a name and optional operators: *, * const, &, [], () both prefix and postfix, like use in
expressions is the idea

auto i = 42; // i is an int
auto x = 3.14; // double
auto x = foo(); // x is whatever type foo() returns

using the now obsolete "auto" keyword for the type of a variable means to use the type of the initializer.

map<int, string, Cmp>::const_iterator it = container.begin();
auto it = container.begin(); // it has whatever iterator type the container begin() returns

especially useful later when types are complicated:

my advice - save auto for special occasions, especially when type name is either very complex or
totally redundant; best to be explicit about simple types for most variables.

New in C++11 automatic type deduction in declarations

declaration terminology

function parameter names are actually declared in the outer most block of a function

block - or local scope

member names

class scope

namespace scope

global namespace is a namespace

scope resolution operator can unhide a global name (p 158)

global - outside any function, class, or namespace

try to avoid hiding names by choosing global or outer scope names carefully

globals have a global scope, can use the scope resolution operator to specify them

struct Thing * p ... declares the incomplete type struct Thing

names come into scope after the complete declarator and before the initializer

scope

if no initializer, and the variable is global or local static (just static actually), it gets initialized to the
appropriate flavor of zero; ditto for global or local static structs or arrays. User defined types are default
initialized.

arrays and structs can be initialized by lists of values in { }

Point p(1, 2);

note int f(); is a function declaration

Point p(); declares "p" to be a function with no arguments that returns a Point!

Point p; would default initialize p, not Point p();

for user defined types, "function style initializer" from invoking a possibly implicit constructor

uniform 3 with {curly braces} added to the language - can do all initializations with { }, like you can with
arrays and structs in C and C++98.

Point p1; // default intialize
Point p1{}; // default intialize - now distriguishable from function declaration syntax!
Point p{1, 2};
Point p1 = {1, 2};

int* a = new int[3] {3, 2, 1}; // peviously no way to do this

// narrowing conversions are an error with {} initialization
 int i{4};
 int ii = {4};
// int iii{1.2}; // not allowed

int iiii = 1.2; // legal, but possible error
 double d{3};
 float f{3};

complex classes like vector can now be initialized with { } analogous to arrays - later

New in C++11:

 initialization

Point p1(12, 23);

This declares and defines Point object named "p1" initialized with 12 and 23;

Suppose we have a class Point that we can initialize with x, y values as in:

Point(12, 23);

This declares and defines a Point object initialized with 12 and 23 that has no name, a temporary
object.

Compiler creates these as temporary object in an expression or function call

x + y creates a temporary object, used to hold the "hello,world" long enough to initialize z, then it
is gone

can be a performance issue with user-defined types, but rarely for built-in types

C++11 enables "move semantics" that alleviate unnecessary copying of data from temporary
objects

Example
string x ="hello,";
string y = "world";
string z = x + y;

foo(x + y); // where foo is foo(string s); or foo(const string& s);

Examples

// new_location is (12, 23) translated by vector1.
Point new_location = Point(12, 23) + vector1;

double distance(Point p1, Point p2); // calculates distance between two points
d = distance(Point(12, 23), Point(58, 14));

Point get_Point()
{

/* get x and y values from the user */
return Point(x, y); // temporary Point object to copy for return

}

Temporary objects disappear once you leave the "full expression" they are in.

Unnamed objects are very commonly used in some contexts.

If you leave out the name, then you are declaring an "unnamed" object.

Unnamed objects

basic notion - you can store somethig there, or use its address

roughly the l in lvalue is for left hand side of an assignment

usually it has a name - like a variable name

actually, if it has a variable name, it is treated as an lvalue by the compiler

but some lvalues can't be used there, and some lvalues refer to a constant

an "object" is a piece of memory; an "lvalue" is an expression that designates a piece of memory

roughly speaking, the r iin rvalue is for right hand side of an assignment

temporary unnamed variables are rvalues
example: x = y + z; // the y + z is in an rvalue

C++98 disallows modifying an rvalue

it is a place in memory whose value you can always read, but normally it doesn't make any sense to
store something there because it will soon disappear.

But there are a couple of important occasions for making the lvalue/rvalue distrinction, and modifying
what is stored in an rvalue - later!

New in C++11 - important role for rvalues

objects can have identity; objects can be moved from rather than just copied.

3 of the four combinations are used:

lvalue xvalue prvalue
 glvalue rvalue

prvalue - pure rvalue, like function return value,, expression value - no name, can be moved from

xvalue - has name, but can be moved from (e.g. std::move applied to iit_

glvalue - generalized lvalue - has identity either movable or not

rvalue - can be moved from

See chart p 166

objects and lvalues

automatic

stastic

free store (dynamic)

if bound to a reference, lifetime of reference, otherwise end of full expresssion, typically automatic.

temporary

lifetime

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template
*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Type aliases

S 6 Types and Declarations:

BasicFacilites 2/3/15, 12:29:59 PM 5

we'll be using plain char throughout, as recommended (p. 143), and you should avoid doing arithmetic with
char values - not needed; let stdlib do the relevant work for you.

char type

we won't be using unsigned types (except via size_t or similar definied types), and plain int only.

int type

literal types - new in C++11 - we won't be using

optional specifier, base type, declarator, initializer

specifier is non-type modifier

base type is the type

postfix bind tighter than prefix - *kings[] is an array of pointers

sometimes need parentheses

declarator is a name and optional operators: *, * const, &, [], () both prefix and postfix, like use in
expressions is the idea

auto i = 42; // i is an int
auto x = 3.14; // double
auto x = foo(); // x is whatever type foo() returns

using the now obsolete "auto" keyword for the type of a variable means to use the type of the initializer.

map<int, string, Cmp>::const_iterator it = container.begin();
auto it = container.begin(); // it has whatever iterator type the container begin() returns

especially useful later when types are complicated:

my advice - save auto for special occasions, especially when type name is either very complex or
totally redundant; best to be explicit about simple types for most variables.

New in C++11 automatic type deduction in declarations

declaration terminology

function parameter names are actually declared in the outer most block of a function

block - or local scope

member names

class scope

namespace scope

global namespace is a namespace

scope resolution operator can unhide a global name (p 158)

global - outside any function, class, or namespace

try to avoid hiding names by choosing global or outer scope names carefully

globals have a global scope, can use the scope resolution operator to specify them

struct Thing * p ... declares the incomplete type struct Thing

names come into scope after the complete declarator and before the initializer

scope

if no initializer, and the variable is global or local static (just static actually), it gets initialized to the
appropriate flavor of zero; ditto for global or local static structs or arrays. User defined types are default
initialized.

arrays and structs can be initialized by lists of values in { }

Point p(1, 2);

note int f(); is a function declaration

Point p(); declares "p" to be a function with no arguments that returns a Point!

Point p; would default initialize p, not Point p();

for user defined types, "function style initializer" from invoking a possibly implicit constructor

uniform 3 with {curly braces} added to the language - can do all initializations with { }, like you can with
arrays and structs in C and C++98.

Point p1; // default intialize
Point p1{}; // default intialize - now distriguishable from function declaration syntax!
Point p{1, 2};
Point p1 = {1, 2};

int* a = new int[3] {3, 2, 1}; // peviously no way to do this

// narrowing conversions are an error with {} initialization
 int i{4};
 int ii = {4};
// int iii{1.2}; // not allowed

int iiii = 1.2; // legal, but possible error
 double d{3};
 float f{3};

complex classes like vector can now be initialized with { } analogous to arrays - later

New in C++11:

 initialization

Point p1(12, 23);

This declares and defines Point object named "p1" initialized with 12 and 23;

Suppose we have a class Point that we can initialize with x, y values as in:

Point(12, 23);

This declares and defines a Point object initialized with 12 and 23 that has no name, a temporary
object.

Compiler creates these as temporary object in an expression or function call

x + y creates a temporary object, used to hold the "hello,world" long enough to initialize z, then it
is gone

can be a performance issue with user-defined types, but rarely for built-in types

C++11 enables "move semantics" that alleviate unnecessary copying of data from temporary
objects

Example
string x ="hello,";
string y = "world";
string z = x + y;

foo(x + y); // where foo is foo(string s); or foo(const string& s);

Examples

// new_location is (12, 23) translated by vector1.
Point new_location = Point(12, 23) + vector1;

double distance(Point p1, Point p2); // calculates distance between two points
d = distance(Point(12, 23), Point(58, 14));

Point get_Point()
{

/* get x and y values from the user */
return Point(x, y); // temporary Point object to copy for return

}

Temporary objects disappear once you leave the "full expression" they are in.

Unnamed objects are very commonly used in some contexts.

If you leave out the name, then you are declaring an "unnamed" object.

Unnamed objects

basic notion - you can store somethig there, or use its address

roughly the l in lvalue is for left hand side of an assignment

usually it has a name - like a variable name

actually, if it has a variable name, it is treated as an lvalue by the compiler

but some lvalues can't be used there, and some lvalues refer to a constant

an "object" is a piece of memory; an "lvalue" is an expression that designates a piece of memory

roughly speaking, the r iin rvalue is for right hand side of an assignment

temporary unnamed variables are rvalues
example: x = y + z; // the y + z is in an rvalue

C++98 disallows modifying an rvalue

it is a place in memory whose value you can always read, but normally it doesn't make any sense to
store something there because it will soon disappear.

But there are a couple of important occasions for making the lvalue/rvalue distrinction, and modifying
what is stored in an rvalue - later!

New in C++11 - important role for rvalues

objects can have identity; objects can be moved from rather than just copied.

3 of the four combinations are used:

lvalue xvalue prvalue
 glvalue rvalue

prvalue - pure rvalue, like function return value,, expression value - no name, can be moved from

xvalue - has name, but can be moved from (e.g. std::move applied to iit_

glvalue - generalized lvalue - has identity either movable or not

rvalue - can be moved from

See chart p 166

objects and lvalues

automatic

stastic

free store (dynamic)

if bound to a reference, lifetime of reference, otherwise end of full expresssion, typically automatic.

temporary

lifetime

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template
*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Type aliases

S 6 Types and Declarations:

BasicFacilites 2/3/15, 12:29:59 PM 6

S 7 but skim 7.3.2.1 raw string literals, skim 7.3.2.2 unicode topics, slow down and read carefully 7.7 on rvalue reference
- new in C++11.

use zero, or better, nullptr, instead of NULL

zero takes on a type depending on its context

foo(0) could call either foo(int) or foo(char *) - which?

always use nullptr instead of a 0 pointer value. Using NULL is now doubly-obsolete in C++

pointers and zero as a pointer value

should only show up in C++ code at down & dirty low-levels; bad idea otherwise

note static_cast<double *>(pv) example - deliberately ugly

void *

must be initialized at point of definition

can't be changed to refer to something else - can't be "reseated"

another name for a object

constant pointers where the compiler sticks in the & and *'s for you

two ways to think of them

main use is function parameters & return types

can be used otherwise, but rare

tricky because you never operate on a reference, always on the thing it refers to - it really is just another
name ...

S's advice is to avoid reference arguments as returned values unless function name makes it obvious that
it is going to happen.

returning a reference is a way to let the caller know where to put something - e.g. subscript operator ...

returning a reference can avoid object copying

New in C++11: may be called "lvalue reference" when important to distinguish between rrvalue reference

 references

if const, has to be initialized at the point of definition, can't be changed later

specifies how the variable can be used, not how or where it is stored

with pointers, can have a pointer to const, but can still modify it in some other way - example p. 95

read right to left for clarity

char * const p; constant pointer to characters - can't change contents of p, but can change things
where it points

char const * p; same as below

Can also change the characters through another pointer to the same place!

const char * p; usual form - p is a changable pointer to characters that can't be changed - can't use p to
change them, but can change p.

Can also change the characters through another pointer to the same place!

const char * const p; constant pointer to constant chars

with pointers, const can appear in two places:

compiler enforces this - won't let you put something that is supposed to be const into something that
doesn't keep the same promise

const as a promise or statement of policy not to modify

might see:

void foo (const int i)

as a way of saying i is read-only for this function.

but void foo(int i) allows i to be modified, but won't affect caller's variable, right? It's a copy!

normally not done for call by value, built-in types

VERY common convention: means I don't want to waste time copying the object, because it is
read-only, so let's just refer to the caller's object

void foo (const Big_object_type& x);

This means that the caller's argument will be modified! Use only when that is true!

void foo (Big_object_type& x);

This means that x will be a copy of the caller's argument will be used in x, but we won't change
it. Why use this? Waste time copying it for no good reason?

void foo(const Big_object_type x);

otherwise, we would have to explicitly copy it as in:
void foo(const Big_object_type& x_in)
{

Big_object_type x(x_in); // use copy constructor
x.modify();
....

}

This means that x will be a copy of the caller's argument, and we made the copy because we
intend to change it for convenience inside foo.

void foo(Big_object_type x);

commonly done for read-only class objects called by reference to avoid constructor overhead - some
objects are big and complex to create and initialize - why do it unnecessarily

const in parameter lists

specify const everywhere it is logically meaningful to do so

gives extra protection on programming errors

BUT: Don't make things const that by design, have to be changable!!!

write it that way from the beginning.

if existing code is made const correct, tends to be viral - "const" spreads through the program.

CONST CORRECTNESS

const

written with &&

Micro example:
void foo(int&& rv)
{

cout << "foo(int &&) called with rvalue" << rv << endl;
}

int x, y;
…
foo(x + y);

allows you to refer to rvalues - normally only used in parameters with certain overloaded functions where
the compiler needs to call a different function depending on whether something is an lvalue or an rvalue.

Also useful for writing function templates that accept rvalues as well as lvalue parameters

if you declare a variable to have type rvalue rference, that variable is in fact an lvalue within its scope.

More later on what this is good for - Stroustrup provides some details here

New in C++11 rvalue references

forward declaration- incomplete type

class S;

S f(); // function declaration

void g(S); // function declaration

S* h(S *);

name of a type becomes known immediately after it has been encountered and before the declaration is
complete - can use it as long as the name of a member is not involved nor the size

in C++, using "struct" or "class" outside of a declaration is not done

can use explicit "struct" and "class" for rare cases when need to disambiguate things that have the same
name, but these are best avoided.

issues with struct names

 S. 7. Pointers, Arrays, References

BasicFacilites 2/3/15, 12:29:59 PM 7

S 7 but skim 7.3.2.1 raw string literals, skim 7.3.2.2 unicode topics, slow down and read carefully 7.7 on rvalue reference
- new in C++11.

use zero, or better, nullptr, instead of NULL

zero takes on a type depending on its context

foo(0) could call either foo(int) or foo(char *) - which?

always use nullptr instead of a 0 pointer value. Using NULL is now doubly-obsolete in C++

pointers and zero as a pointer value

should only show up in C++ code at down & dirty low-levels; bad idea otherwise

note static_cast<double *>(pv) example - deliberately ugly

void *

must be initialized at point of definition

can't be changed to refer to something else - can't be "reseated"

another name for a object

constant pointers where the compiler sticks in the & and *'s for you

two ways to think of them

main use is function parameters & return types

can be used otherwise, but rare

tricky because you never operate on a reference, always on the thing it refers to - it really is just another
name ...

S's advice is to avoid reference arguments as returned values unless function name makes it obvious that
it is going to happen.

returning a reference is a way to let the caller know where to put something - e.g. subscript operator ...

returning a reference can avoid object copying

New in C++11: may be called "lvalue reference" when important to distinguish between rrvalue reference

 references

if const, has to be initialized at the point of definition, can't be changed later

specifies how the variable can be used, not how or where it is stored

with pointers, can have a pointer to const, but can still modify it in some other way - example p. 95

read right to left for clarity

char * const p; constant pointer to characters - can't change contents of p, but can change things
where it points

char const * p; same as below

Can also change the characters through another pointer to the same place!

const char * p; usual form - p is a changable pointer to characters that can't be changed - can't use p to
change them, but can change p.

Can also change the characters through another pointer to the same place!

const char * const p; constant pointer to constant chars

with pointers, const can appear in two places:

compiler enforces this - won't let you put something that is supposed to be const into something that
doesn't keep the same promise

const as a promise or statement of policy not to modify

might see:

void foo (const int i)

as a way of saying i is read-only for this function.

but void foo(int i) allows i to be modified, but won't affect caller's variable, right? It's a copy!

normally not done for call by value, built-in types

VERY common convention: means I don't want to waste time copying the object, because it is
read-only, so let's just refer to the caller's object

void foo (const Big_object_type& x);

This means that the caller's argument will be modified! Use only when that is true!

void foo (Big_object_type& x);

This means that x will be a copy of the caller's argument will be used in x, but we won't change
it. Why use this? Waste time copying it for no good reason?

void foo(const Big_object_type x);

otherwise, we would have to explicitly copy it as in:
void foo(const Big_object_type& x_in)
{

Big_object_type x(x_in); // use copy constructor
x.modify();
....

}

This means that x will be a copy of the caller's argument, and we made the copy because we
intend to change it for convenience inside foo.

void foo(Big_object_type x);

commonly done for read-only class objects called by reference to avoid constructor overhead - some
objects are big and complex to create and initialize - why do it unnecessarily

const in parameter lists

specify const everywhere it is logically meaningful to do so

gives extra protection on programming errors

BUT: Don't make things const that by design, have to be changable!!!

write it that way from the beginning.

if existing code is made const correct, tends to be viral - "const" spreads through the program.

CONST CORRECTNESS

const

written with &&

Micro example:
void foo(int&& rv)
{

cout << "foo(int &&) called with rvalue" << rv << endl;
}

int x, y;
…
foo(x + y);

allows you to refer to rvalues - normally only used in parameters with certain overloaded functions where
the compiler needs to call a different function depending on whether something is an lvalue or an rvalue.

Also useful for writing function templates that accept rvalues as well as lvalue parameters

if you declare a variable to have type rvalue rference, that variable is in fact an lvalue within its scope.

More later on what this is good for - Stroustrup provides some details here

New in C++11 rvalue references

forward declaration- incomplete type

class S;

S f(); // function declaration

void g(S); // function declaration

S* h(S *);

name of a type becomes known immediately after it has been encountered and before the declaration is
complete - can use it as long as the name of a member is not involved nor the size

in C++, using "struct" or "class" outside of a declaration is not done

can use explicit "struct" and "class" for rare cases when need to disambiguate things that have the same
name, but these are best avoided.

issues with struct names

 S. 7. Pointers, Arrays, References

BasicFacilites 2/3/15, 12:29:59 PM 8

S 7 but skim 7.3.2.1 raw string literals, skim 7.3.2.2 unicode topics, slow down and read carefully 7.7 on rvalue reference
- new in C++11.

use zero, or better, nullptr, instead of NULL

zero takes on a type depending on its context

foo(0) could call either foo(int) or foo(char *) - which?

always use nullptr instead of a 0 pointer value. Using NULL is now doubly-obsolete in C++

pointers and zero as a pointer value

should only show up in C++ code at down & dirty low-levels; bad idea otherwise

note static_cast<double *>(pv) example - deliberately ugly

void *

must be initialized at point of definition

can't be changed to refer to something else - can't be "reseated"

another name for a object

constant pointers where the compiler sticks in the & and *'s for you

two ways to think of them

main use is function parameters & return types

can be used otherwise, but rare

tricky because you never operate on a reference, always on the thing it refers to - it really is just another
name ...

S's advice is to avoid reference arguments as returned values unless function name makes it obvious that
it is going to happen.

returning a reference is a way to let the caller know where to put something - e.g. subscript operator ...

returning a reference can avoid object copying

New in C++11: may be called "lvalue reference" when important to distinguish between rrvalue reference

 references

if const, has to be initialized at the point of definition, can't be changed later

specifies how the variable can be used, not how or where it is stored

with pointers, can have a pointer to const, but can still modify it in some other way - example p. 95

read right to left for clarity

char * const p; constant pointer to characters - can't change contents of p, but can change things
where it points

char const * p; same as below

Can also change the characters through another pointer to the same place!

const char * p; usual form - p is a changable pointer to characters that can't be changed - can't use p to
change them, but can change p.

Can also change the characters through another pointer to the same place!

const char * const p; constant pointer to constant chars

with pointers, const can appear in two places:

compiler enforces this - won't let you put something that is supposed to be const into something that
doesn't keep the same promise

const as a promise or statement of policy not to modify

might see:

void foo (const int i)

as a way of saying i is read-only for this function.

but void foo(int i) allows i to be modified, but won't affect caller's variable, right? It's a copy!

normally not done for call by value, built-in types

VERY common convention: means I don't want to waste time copying the object, because it is
read-only, so let's just refer to the caller's object

void foo (const Big_object_type& x);

This means that the caller's argument will be modified! Use only when that is true!

void foo (Big_object_type& x);

This means that x will be a copy of the caller's argument will be used in x, but we won't change
it. Why use this? Waste time copying it for no good reason?

void foo(const Big_object_type x);

otherwise, we would have to explicitly copy it as in:
void foo(const Big_object_type& x_in)
{

Big_object_type x(x_in); // use copy constructor
x.modify();
....

}

This means that x will be a copy of the caller's argument, and we made the copy because we
intend to change it for convenience inside foo.

void foo(Big_object_type x);

commonly done for read-only class objects called by reference to avoid constructor overhead - some
objects are big and complex to create and initialize - why do it unnecessarily

const in parameter lists

specify const everywhere it is logically meaningful to do so

gives extra protection on programming errors

BUT: Don't make things const that by design, have to be changable!!!

write it that way from the beginning.

if existing code is made const correct, tends to be viral - "const" spreads through the program.

CONST CORRECTNESS

const

written with &&

Micro example:
void foo(int&& rv)
{

cout << "foo(int &&) called with rvalue" << rv << endl;
}

int x, y;
…
foo(x + y);

allows you to refer to rvalues - normally only used in parameters with certain overloaded functions where
the compiler needs to call a different function depending on whether something is an lvalue or an rvalue.

Also useful for writing function templates that accept rvalues as well as lvalue parameters

if you declare a variable to have type rvalue rference, that variable is in fact an lvalue within its scope.

More later on what this is good for - Stroustrup provides some details here

New in C++11 rvalue references

forward declaration- incomplete type

class S;

S f(); // function declaration

void g(S); // function declaration

S* h(S *);

name of a type becomes known immediately after it has been encountered and before the declaration is
complete - can use it as long as the name of a member is not involved nor the size

in C++, using "struct" or "class" outside of a declaration is not done

can use explicit "struct" and "class" for rare cases when need to disambiguate things that have the same
name, but these are best avoided.

issues with struct names

 S. 7. Pointers, Arrays, References

BasicFacilites 2/3/15, 12:29:59 PM 9

S 7 but skim 7.3.2.1 raw string literals, skim 7.3.2.2 unicode topics, slow down and read carefully 7.7 on rvalue reference
- new in C++11.

use zero, or better, nullptr, instead of NULL

zero takes on a type depending on its context

foo(0) could call either foo(int) or foo(char *) - which?

always use nullptr instead of a 0 pointer value. Using NULL is now doubly-obsolete in C++

pointers and zero as a pointer value

should only show up in C++ code at down & dirty low-levels; bad idea otherwise

note static_cast<double *>(pv) example - deliberately ugly

void *

must be initialized at point of definition

can't be changed to refer to something else - can't be "reseated"

another name for a object

constant pointers where the compiler sticks in the & and *'s for you

two ways to think of them

main use is function parameters & return types

can be used otherwise, but rare

tricky because you never operate on a reference, always on the thing it refers to - it really is just another
name ...

S's advice is to avoid reference arguments as returned values unless function name makes it obvious that
it is going to happen.

returning a reference is a way to let the caller know where to put something - e.g. subscript operator ...

returning a reference can avoid object copying

New in C++11: may be called "lvalue reference" when important to distinguish between rrvalue reference

 references

if const, has to be initialized at the point of definition, can't be changed later

specifies how the variable can be used, not how or where it is stored

with pointers, can have a pointer to const, but can still modify it in some other way - example p. 95

read right to left for clarity

char * const p; constant pointer to characters - can't change contents of p, but can change things
where it points

char const * p; same as below

Can also change the characters through another pointer to the same place!

const char * p; usual form - p is a changable pointer to characters that can't be changed - can't use p to
change them, but can change p.

Can also change the characters through another pointer to the same place!

const char * const p; constant pointer to constant chars

with pointers, const can appear in two places:

compiler enforces this - won't let you put something that is supposed to be const into something that
doesn't keep the same promise

const as a promise or statement of policy not to modify

might see:

void foo (const int i)

as a way of saying i is read-only for this function.

but void foo(int i) allows i to be modified, but won't affect caller's variable, right? It's a copy!

normally not done for call by value, built-in types

VERY common convention: means I don't want to waste time copying the object, because it is
read-only, so let's just refer to the caller's object

void foo (const Big_object_type& x);

This means that the caller's argument will be modified! Use only when that is true!

void foo (Big_object_type& x);

This means that x will be a copy of the caller's argument will be used in x, but we won't change
it. Why use this? Waste time copying it for no good reason?

void foo(const Big_object_type x);

otherwise, we would have to explicitly copy it as in:
void foo(const Big_object_type& x_in)
{

Big_object_type x(x_in); // use copy constructor
x.modify();
....

}

This means that x will be a copy of the caller's argument, and we made the copy because we
intend to change it for convenience inside foo.

void foo(Big_object_type x);

commonly done for read-only class objects called by reference to avoid constructor overhead - some
objects are big and complex to create and initialize - why do it unnecessarily

const in parameter lists

specify const everywhere it is logically meaningful to do so

gives extra protection on programming errors

BUT: Don't make things const that by design, have to be changable!!!

write it that way from the beginning.

if existing code is made const correct, tends to be viral - "const" spreads through the program.

CONST CORRECTNESS

const

written with &&

Micro example:
void foo(int&& rv)
{

cout << "foo(int &&) called with rvalue" << rv << endl;
}

int x, y;
…
foo(x + y);

allows you to refer to rvalues - normally only used in parameters with certain overloaded functions where
the compiler needs to call a different function depending on whether something is an lvalue or an rvalue.

Also useful for writing function templates that accept rvalues as well as lvalue parameters

if you declare a variable to have type rvalue rference, that variable is in fact an lvalue within its scope.

More later on what this is good for - Stroustrup provides some details here

New in C++11 rvalue references

forward declaration- incomplete type

class S;

S f(); // function declaration

void g(S); // function declaration

S* h(S *);

name of a type becomes known immediately after it has been encountered and before the declaration is
complete - can use it as long as the name of a member is not involved nor the size

in C++, using "struct" or "class" outside of a declaration is not done

can use explicit "struct" and "class" for rare cases when need to disambiguate things that have the same
name, but these are best avoided.

issues with struct names

 S. 7. Pointers, Arrays, References

BasicFacilites 2/3/15, 12:29:59 PM 10

S 8 skip 8.2.4, skim 8.2.6 on POD, skim 8.2.7 Fields, skim 8.3 Unions introduction, then skip 8.3.1 and 8.3.2.

S. 8. Structures, Unions, Enumerations

BasicFacilites 2/3/15, 12:29:59 PM 11

S 8 skip 8.2.4, skim 8.2.6 on POD, skim 8.2.7 Fields, skim 8.3 Unions introduction, then skip 8.3.1 and 8.3.2.

S. 8. Structures, Unions, Enumerations

BasicFacilites 2/3/15, 12:29:59 PM 12

Skim the extended example in 10.2

something that the compiler can evaluate

constexpr often better choice for simple named constants that const variables

many possibilities for compile-time evaluation

constexpr (10.4)

static_cast converts between related types (e.g. kinds of numbers or pointers in the same hierarchy

reinterpret_cast will convert unrelated pointer types

const_cast used when it is necessary to change something that unfortunately was declared const

dynamic_cast uses run-time information for conversion between types -

does anything that static_cast, reinterpret_cast, and const_cast will do.

C-style casts are available but should not be used in modern C++ code -- too dangerous and hard to spot,
intentions are not clear

 casts

can write Type(value), as in
double d;
int i = int(d);

for built in types, T(v) is same as static_cast<T>(v)

double x = double(my_int_var);

good usage: for simple numeric type conversions

function-style casts

There is a nice consistency here

double(a_value) means define an unnamed double variable initialized with a_value, which can then be
used for something else.

But same notation is also used to initialize objects with constructor functions.

int i = int(); // gives value of zero

an UNNAMED OBJECT WITH DEFAULT CONSTRUCTION

T() means the default value for type T - if user type, constructs an object of type T, using default
constructor, built in type, the default value

int i(5); is the same as int i = 5;

*** Note also that

int i(); vs int i{};

New in C++11 - using { } for constructor parameters - can't be mistaken for a function declaration

constructor notation

static variables are the exception - initialized only once

doing it this way allows delaying declaration until variable can be initialized, avoid errors or possible
inefficiencies

declarations are statements, and get executed - initialization happens when control goes through

scope extends from point of declaration until end of statement that condition controls - includes the else

only a single variable allowed

declarations in conditions of if

from point of declaration until end of statement

cf. MSVC++ error in earlier versions - allowed declarations in for, but had the wrong scope.

declarations in for statements

where declarations can appear

S 9, 10 Statements and Expressions:

BasicFacilites 2/3/15, 12:29:59 PM 13

Skim the extended example in 10.2

something that the compiler can evaluate

constexpr often better choice for simple named constants that const variables

many possibilities for compile-time evaluation

constexpr (10.4)

static_cast converts between related types (e.g. kinds of numbers or pointers in the same hierarchy

reinterpret_cast will convert unrelated pointer types

const_cast used when it is necessary to change something that unfortunately was declared const

dynamic_cast uses run-time information for conversion between types -

does anything that static_cast, reinterpret_cast, and const_cast will do.

C-style casts are available but should not be used in modern C++ code -- too dangerous and hard to spot,
intentions are not clear

 casts

can write Type(value), as in
double d;
int i = int(d);

for built in types, T(v) is same as static_cast<T>(v)

double x = double(my_int_var);

good usage: for simple numeric type conversions

function-style casts

There is a nice consistency here

double(a_value) means define an unnamed double variable initialized with a_value, which can then be
used for something else.

But same notation is also used to initialize objects with constructor functions.

int i = int(); // gives value of zero

an UNNAMED OBJECT WITH DEFAULT CONSTRUCTION

T() means the default value for type T - if user type, constructs an object of type T, using default
constructor, built in type, the default value

int i(5); is the same as int i = 5;

*** Note also that

int i(); vs int i{};

New in C++11 - using { } for constructor parameters - can't be mistaken for a function declaration

constructor notation

static variables are the exception - initialized only once

doing it this way allows delaying declaration until variable can be initialized, avoid errors or possible
inefficiencies

declarations are statements, and get executed - initialization happens when control goes through

scope extends from point of declaration until end of statement that condition controls - includes the else

only a single variable allowed

declarations in conditions of if

from point of declaration until end of statement

cf. MSVC++ error in earlier versions - allowed declarations in for, but had the wrong scope.

declarations in for statements

where declarations can appear

S 9, 10 Statements and Expressions:

BasicFacilites 2/3/15, 12:29:59 PM 14

S 11 Skip 11.2.4 on overloading new. Skim 11.3 "Lists" are C++11's initialization lists. Skip 11.4 Lambda Expressions -
we'll come back.

free store is more official word than "heap"

basically, malloc/free allocate/deallocate with blocks of raw memory, new/delete allocate/deallocate
objects in memory

what does new/delete do compared with malloc/free?

allocates a block of raw memory

you use sizeof to determine this

is given how many bytes you want

allocates a piece of memory at least that size and returns its address to you

if can't allocate memory, returns NULL (or zero)

malloc

deallocates a block of raw memory

is given an address originally supplied by malloc

returns that piece of memory to the pool of free memory, available for later reallocation

free

allocates an object

does the sizeof itself

figures out how many bytes are needed based on the type you supply

allocates a peice of memory at least that size

result is an initialized, ready-to-go object living in that piece of memory

if the type you supplied is a class-type that has a constructor, it runs the constructor on that piece of
memory with the arguments you supplied (if any)

returns the address of the object (piece of memory) to you.

If uncaught, program is terminated

if can't allocate memory, throws a Standard exception, std::bad_alloc

new

deallocates an object

is given an address originally supplied by new

if the supplied pointer is a pointer to a class-type that has a destructor function, it runs the destructor on
that piece of memory to "de initialize" or destroy the object

returns that piece of memory to the free memory pool

delete

int * a = new int[n]; // allocate memory for n ints as an array

Thing * a = new Thing[n]; // allocate memory for an array of n Things

allocates an array of objects

figures out how much memory is needed by the number of cells you supply and the sizeof of the type of
object you specify for each cell

allocates a piece of memory at least that size

no syntax for specifying a non-default constructor, unfortunately

if the cells contain a class-type object, then it runs the default constructor on each cell to initialize it.

returns the address of the first cell to you

If uncaught, program is terminated

if can't allocate memory, throws a Standard exception, std::bad_alloc

new[]

deallocates an array of objects

is given an address originally supplied by new[]

if the pointer is a pointer to a class-type that has a destructor, it runs the destructor on each cell of the
array

returns the whole array to the pool of free memory

delete[]

Free Store new and delete(11.2)

S 11 "Select Operations"

BasicFacilites 2/3/15, 12:29:59 PM 15

S 11 Skip 11.2.4 on overloading new. Skim 11.3 "Lists" are C++11's initialization lists. Skip 11.4 Lambda Expressions -
we'll come back.

free store is more official word than "heap"

basically, malloc/free allocate/deallocate with blocks of raw memory, new/delete allocate/deallocate
objects in memory

what does new/delete do compared with malloc/free?

allocates a block of raw memory

you use sizeof to determine this

is given how many bytes you want

allocates a piece of memory at least that size and returns its address to you

if can't allocate memory, returns NULL (or zero)

malloc

deallocates a block of raw memory

is given an address originally supplied by malloc

returns that piece of memory to the pool of free memory, available for later reallocation

free

allocates an object

does the sizeof itself

figures out how many bytes are needed based on the type you supply

allocates a peice of memory at least that size

result is an initialized, ready-to-go object living in that piece of memory

if the type you supplied is a class-type that has a constructor, it runs the constructor on that piece of
memory with the arguments you supplied (if any)

returns the address of the object (piece of memory) to you.

If uncaught, program is terminated

if can't allocate memory, throws a Standard exception, std::bad_alloc

new

deallocates an object

is given an address originally supplied by new

if the supplied pointer is a pointer to a class-type that has a destructor function, it runs the destructor on
that piece of memory to "de initialize" or destroy the object

returns that piece of memory to the free memory pool

delete

int * a = new int[n]; // allocate memory for n ints as an array

Thing * a = new Thing[n]; // allocate memory for an array of n Things

allocates an array of objects

figures out how much memory is needed by the number of cells you supply and the sizeof of the type of
object you specify for each cell

allocates a piece of memory at least that size

no syntax for specifying a non-default constructor, unfortunately

if the cells contain a class-type object, then it runs the default constructor on each cell to initialize it.

returns the address of the first cell to you

If uncaught, program is terminated

if can't allocate memory, throws a Standard exception, std::bad_alloc

new[]

deallocates an array of objects

is given an address originally supplied by new[]

if the pointer is a pointer to a class-type that has a destructor, it runs the destructor on each cell of the
array

returns the whole array to the pool of free memory

delete[]

Free Store new and delete(11.2)

S 11 "Select Operations"

BasicFacilites 2/3/15, 12:29:59 PM 16

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 17

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 18

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 19

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 20

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 21

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 22

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

BasicFacilites 2/3/15, 12:29:59 PM 23

S 12 Functions. Skip 12.2.3 List Arguments; skip 12.2.4 Unspecified number of arguments. Skip 12.5 and 12.6 -
redundant with C coverage.

arguments are passed using initialization semantics, not assignment semantics

what's the difference? assignment has to assume that there is already a value in the variable - if is is of
class type, might have to be destructed!

meaning copy constructors are used, not assignment

note use of const & to save copying

prevents assigning back to a temporary

can't pass in a constant or literal or must-be-converted type in as a reference, only as a const reference or
value

e.g. can't inline a recursive function!

compiler writers get to decide how much and what they will inline - can get pretty tricky

can produce considerable speedup if the function is called a gazillion times!

if you ask (by inline declaration), compiler can, at its option, replace a call to the function with an
appropriately edited version of the functions code.

compiler has to have seen not just the prototype, but the actual code.

note that definition must be available to the compiler!

can lead to greater code coupling - tinker with the definition, everybody using it has to recompile

can lead to "code bloat" - a long function body gets copied in wherever it appears

But don't specify inline without good reason - drawbacks:

in-line functions

 Introduction

allow use of sensible names instead of having to make up different ones all the time

can be extremely valuable e.g. in overloaded operators, constructors, etc

see for the rules on matching calls to functions

if ambiguous - more than one at the same level or rule, error

overloading can actually help prevent errors

overloading can improve efficiency

return types are not considered in resolution

this can be tricky if you've defined your own namespaces - been there

overloading does not cross scope boundaries - only functions in same scope are considered.

name mangling - compiler creates names for functions that include type information about the
arguments in a special gobbledegook which you normally don't see - though sometimes you are forced
to look at it.

result is that every overloaded function ends up with a unique name, so the linker can just do its thing
as it did before - using only the function name!

"type safe linkage" - avoids silent errors familiar in C world

HOW DOES OVERLOADING WORK?

Overloaded functions

not allowed to make compiler worry about which default value is the "right" one.

If compiler sees two default values, it objects, even if they are the same!

normally means the default value goes in the function prototype (often in a header file) and not in the
function definition

only one declaration of default arguments - can''t repeat

default arguments

Compiler has rules for determining which overloads are prefered if more than one applies. If rules do not
choose just one, then call is ambiguous and code is rejected.

void foo(int i); // 1. call by value parameter
// void foo(const int i); // legal, meaningful, but usually not used
void foo(int& i); // 2. call by reference prameter
void foo(const int& i); // 3. call by const reference or reference to const parameter
void foo(int&& i); // 4. rvalue reference parameter
// void foo(const int&& i); // legal but not useful, so not used at this time

Consider the following function declarations (see examples for a RvalueRef_demo)

foo(42); matches foo(int i), foo(const int& i); foo(int&& i);

int int_var;
foo(int_var); matches foo(int i); foo(int& i); foo(const int&);

int int_var;
int return_an_int(); // gives a pure rvalue
foo(return_an_int()); matches foo(int i); foo(const int& i); foo(int&& i);

consider the following function calls and which declarations they match

Above calls are ambiguous - rejected by the compiler - can't tell which version of foo to call.

Situation changes if there is no call by value version foo(int i) in the picture. Compiler applies rules of
overloading preference to pick best match.

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(const int&i); - you can't modify the constant argumnet
foo(return_an_int()); calls foo(const int& i) - you can't modify the rvalue argument

Consider the following with no foo(int i) and no foo(int&& i) declared, all calls are unambiguous due to
overloading preferences - the C++98 rules apply

int int_var = 6;
const int c_int = 7;
int return_an_int(); // gives a pure rvalue

foo(int_var); calls foo(int& i); - you must want to modify the lvalue argument
foo(c_int); calls foo(const int&i); - you can't modify the constant argumnet
foo(42); calls foo(int&& i); - the constant is not an lvalue, so it must be an rvalue, but call copies it into i
so you still can't modify the original constant.
foo(return_an_int()); calls foo(int&& i) - the argument is an rvalue

Consider the following with no foo(int i) and but with foo(int&& i) declared, all calls are unambiguous due to
compiler preferences, but C++11 rules apply when rvalue parameter type is present

Odd behavior with foo(42) is there to enable “perfect forrwarding” of function template argument types. -
Later.

Conclusion: In C++11, if you declare an overload that takes an rvalue reference parameter, compiler
assumes you must want it called where possible, and so changes its preferences. Otherwise, the old C+
+98 rules apply.

We'll see how these perferences are used later

New in C++11 function overloading with parameter types including rvalues

#include <iostream>
using namespace std;

// If this version is not commented out, then all calls to foo are
ambigous and rejected.
/*
void foo(int i) // 1
{
 cout << "foo with call by value " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}
*/

void foo(int& i) // 2
{
 cout << "foo with call by reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

void foo(const int& i) // 3
{
 cout << "foo with call by reference to const " << i << endl;
 // i++; // compile error if present
 cout << "foo's i is now " << i << endl;
}

void foo(int&& i) // 4
{
 cout << "foo with call by rvalue reference " << i << endl;
 i++;
 cout << "foo's i is now " << i << endl;
}

// used to give us a pure rvalue
int return_an_int()
{
 static int i = 10;
 i++;
 return i;
}

int main()
{
 int v_int = 6;
 const int c_int = 7;

 cout << "\ncall foo(v_int);" << endl;
 foo(v_int);
 cout << "v_int is now " << v_int << endl;

 cout << "\ncall foo(c_int);" << endl;
 foo(c_int);
 cout << "c_int is now " << c_int << endl;

 cout << "\ncall foo(42);" << endl;
 foo(42);
 cout << "paranoid: constant 42 is now " << 42 << endl;

 cout << "\ncall foo(return_an_int());" << endl;
 foo(return_an_int());

}
/*
Below, a call that fails to compile is due to either an "ambiguous"
or "no matching function" error.
If there are failed calls, they were commented out to show
which version of foo gets called by the successful calls.
*/

/* Effects of declaring only one version of foo at a time
1. if only foo(int i) declared, compiles, and all cases call foo(int i)

call foo(v_int);
foo with call by value 6

foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

2. if only foo(int& i) declared, only call foo(v_int); compiles, rest
fail

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

3. if only foo(const int& i) declared, all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

4. if only foo(int&& i) declared, only foo(42); and
foo(return_an_int()); compile:

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/* two versions of foo defined:
1 & 2. if foo(int i) and foo(int& i) declared,
foo(v_int); is ambiguous; others compile, and call foo(int i)

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

call foo(42);
foo with call by value 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by value 11
foo's i is now 12

1 & 3. foo(int i) foo(const int& i)
all calls are ambiguous

1 & 4. foo(int i), foo(int&& i)
foo(42); foo(return_an_int()); are ambiguous

call foo(v_int);
foo with call by value 6
foo's i is now 7
v_int is now 6

call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

2 & 3. foo(int& i), foo(const int& i)
all calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by reference to const 42
foo's i is now 42
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by reference to const 11
foo's i is now 11

2 & 4. foo(int& i), foo(int&& i)
foo(c_int); fails to compile

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12

3 & 4. foo(const int& i), foo(int&& i)
all calls compile:

call foo(v_int);
foo with call by reference to const 6
foo's i is now 6
v_int is now 6

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
Three versions of foo defined
1 & 2 & 3. All calls are ambiguous

1 & 2 & 4. Only foo(c_int) compiles:
call foo(c_int);
foo with call by value 7
foo's i is now 8
c_int is now 7

1 & 3 & 4. All calls ambiguous.

2 & 3 & 4. All calls compile:

call foo(v_int);
foo with call by reference 6
foo's i is now 7
v_int is now 7

call foo(c_int);
foo with call by reference to const 7
foo's i is now 7
c_int is now 7

call foo(42);
foo with call by rvalue reference 42
foo's i is now 43
paranoid: constant 42 is now 42

call foo(return_an_int());
foo with call by rvalue reference 11
foo's i is now 12
*/

/*
All 4 versions defined: All calls are ambiguous.
*/

Example code

S 12 Functions:

