
C_Coverage 1/5/17, 1:02:20 PM 1

First reading is prefaces, Introduction 1, 2, 3, especially 4.

Second is 5 & 6, skim 6.5 - 6.9

Third is 7.

Reading segments

Lecture Outline - C coverage

prototype idea was developed in early C++, applied to C

int foo(double x)

int foo(x)
double x;
{ body }

Classic C does not use function prototypes, and function declarations do not need to include argument
type information

the int type is default if a type is undeclared

sqrt example -

calling an undeclared function can produce difficult to find errors

You should use gcc 5.1.0 (available on CAEN lab machines)

-std=c99 -pedantic-errors -Wmissing-prototypes -Wall

// comments are allowed

you can put a declaration can be anywhere in a block, not just at the beginning of a block

no other C99 features beyond C89 should be used in this course.

But we will be using C89, because it is closest to K&R but with two valuable options from C99:

recommendation - set your C compiler options to be strict C99 and require function prototypes

Standard C has backwards compatibility with “classic” or K&R C - causes some problems

no classes, no member variables or functions, no i/o operators (all library i/o done through function calls).

Assumes procedural programming paradigm, but object-based programming done by careful
programming, using struct types and functions that have a pointer argument to a struct type variable or
allocated memory; heavy reliance on programming by convention

Relation to C++

basics of writing lines of code itself should be familiar.

Several key concepts to cover - make sure they are clear

Introduction

C_Coverage 1/5/17, 1:02:20 PM 2

<beginning of file>
int main(void)
{

int i = 2;
double x;
x = sqrt(i);
/* what is the value of x? */

}

will it compile?

will it link (build an executable)?

will it execute without crashing?

will it produce a correct result?

Intro example: scary C

mostly function prototypes - in C

double sqrt(double);

What's in a header file?

Makes it easier to get the code right!

Why supplied?

It tells the compiler what conversions to make when pushing arguments onto the function call stack,
and where to find the returned value (if any) and what conversions might be needed there.

How does the compiler use a function prototype?

function prototypes

Headers, prototypes, and the linker

roughly, declaration tells the compiler information about a symbol or identifier, and definition asks the
compiler to commit memory space or its contents.

A definition can also serve as a declaration if there is no previous declaration. If there was a previous
declaration, then the declaration and definition have to agree with each other.

prototype is a declaration - tells the compiler how to set up the function call

actual function code (includes the body) is the definition - tells the compiler to make arrangements to
set aside the memory space, and what to put in it.

clear with functions

clear with struct type in C

Declaration vs definition

Basic Syntax concepts

C_Coverage 1/5/17, 1:02:20 PM 3

that doesn't happen until a variable is defined of that type

the structure declaration just says how to lay out memory space, but no actual memory space is set
aside.

e.g. extern declaration versus the "defining declaration"

sometimes an issue with variables

most variable declarations are also definitions.

but we will often declare a function separately from defining it

can define and declare a function at the same point.

often, a declaration and a definition appear at the same point

C99 allows them anywhere, like C++

in C89, must declare variables at beginnings of blocks only { }

an identifier refers to a piece of memory - in what context does that identifier refer to a specific piece of
memory?

where in the code does an identifier have a certain meaning?

translation unit = all headers as #included + the code in the .c file - this is what is actually compiled

variables and functions at file scope have external linkage by default.

file scope from the point of declaration through the rest of the translation unit

file scope

known throughout the program - all separately compiled modules can refer to it.

function names by default have global scope - external linkage.

"global variables" are normally given external linkage, though can be given just file scope also,

global scope - if external linkage is used properly

use to reduce scope of variables in a complex function

{ } - curly braces define a scope, variables can declared at the beginning of any block.

why is returning a pointer (or reference) to a local variable always a mistake?

block scope

function parameters are in the scope of the first function block

function scope - within a function

Scope

C_Coverage 1/5/17, 1:02:20 PM 4

a name in a struct (or class) declaration is different from the same name outside

{
int x = 1;
int y = 2;
struct Point {int x; int y;} p;
p.x = 3; /* the x and y are different variables than the previous x and y */
p.y = 4;
}

struct (or class in C++) scope

A common rule - name in the inner scope "hides" or "shadows" name in an outer scope.

 happens automatically and silently, so duplicating variable names inside an enclosing scope is a bad
idea

one reason why global variables should at least have a unique and distinctive name - make them
harder to hide by accident

example
#include <stdio.h>

void foo(int x);
int x = 1;

int main(void)
{

printf("%d\n", x);
foo(x + 1);
printf("%d\n", x);

}
void foo(int x)
{

printf("%d\n", x);
while(1) {

int x = 3;
printf("%d\n", x);
break;
}

printf("%d\n", x);
}

/* what does the following do?
void foo(int x)
{

printf("%d\n", x);
while(x <= 3) {

int x = 4;
printf("%d\n", x);
}

printf("%d\n", x);
}
*/

hiding - if same names, the compiler uses the definition in the closest, innermost, scope

C_Coverage 1/5/17, 1:02:20 PM 5

When does the memory space for a variable exist - when is it set aside or reserved, and when does it go
away or become free for other use?

memory set aside on the function call stack when the block is entered; freed up when block is
exited

refering to it afterwards is undefined - space could have been recycled for some other data

only difference from local variables is where they get their initial values

Note: function parameter variables are in the top-level block in the function

variables declared in a function block

"Automatic", stack, function-local lifetime

static local variables, global variables

special static area of memory set aside and initialized when program starts

not part of regular function call stack, so contents are preserved regardless of function calls

when program terminates, static memory space is freed up

static lifetime

using malloc/free or new/delete

programmer controls lifetime by allocating/deallocated memory space explicitly in code

memory space stays reserved as long as programmer wants it to; recylcled when programmer says it
can be

normally all recovered when program terminates, but common custom to "clean up" after yourself.

dynamically allocated lifetime

Lifetime

C_Coverage 1/5/17, 1:02:20 PM 6

tell compiler how much space it requires

tell compiler what can be done with it

you just can't dereference it, or access data with it, until you do.

because pointers to "objects" are always of the same size no matter what they point to, you can
declare or define a pointer without having to say anything about the kind of thing it points to.

seems trivial, but actually vastly important - some types can be declared incompletely - important - used in
project 1

allows decoupling - can have a variable without compiler yet knowing everything about it.

why types?

integer numbers - short, int, long, also includes char - basically a one-byte number

floating point numbers - float, double

addresses - pointers - regardless of what they point to

Standard C sets only very rough restrictions or meanings on them.

sizes of them (number of bits) depends on the hardware being compiled for

built into the C language - corresponds generally to what the CPU hardware works with directly

Built-in types

sizeof(int) typically 4

sizeof(char) 1, by definition - should't ever sav sizeof(char) for this reason

sizeof(x) is synonymous with sizeof whatever type x has.

e.g. if x is a double, and y is an int, then sizeof(x+y) == sizeof(double)

sizeof(expression) is synonymous with sizeof whatever type the expression has

char * str;
str = foo(); /* str now points to a C-string */
len = sizeof(str); /* will ALWAYS be sizeof(char *) typically 4! - contents of the C-string are irrelevant!

sizeof is compile time - can never produce a result based on information present only at run time.

sizeof operator - a compile-time operator that evaluates to the number of bytes occupied by a type

In this course never declare an integer to be unsigned explicitly.

Unsigned ints are dangerous -

integer types can be signed or unsigned

Types

C_Coverage 1/5/17, 1:02:20 PM 7

unsigned int i = 5, j = 3;

(i - j) /* what you expect */

(j - i) /* what is this? */

e.g.
unsigned i;
for(i = 0; i < n; i++)

 doesn't matter that i was unsigned! But if you do arithmetic on i you may be sorry!

Unsigned ints do nothing to make the code more expressive:

Very important on 16 bit machines!

Traditional use of unsigned ints - to express sizes which have to be positive, so the sign bit is used to
double the maximum possible value

size_t

many functions that take or return sizes do so with size_t

is often unsigned, but don't bet on exactly what it is.

Standard Library has a typedef for an integer type best suited to express sizes

size_t len = strlen(s);
x = len - max; /* WATCH OUT */

tricky:

int len = (int) strlen(s);
x = len - max;

safer

In this course, to interface with Standard Library, either declare size_t variables or cast to/from ordinary
(signed) int type. Use extreme caution with size_t because it might be unsigned.

char c1, c2;
c1 = 'a';
c2 = 42;
c1 = c1 + c2;
int diff = c1 - c2;

can freely convert between numerical types and chars .

negative if c1 comes before c2

0 if they are the same character (and the same case)

c1 - c2 will be:

character codes were assigned so that the difference between two characters corresponds to sorting order
- alphabetical order

in C, the char type is actually a kind of int - a one-byte int

C_Coverage 1/5/17, 1:02:20 PM 8

positive if c1 comes after c2

The reason why strcmp returns negative, 0, positive - chars are subtracted and difference compared to
zero, starting at the beginning of the string and stopping if the difference is non-zero and returning it.

e.g. variance calculation using two mathematically equivalent formulas

see courses about this

articles on the web about floating point - quite complex

floating point is approximate - numerical computation can be tricky

no reason to use float unless space is at a premium - not enough bits for accurate numeric work - double is
enough for most, but not all uses

C89 math library assumes doubles for arguments and returned values - compiler autoatically converts
floats to doulbles in function calls

integers (within range) are always represented exactly, but only if assigned from an integer value -
don't assume an integer value will result from non-integer calculations!

only if nothing possible to right of decimal point.

my trauma from Intel's extended precision register

any other case is probably going to fail - trust nothing

Sample code - try it and see what you get ...
/*
Demonstration that you can't compare floating-point (float or double) values and expect them
to be equal, even if they are equal mathematically.
*/
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

float x = 1. / 1000.; // approximately one-thousandth
float y = x * 1000000.; // should be one thousand, right?

if(y == 1000)
cout << "y == 1000" << endl;

else
cout << "y != 1000" << endl;

cout << "y = " << setprecision(12) << y << endl;

return 0;
}

/* example output - will depend on compiler, library, and machine

when can you compare two floating point values for equality?

float & double types

C_Coverage 1/5/17, 1:02:20 PM 9

y != 1000
y = 1000.00006104

*/

RED will be 0, YELLOW 1, etc.

integer values assigned automatically by the compiler, starting with 0, adding 1 to the previous to
get the next, so you don't have to worry about them being consistent.

RED is 0, YELLOW is 42, BLUE is 43, GREEN is 6

enum Colors {RED, YELLOW = 42, BLUE, GREEN = 6};

you can override if you want:

enum Colors_e {RED, YELLOW, BLUE, GREEN};

Can use this instead of numerical values to make code more readable and expressive.

Name of the type is "enum Colors_e" - use to declare a variable of that type

enum Colors_e thing_color = RED;

if(thing_color == BLUE) { }

case RED:

case BLUE:

switch(thing_color) {

can then use enumerated values to write code that expresses more clearly than raw integers would

A convenience facility - allows you to give names to a certain set of integer values, specifically listed or
"enumerated"

thing_color = 99; /* what? */

C doesn't enforce that an enum is a different type at all, but will let you mix integer and enums freely, even
to the extent of making a mess of the whole idea.

Bad:
State_e new_state = old_state + 1;
// what does this mean? Can it go out of range?

Good:
State_e new_state;
switch(old_state) { // obvious what is happening here

case START:
new_state = INITIALIZE;
break;

case INITIALIZE:
new_state = OPEN_CONNECTION;

Don't do arithmetic to determine an enum value - this undermines the purpose of the enum type and
results in obscure and error-prone code. Often a switch statement is a good choice.

enumerated types

C_Coverage 1/5/17, 1:02:20 PM 10

break;
case OPEN_CONNECTION:

new_state = START_TRANSMISSION;
break;

// etc

I/O with enums: since enums aren't a first-class type, it gets treated as an integer. So it gets written out as
the integer value, not its symbolic name. To read in an enum value, read the integer, check that it is a
possible value for the enum type (clumsy to do) and then assign it to a variable of the enum type with a
cast.

C_Coverage 1/5/17, 1:02:20 PM 11

#define N 23

BUILDS SYMBOL TABLE string "N" defined as string "23"

everywhere the token “N” appears, "23" is substituted

double-quoted strings are ignored - won’t go into strings - inconvenient in places, but only sensible thing to
do.

why the parens? consider SQUARE(z+1)

#define SQUARE(x) (x) * (x)

#define MAX(A, B) ((A) > (B)) ? (A) : (B)

saves typing

can result in incomprehensible code

can essentially define your own computer language

can be cranky, since text substitution is dumb -knows nothing about types

also, macro definitions can be hidden in includes of includes, meaning that reader can be
confronted with one whose source is unknown

macro cons

results of macro expansion are inline, faster than a function call

macro pros

macros

often see macros defined

preprocessor is very important in C

macros are not type safe

macros interfere with comprehensibility

inline functions will be just as fast - define instead

function templates are much more flexible and type-safe

using macros unnecessarly in C++ is a sign of bad taste, bad style, ignorance, etc.

but is heavily deprecated (== official insult) in C++

e.g. different compilers/architectures

using preprocessor macros for conditional compilation

The preprocessor and macros

C_Coverage 1/5/17, 1:02:20 PM 12

common in library implementations

still heavily used in C++

#ifndef/#define/#endif

using macros as "include guards"

defined in <assert.h>
#include <assert.h>

e.g. assert(i < n);

assert(expression that is supposed to be true if everything ok);

assertion i < n failed in zot.c line 23

if expression is false, program halts, see message on stderr/cerrr like

excellent programming practice to sprinkle your code with asserts to catch programming errors quickly
and clearly - e.g. before a bad pointer causes an uninformative crash.

define NDEBUG before the #include to turn off - no code results - assert code literally disappears
#define NDEBUG
#include <assert.h>

NOTE: Don't use for run time errors (like out of memory or bad input data) - NO PROTECTION IF
TURNED OFF for deployment! Programming errors/debugging only!

so leave asserts in during development; when debugging complete, turn them off to eliminate
overhead.

usage:

#ifdef NDEBUG

#define assert(condition) ((void) 0)

#else
#define assert(condition) ((condition) ? ((void) 0) :

__assertion_failed(#condition,__FILE__, __LINE__))

#endif

note the leading-underscore names: part of the implemetation; other compiler/libraries will differ.
However, the file and line number symbols, which begin and end with double underscores are Standard
- you can use them yourself if you want. They are replaced during preprocessing by the file name and
the line number where they appaer.

a stripped down definition for illustration - always use the supplied one, in <assert.h> or <cassert>
because there is some implement specific stuff involved.

assert macro - example of handy use of macro where rewriting your code makes some sense

sometimes macros used instead of a function for speed -

A case of a messed-up macro - a good example of why they are not a good idea

C_Coverage 1/5/17, 1:02:20 PM 13

the code is in-line instead of a function call, but called as if a function

while(*startp && !(isalpha(*startp))) {

was translated as:

while (*startp && ! ((__ctype + 1)[*startp] & (0x00000001 | 0x00000002)))

then gave warning that subscript was a char, not an int!

example

my claim is that the macro is incorrect - should have cast the subscript

but how could I avoid this? isalpha is *supposed* to be call with a char or an int - it's not my fault if the
implementers did this

- so macro differs from a function - a function can hide the details of the implementation from the caller,
while a macro can't

why macros are hated in C++ they too easily interfere with program organization and clarity.

C_Coverage 1/5/17, 1:02:20 PM 14

x = f(a) + g(b);

foo(f(a), g(b));

can't depend on whether f or g will be called first - code must not be sensitive to it.

i = 3;

foo(i++, i);

could be either 3 and 3 or 3 and 4 - can't depend on it.

what values of i are given to foo?

stay out of trouble!

never use both the variable and the incremented/decremented variable in the same expression or
statement.

special rule for increment/decrement operators:

Order of evaluation in an expression is undefined unless precedence, associativity require it.

See the handout: C Coding Standards

I used to think I was being paranoid until a student had a very confusing error due to exactly this
problem!

Such names are reserved for implementation symbols - too easy to screw up and collide with one!

Exact rule: first character is an underscore followed by upper case letter, or a second underscore, is
reserved for the implementation.

Very hard to tell exactly how many underscores you have, so best not to use any leading underscores.
Not allowed in this course, though you see some people who like to live dangerously.

Don't start names with underscores

almost universal convention, so follow it!

Macro names should be all upper case

e.g. size_t is in standard library

Common for typedef names to end with "_t" - I like to use this

struct Thing, Record_t

note C, C++ std. lib is almost all lower-case names, so makes it easy to tell your types from library
types.

Very common to use initial uppercase of user-defined types or typedef names - you should do this

Naming conventions

Some Small but Important Issues

C_Coverage 1/5/17, 1:02:20 PM 15

FindMaximumValue

find_maximum_value /* my preference */

Basic names: either upperlower or underscore to divide names into words

if you have to write or read a comment to tell what a variable is for, try a longer, more descriptive name

i for for loop array subscripts

p for a temporary pointer

names used purely locally can be single letter

Follow guru advice - make the names long enough to be comprehensible

void foo(void); /* foo takes no arguments and returns nothing

void foo(); /* foo might take arguments as in pre-Standard C but compiler will not check them.

In C:

void foo(); /* takes no arguments and returns nothing and Compiler checks for this! */

In C++

A function with no arguments must be declared as (void) - in C, empty parentheses mean something
different than in C++ - backwards compatible with “Classic” C - no argument list type checking!

use meaningful names for documentation purposes

Parameter names in function prototypes are optional and are ignored if present

Function parameters

<stdio.h>

Standard header files for C always end in .h

spaghetti code

why banned - almost

if-else with blocks

iteration constructs: for, while, do-while - uses blocks

use of functions as a code organization technique

better ideas which make goto easy to avoid

use of goto

C_Coverage 1/5/17, 1:02:20 PM 16

See separate notes - Multiple Sources, Linker, global variables

Overview: source file, preprocessing, translation unit, compilation, object file, linker, executable

"static" keyword

internal, external

error if the linker finds more than one equally applicable definition

no definition of an external variable

normally no problem if the function is never called

most linkers will reduce the size of the executable by stripping out code that is never called.

no definition of a function that is called

error if the linker fails to find a definition for something that is referred to

the One Definition Rule

Linkage

C_Coverage 1/5/17, 1:02:20 PM 17

what is it - declared layout of memory, defined block of memory

where "user" means "user of the language" - the programmer

the *only* truly user-defined type - everything else is basically built-in.

the "user-defined type" in C

struct Point {
double x;
double y;
};

following declares a type named "struct Point"

struct Point {
double x;
double y;
} p1, p2;

can declare a structure type anywhere, but most normally done at file scope or in a heade file, and
then used in definitions later

why the ending ‘;’? You can declare a variable of that type in the same statement.

typedef struct Point Point_t;

can use a typedef to give it a one-word name

In C, name of user defined type always starts with struct

compiler must lay them out is same order as declared, (lowest to highest addresses) but not necessarily
contiguous - often filler bytes

char can be anywhere

int must be a multiple of e.g. 4 bytes

double must be a multiple of e.g. 8 bytes

compiler must ensure that all variables start on proper address boundaries for their type - depends on
CPU architecture, but typically:

note alignment issues!!

on one compiler/architecture this takes 16 bytes, not 1+4+8 = 13

example:
struct S {

char c;
int i;
double d;
};

struct type

Pointers, Arrays, Function pointers, structures

C_Coverage 1/5/17, 1:02:20 PM 18

sometimes a lot!! more

sizeof(struct S) usually greater than sizeof(char) + sizeof(int) + sizeof(double)

note that sizeof(char) is one, by definition - using sizeof is redundant

NEVER guess at the size of a struct type - ALWAYS use sizeof operator!!

typedef <already known type> <new synonym name for already known type>

doesn't really create anything, just gives a synonymous name for already known types - compilers often
just substitute it in, and then ignore it thereafter - can be inconvenient

But normally affects the syntax parsing - the typedef'd name is treated as a unit.

means that complex declarations can be a lot easier to get right if built up out of typedefs

Typedef - how does it work?

C_Coverage 1/5/17, 1:02:20 PM 19

int * ptr = 0;

int i = *ptr;

*ptr = 42;

"pointer" - an address, or a variable containing an address

by custom and convention, a null pointer is used to mean an "empty" pointer - "nothing there"

what the error results in depends ... might not crash - depends on the machine/OS, etc.

most machines use address zero for some special purpose, and may get confused or upset if you
try to store something there.

trying to derefence a zero/null pointer, or make use of the value at a 0 address, is always an error

by definition, a "null" pointer - an address represented as 0 (zero), points to nothing at all

#define NULL 0 /* a common standard definition in both C and C++ */

#define NULL (void*) 0 /* another definition that attempts to distinguish between integer zero and the
zero address

in C, using NULL is a long honored custom.

but in fact, 0 is just as good as NULL - means exactly the same thing - NULL just contributes some
clarity

I will apply this in this course - show you are tuned in by using NULL only in C, not in C++

we don't like to use NULL instead of 0 in C++, and actually have a much better choice starting with
C++11.

but in C++, since macros are avoided, convention is NOT to use NULL

the macro NULL is customarily used in C to represent a pointer value of zero

We talk about “representation” of the address - what is the format in terms of bits?

on most modern machines, all kinds of data (and code) in memory resides at addresses that have the
same representation - e.g. 32 bit positive binary numbers.

e.g. word addressed machines had a special address representation for accessing individual
characters, or for code in memory versus data.

a result of trying to optimize the hardware cost - every bit more in the data pathway cost a lot of
money before very large scale integrated circuits

in olden times, some machine architectures had addresses that had a different representation for
different kinds of data in memory

C is committed to being compatible with these architectures - so a C compiler for that architecture has
to know how to transform pointers from one representation to another.

What about pointers to different types of data?

Pointers

C_Coverage 1/5/17, 1:02:20 PM 20

C developed in the context of early byte-address machines, so it is most “comfortable” with that
family of architectures.

e.g. the null pointer might not actually be all bits zero, so if you set a pointer to zero, the compiler
has to know how the null pointer looks for that architecture.

on most modern machines, the null pointer really is all bits zero.

so why do pointers have "types"?

*ptr - dererence gives you a thing of the pointed-to type - what is it? the pointer type says.

doing pointer arithmetic - compiler needs to know the size of the pointed-to thing

in certain cases, the compiler must know what is at the address -

what does the type of a pointer mean?

const int x = 5;
/* other code */
x = 6; /* error! */

basic use of const - to say that a variable should not be modified - compiler will flag it as an error if your
code tries to do so:

pointer to const means pointer can't be used to modify the pointed-to data:
int x = 5;
int * p = &x; /* pointer to non-const int */
const int * cp = &x; /* pointer to const int */

p = 6; / OK */
cp = 7; / error! */

char ary[x]; // same as char ary[42]

switch (i) {
case x: // same as case 42:

can thus use it anywhere you could use a literal constant

in C++, the compiler "knows" x is a constant and what its value is at compile time

note gcc incorporates a bunch of non-standard extensions; use -pedantic-errors with -
std=c89 to get actual c89 enforcement

char ary[x]; // not same as char ary[42] - ary is a C99 variable-length array

switch (i) {
case x: // not the same as case 42: - treating x as constant is gcc extension

in C, x is still a variable, just one that is marked as read-only after initialization, but the compiler
doesn't "know" that it is actually a constant - it is still a variable!

consider const int x = 42;

const in C is not quite the same as const in C++

pointers to const data

C_Coverage 1/5/17, 1:02:20 PM 21

This is why #define is still used for constants in C - since the preprocessor substitutes in the
literal contant, compiler is happy with it.

this is a "bug" in the C Standard - probably why gcc "corrected" it

in C++, Stroustrup wanted to avoid using preprocessor mactors as much as possible, so made
compiler aware that an const variable intiialized with a compile-time constant was in fact equivalent
to a literal constant. New C++11 constexper goes even vurther.

make clear whether input parameter pointers are pointing to read-only data or not.

make coding more bug-proof - compiler helps you avoid modifying stuff that isn't supposed to be
modified

Some use of this in Project 1

Important concept: Don't say things are const that are not conceptually constant! Nothing but
misery and kludgy code down that path!

Because of limitations, const in C is not used very much compared to C++, but it can be useful to:

no reference parameter type

how do you get more than one value back from a function?

looks scary, but draw picture, make up addresses, keep it straight

int i = 1;
int j = 2;
int k= 3;
int * kp = &k;
printf("%d, %d, %d, %d\n", i, j, k, *kp);

i = foo(&j, &kp);

printf("%d, %d, %d, %d\n", i, j, k, *kp);

}

int foo(int * ap, int ** bp)
{

*ap = 5;
**bp = 7;
*bp = ap;
return 4;

}

what if it is a pointer value you need back? Pointer to pointers

pointer parameters

incrementing/decrementing pointers, and pointer arithmetic in general, usually only makes sense if you
are pointing into an array

+1 means point to the next thing of that type, -1 to the previous thing of that type

pointer arithmetic

C_Coverage 1/5/17, 1:02:20 PM 22

actual no. of bytes added depends on the type

char * pc;

int * pi;

pc++ means add 1 to address in pc, point to next char

pi++ means add 4 (typically) to address in pi, point to next integer

char a[10]; int b[10]
char * pc1 = &a[0]; char * pc2 = &a[2];
pc2 - pc1 is 2 (two characters, actual difference in addresses is 2)
pc1 - pc2 is -2
int * pi1 = &b[0]; int * pi2 = &b[2];
pi2 - pi1 is 2 (two ints, actual difference in addresses is 8 typically)
pi1 - pi2 is -2

could be long, or long long on 64 bit machines

actual type for difference between two pointers is defined as ptrdiff_t in <stddef.h> (same place as
size_t is defined.

difference between two pointers is a signed integer value for the number of elements between the two
pointers:

can't dereference it - compiler doesn't know what kind of thing is at that address!

just a raw address

introduced in Standard C to represent directly the idea of a raw address - no claim is being made about
what is at that address.

can convert to/from pointers of other types, but watch out!

void * does have a set size - e.g. sizeof(void *) is usually 4 on 32-bit machines.

void * a[5]; /* array of five void pointers */
void ** p = &a[1]; /* p points to the void pointer in the second cell of the array */
p++; /* now points to the void pointer in the thrid cell of the array */
*p is the contents of the void pointer where p points - a void *
**p - can't do - trying to dereference a void pointer

in other words, a pointer to a void pointer is not a void pointer.

can have pointers to void pointers, and can dereference them, do pointer arithmetic on them:

on byte-addressed machines, a raw address was the same as a pointer to characters

so sizeof(void) was made equal to sizeof(char) == 1 by definition

in C, void * was made backwards compatible with how char * was the original raw address type in
classic C

Some small differences between C and C++

void * type means pointer to uncommitted type

C_Coverage 1/5/17, 1:02:20 PM 23

void * p = some address
p++ is that address plus one

so you can do pointer arithmetic on void *

sizeof(void) is undefined, so can't do pointer arithmetic on a void *

in C++, this was tightened up

might produce a warning - either helpful or annoying.

Function parameters are copies of argument value in the call, so implicit conversions will be done in
a function call following same rules as assignment

implicit conversion - the compiler will let you do an assignment or copy of a value from one type to
another

you are "casting it in the role of ..."

explicit conversion - you write a cast expression that specifies what type you want to convert a value
to

On most modern machines, pointers have the same representation regardless of data type - just a
plain address

In this case, all the cast does is tell the compiler to treat the address as a pointer to the other type.

But if a representation change is involved, the compiler may have to generate machine instructions
to do it.

Is a representation change involved?

A demo of what's legal when converting to/from void pointers. Try this with your C compiler

#include <stdio.h>

int main(void)
{

struct S1 {
char c;
int i;
int j;
} s1;

struct S2 {
char c;
double d;
} s2;

void * void_ptr = 0;

struct S1 * S1_ptr = &s1;
struct S2 * S2_ptr = &s2;

int i = 3;
int * int_ptr = &i;

void pointers and casting - can go to/from void pretty freely (but note integers)

C_Coverage 1/5/17, 1:02:20 PM 24

double d = 3.14;
double * double_ptr = &d;
char c = 'x';
char * char_ptr = &c;

/* Start with simple conversions. The compiler will let you convert one kind of object into
another if they have a known and well defined relationship - like numeric types.
So the following are legal "implicit" conversions. */

i = s2.d; /* but copies the integer part only, loses rest */
s2.d = i;
i = c;
s2.d = s1.c; /* chars are actually just a one-byte int in C */

/* But the compiler doesn't know the meanings of user-defined (struct) types,
so how could it meaningfully convert one into the other? Even the cast doesn't
make sense, so it is disallowed; the following are all illegal. */

s1 = s2;

s1 = (struct S1) s2;

i = (int) s1;

/* The following are illegal for much of the same reason -
pointers are not interchangeable if they point to different kinds of objects. */

S1_ptr = S2_ptr;

S1_ptr = int_ptr;

int_ptr = S1_ptr;

/* Even when the pointed-to objects have legal "implicit" conversions, this doesn't
mean that the pointers are implicitly convertible. Among other issues, note
that a double might have to reside at a certain set of addresses
due to alignment issues, that int's don't necessarily share. So all of the following
are illegal in Standard C. */

int_ptr = double_ptr;
double_ptr = int_ptr;
int_ptr = char_ptr;

/* Likewise, integers and address are different kinds of things, so even though
addresses are integral values, the following are all illegal. */

int_ptr = 360;

i = int_ptr;

void_ptr = 360;

/* HOWEVER, you can coerce the compiler to convert the pointer type with a cast, but that doesn't
mean that the result is meaningful - you are forcing the compiler to agree with your idea that the
pointed-to
data come be meaningfully interpreted as the other kind of object. The following are all legal, but
it is up to you whether they are actually meaningful or correct. */

C_Coverage 1/5/17, 1:02:20 PM 25

int_ptr = (int *) 360;

S1_ptr = (struct S1 *)S2_ptr;

S1_ptr = (struct S1 *)int_ptr;

void_ptr = (void *) 360;

/* void pointers in C are special because you can freely assign other pointers to and from
without the use of a cast - but again, you better be right! It is often a good idea to
include the cast anyway to let the reader know what you are doing more clearly. */

void_ptr = int_ptr;

S1_ptr = void_ptr;

void_ptr = S1_ptr;

int_ptr = void_ptr;

return 0;
}

C_Coverage 1/5/17, 1:02:20 PM 26

struct Point;

structure declations is most common in C, class declarations in C++.

tell the compiler only that a certain type will be used

likewise, cannot declare a variable of the incomplete type - compiler doesn't know how big it is, so can't
set aside stack space for it.

pointers are allowed because pointers are always the same size, no matter what they point to, so
compiler can deal with a pointer declaration to a incomplete type with no problem.

then can declare pointers of that type, but can not dereference them or do pointer arithmetic with them
because compiler doesn't know what it is or how big it is.

Examples:

struct Thing; /* we will be a using a Thing struct */

struct Thing * ptr; /* ptr points to a Thing struct - whatever it is */

ptr = get_Thing(); /* we can work with a pointer to a Thing struct now */
print_Thing(ptr); /* we can give it to another function now */

ptr->i = 13; /* error - do not know yet that Things have an "i" member */

struct Thing t; /* error - do not know yet how big, or what is in, a Thing struct */

/* now later in the code */

struct Thing { /* the complete declaration */
 int i;

char c;
};

struct Thing t; /* no problem, t can be allocated now */

ptr = &t;

ptr->i = 13; /* no problem, complete declaration is known */

then when necessary, provide the complete declaration to the compiler to allow full use of the type

technique is also called an "opaque type"

By putting an incomplete type declaration in the header file for a container (like Ordered_container), we
allow the client code to use the containers (through a pointer), but without knowing what is *inside* the
container. A simple, but powerful form of encapsulation. The implementation file (Ordered_array.c,
Ordered_list.c) has the complete declaration required for the actual container code.

Using incomplete types in Project 1

Incomplete type declarations - also called "forward" declarations

C_Coverage 1/5/17, 1:02:20 PM 27

it is easy to simulate dynamically sized arrays on the heap.

in C99, size of arrays can be defined at run time, but for Standard C89, arrays are given a size when
declared and so the size is fixed at compile time.

K&R say that name of array is same as address of first cell, but this is not quite true

considered evil in C++ - too easy to make errors, too awkward - e.g. use std::vector<> or std::array<>
instead, but built-in arrays are still there in C++, and are still important, especially with C-strings, arrays of
characters.

example

int main(void)
{

double ary[5]; /*array of 5 doubles occupying (typically) 40 bytes */
printf("%d\n", sizeof(double)); /* outputs 8 (typically)*/
printf("%d\n", sizeof(double *)); /* outputs 4 (typically) */
printf("%d\n", sizeof(ary[0])); /* outputs 8 */
printf("%d\n", sizeof(&ary[0])); /* outputs 4 */
printf("%d\n", sizeof(ary)); /* outputs 40 */
foo(ary);

}

void foo(double ary []) /* void foo (double * ary) is synonymous */
{

printf("%d\n", sizeof(ary[0])); /* outputs 8 */
printf("%d\n", sizeof(&ary[0])); /* outputs 4 */
printf("%d\n", sizeof(ary)); /* outputs 4 ! */

}

name of array carries overall size information, but only in the scope of the original declaration!

ary becomes double * - the address of ary[0]

ary + 3 is equivalent to ary[3];

call: foo(ary); ditto

left hand side is pointer to something of type T

right hand side is an integer

calculate address lhs + rhs * sizeof(T)

dereference this address to obtain value there (or change value there)

definition of [] operator

left hand side can be array name, or a pointer variable - works the same

2D arrays - ?

better way to put it: when array name is passed to a function, or used in an expression, the name of the
array “decays” to a pointer of element type pointing to the first cell of the array

Arrays (built-in arrays)

C_Coverage 1/5/17, 1:02:20 PM 28

int * a = malloc(n * sizeof(int));

a[0] is first

a[n-1] is last element

an array of pointers?

int ** a = malloc(n * sizeof(int *));

*a[0] is whatever the pointer in the first cell points to

can use for run-time sized arrays

C_Coverage 1/5/17, 1:02:20 PM 29

Called "C-strings" to distinguish from the C++ Std. Lib. string class.

when compiler sees "abc" it arranges for a, b, c, \0 to be stored in memory somewhere

everywhere "abc" appears, compiler replaces it with address where the array starts.

so the type of "abc" is char * or const char *.

only thing C compiler knows about "strings" are string literal constants

lots of them - don't re-invent the wheel!

see the course web site handouts for a list of the most useful.

everything else concerning strings is in the C-string library functions and i/o functions

array notation is a mathematical shorthand best for number arrays - you need to be comfortable with
using pointers directly

idiomatic to use char * pointers to process C-strings rather than array notation

void strcpy(char * dest, char * src)
{

while(*dest++ = *src++);
}

example - copy a C-string from a source to a destination - the "essence of C" - how does it work?

C-strings

C_Coverage 1/5/17, 1:02:20 PM 30

can be treated as the address of where the function ends up in memory

can arrange to store a function’s address in a pointer variable, and then call the function using the pointer
variable, or “function pointer”

do this by declaring the function pointer type.

but for compiler to generate the code for a call to the function using the function pointer, it needs to know
what the return type and parameter types are - compare to function prototypes.

the name of a function has type “function taking parameters of T1, T2, etc and returning T3”

return_type (*variable_name)(type1, type2 etc);

int (*fp)(int, double);

example

int foo(int);
int main(void)
{

int i = 42; /* to use in the call */
/* declaration */
int(*fp)(int);
/* assignment */
fp = &foo;
fp = foo; /* implicit conversion */
/* calling a function using a function pointer */
i = (*fp)(i);
i = fp(j); /* also permitted */

}

fp is a pointer to a function that returns an int and takes an int and a double as parameters.

syntax of a function pointer declaration:

(return_type (*)(type1, type2 etc))

general cast syntax: the type name in parentheses - e.g. (int *) - do the same for function pointer cast

function pointer cast - declaration, no variable name, enclosed in parentheses

typedef return_type (*typedef_name)(type1, type2)

typedef_name fp; /* function pointer of that type */

function pointer typedef - the typedef name shows up as the variable name in the declaration

one part of code can decide what function should be called, and pass a pointer to it as a parameter

other part will use the function pointer to call whatever function was selected elsewhere

or, function pointers could be stored in an array, in a struct, wherever

main use of a function pointer - to help create generic code

Function pointers

C_Coverage 1/5/17, 1:02:20 PM 31

/* Demonstration of function pointers in a trival context. */

#include <stdio.h>

/* the function pointer type */
typedef int (*int_getter_t)(int *);

/* function prototypes */
void do_the_work(int_getter_t);
int get_odd_int(int *);
int get_even_int(int *);

/* main asks the user which function to use, sets a pointer correspondingly,
and then hands it to the do_the_work function to use.
*/
int main(void)
{

int_getter_t fp; /* the function pointer */
char c;

while(1) {
printf("Do you like odd numbers? Enter y, n, or anything else to quit: ");
/* the whitespace in the format string says to skip leading whitespace and then read a

character */
scanf(" %c", &c);

if(c == 'y') {
/* fp = get_odd_int; one syntax */

fp = &get_odd_int; /* an equivalent syntax */
}

else if(c == 'n') {
/* fp = get_even_int; */

fp = &get_even_int;
}

else
break;

/* call using the function pointer as an argument */
do_the_work(fp);
}

printf("Done!\n");
return 0;

}

/* this function "does the work" using a function passed as a parameter */
void do_the_work(int_getter_t fp)
{

int i, result;

/* call the function using the pointer */
/* result = fp(&i); one syntax */

result = (*fp)(&i); /* an equivalent syntax */

simple example of using function pointers at run time to vary behavior

C_Coverage 1/5/17, 1:02:20 PM 32

printf("You entered %d\n", i);
if (result) {

printf("You chose wisely!\n");
}

else {
printf("You are inconsistent!\n");
}

return;
}

/* these functions ask the user to supply an integer;
they return the integer value using the pointer parameter,
and then return either 1 (true) or 0 (false) depending on
whether the number is odd or even versus even or odd.
*/

int get_odd_int(int * ip)
{

printf("Enter an integer: ");
scanf("%d", ip);
if (*ip % 2)

return 1; /* true if odd */
return 0;

}

int get_even_int(int * ip)
{

printf("Enter an integer: ");
scanf("%d", ip);
if (*ip % 2)

return 0;
return 1; /* true if even */

}

E.g. there is an architecture in which machine code is word addressed, but data is byte-addressed, with
byte address = 4*word address

C has to provide for the possibility that addresses of data and addresses of machine code may have
different representations.

void* is a pointer to data (or data objects), not a pointer to machine code (functions).

int (*fp) (double); /* a function pointer

void* get_function_address(char * function_name); /* similar to the dlfcn.h POSIX package for
dynamically-loaded library access */

fp = get_function_address(“foo”); /* warning or disallowed - can’t convert between void* and a
function pointer */

Example:

There is no such thing as a pointer to a function of any type - no function pointer analog to void* for data
types. Can’t use void* for this purpose - conflicts with possibility of different representations

What to do if we really need a generic function pointer?

Casting between a function pointer and void*

C_Coverage 1/5/17, 1:02:20 PM 33

Use a function pointer cast - tell the compiler we know more than it does about what is going on -
namely that the void* address really is the address of a function of that type:

fp = (int (*) (double)) get_function_address(“foo”); /* cast the void* to the function pointer type */

This is legal C, but as with all casts, we are telling the compiler to accept our belief that this is valid and
will work. If we are wrong, we are on our own, and the results we get will be undefined.

You often need to given the generic code a pointer to a function that it can call using void* data, even if
the function has to work in terms of actual data types.

In C, generic code that can work for different data types has to be done in terms of void*, usually involving
generic functions that have void* parameters and return type.

Recall that C has to support different representations of pointers to different types of data.

Recall that the type of a function is used by the compiler to generate the code for setting up the call -
this involves checking on the number and types of the parameters, and converting the argument values
and return types if necessary.

A function pointer contains only the address of where the function code is in memory. The type of the
function pointer tells the compiler how to set up the call.

So the compiler forbids you from assigning a function pointer to a function whose type does not match
- this usually gives an error of “pointer types are incompatible”. If this was allowed, there could be a
mismatch in the calling code, resulting in undefined results - what happens will depend on details in the
architecture and implementation.

char (*fp) (int, double); /* a pointer to function with type “function returning char that has an int and a
double as parameters”

int foo(double, int) { blah blah} /* a function with type “function return int that has a double and an int
as parameters”

fp = foo; /* not allowed because the function types don’t match, so a call of foo through fp results in
undefined behavior. */

char c = fp(int_var, double_var); results in contents of call stack and returned value that is different
from what foo expects

For example:

Applies even if void* pointers are involved, which the compiler is normally happy to implicitly
convert void* to/from any other pointer type.

void* (*fp) (void*, void*); /* a pointer to function with type “function returning void* that has an
void* and a void* as parameters”

char* foo(double*, int*) { blah blah} /* a function with type “function return char* that has a
double* and an int* as parameters”

For example:

This rule also applies to pointer parameters and return values, even if pointers usually have the same
representation, because C has to support different representations of pointers.

Although you can cast a function pointer of one type to another type, that does not result in any parameter
or return data type conversions.

Casts of function pointers for generic code

C_Coverage 1/5/17, 1:02:20 PM 34

fp = foo; /* not allowed because the function types don’t match */

void* result = fp(&double_value, &int_value); /* not allowed even though the call stack values
and returned value are compatible */

But C has to assume that e.g. char*, double*, int*, and void* might actually have different
representations, so the rule applies and the assignment is not allowed.

This is counter-intuitive if we are working on an architecture where pointers have the same
representation for all data types - we know that the pointers will get represented on the call stack and
returned value in a valid way.

void* (*fp) (void*, void*); /* a pointer to function with type “function returning void* that has an
void* and a void* as parameters”

char* foo(double*, int*) { blah blah} /* a function with type “function return char* that has a
double* and an int* as parameters”

void* wrapper(void* p1, void* p2) /* explicit cast version*/
{return (void*) foo((double*) p1, (int*) p2);}

void* wrapper(void* p1, void* p2) /* implicit cast version*/
{return foo(p1, p2); }

fp = wrapper; /* function pointer type and function types match, no problem */

char* result = (char*) fp((void*)&double_value, (void*)&int_value); /* call through fp with explicit
casts to/from void* */

void* result = fp(&double_value, &int_value); /* let compiler perform implicit conversions to/from
void* */

This method fully complies with the Standard, but the wrapping function is a nuisance bit of
code to have to write. Also, note that the casting to/from void* will only be correct if we in fact
are supplying the correct pointers to the data.

1. Wrap the actual function to be called with another function with matching parameter types - the
wrapping function performs the conversions explicitly or implicitly:

 Upshot is that function pointers are limited to storing the address only of a matching function type. But
this really interferes with writing generic code, which involves calling functions with void* parameters or
returned values. What do we do? Two possibilities:

void* (*fp) (void*, void*); /* a pointer to function with type “function returning void* that has an void*
and a void* as parameters”

char* foo(double*, int*) { blah blah} /* a function with type “function return char* that has a double*
and an int* as parameters”

fp = (void* (*) (void*, void*))foo; /* function pointer cast - tell compiler to treat foo as if it had same
type as fp */

char* result = (char*) fp((void*)&double_value, (void*)&int_value); /* call through fp with explicit
casts to/from void* */

void* result = fp(&double_value, &int_value); /* let compiler perform implicit conversions to/from
void* */

2. Use a function pointer cast to tell the compiler that we think it is OK to call the function even though
the types are incompatible:

C_Coverage 1/5/17, 1:02:20 PM 35

This is legal C, but as with all casts, we are telling the compiler to accept our belief that the call will
function correctly. If we are wrong, we are on our own, and the results we get will be undefined.

C++ supports generic programming much more safely with templates.

Conclusion: The type system helps us write code that the compiler can guarantee will produce correct
machine code - “type safety”. However, sometimes this type-safety conflicts with what we need to, and
we need to bypass the type-safety. This is especially true for generic code.

variables occupy space in memory - "exists" when it is valid to refer to the contents of that piece of memory
reserved for it

the lifetime of a variable is the period of time when that variable's memory is reserved and it is valid to refer
to it.

lifetime of automatic (local) variables is from when the function is called to when it returns

resides in a fixed place in memory

lifetime of static variables is from program startup to program termination

dynamically allocated variables have a program-contorlled lifetime: you reserve a piece of memory, keep
the data in it, and you decide when you are done with it. Pass around pointer to it to whoever needs to
refer to it.

Why do it? - To directly control the lifetime of a variable.

in C++ you have new/new[]/delete/delete[]

malloc allocates memory, free returns it

declared in stdlib.h (misnamed!)

in this course, don't use anything except malloc - other variants work, but not necessary.

in C you have malloc and free, and a couple of unnecessary variants.

gtd to be alligned for anything you might want to put in it.

NULL is returned if memory not available

good programming practice to check, because it you don't, you can get unhelpful crash on protected-
memory systems, or down in flames on unprotected systems

example code
#include <stdlib.h>/* for malloc declaration */
#include <stdio.h> /* for I/O */
. . .

/* allocate an array of ints with size specified by int num_cells */

int * p;
p = malloc(num_cells * sizeof(int));

void * malloc(size_t number-of-bytes);

getting a specified number of bytes of memory

Memory allocation

C_Coverage 1/5/17, 1:02:20 PM 36

/* obsolete version:
The cast is old custom from pre-ANSI days; unnecessary, and error-prone!
p = (int *)malloc(num_cells * sizeof(int)); */

if(!p) {
printf("Out of memory!\n");
exit(1); /* exits program with Unix signal for a failed execution */
}

/* use p, e.g., as if it were an array: */
p[3] = 42;

. . .
/* when finish, free the memory */
free(p);
/* don't refer to it after freed! results are undefined!!! */
p[3] = p[2]; /* DANGER! DANGER! DANGER! HEAP CORRUPTION LIKELY! */

int malloc(int) might be the resulting assumed declaration

if int is too small ow!

leaving the cast off would help detect it! - cast assign a pointer to an int implicitly!

if you forget to do #include <stdlib.h>, then HORRIBLE THINGS might happen

GOTCHA

void free (void * ptr)

ptr must point to a piece of memory previously allocated by malloc (same address as malloc returned)

when done, return memory with free()

See simple example in K&R Ch. 8

bookkeeping info (e.g. links between the blocks in the data structure) are typically stored right next to
the block you're given - you could break them by writing outside the block.

once block of memory is free'd, the memory manager is free to write its bookkeeping info into the block,
clobbering what is there.

turns out memory allocation is a very common substantial bottleneck as it is ...

very fast, very efficient, but completely stupid

for speed, no checks for correctness of pointer given to free, just updates the data structure
unconditionally

malloc/free maintain a data structure to manage the memory, and these optimized for speed

How does this work?

Don't allocate memory unnecessarily - this is a slow and error-prone process and should be avoided if
possible.

DON'Ts

C_Coverage 1/5/17, 1:02:20 PM 37

`E.g. the "bookkeeping" in the memory manager takes a huge amount of time compared to allocation
on the function-call stack.

If anything wrong, you may well "corrupt the heap" and cause unpredictable, confusing errors or
crashes - lots of ways to do it!

a memory leak

Don't forget to free the block when it is no longer needed

if you need to re-use the pointer variable, save the value in another somewhere

you need to give the block address to free in order to release the memory!

Don't lose the pointer value (address) - must keep it stored somewhere

too easy to do with array subscripts, pointer arithemetic

if you write outside the block, you might clobber the bookkeeping information in the memory pool.

Tricky because often, actually allocated block is bigger than you asked for - minimum size because of
alignment issues can give you a bit of extra space that you didn't ask for. So bug doesn't show up right
away, only when data gets a little bigger, or you change machines, etc.

Don't scribble outside the allocated block

if you give an invalid address to free, it will update the bookkeeping information in a bogus way

Don't free using an address you didn't get from malloc

if you free more than once, free will update the bookkeeping information in a bogus way

Don't free using the same address more than once

state of data in a freed block is undefined

previous data might still be there but it might not - as soon as the block is recycled it can be changed,
and by freeing the block you've made it available for recycling

depending on the implementation, part of the data might be scribbled on right away by the memory
manager for its book-keeping.

Tricky, because often the data will still appear to be there, so the bug might no show up right away -
only eventually, or when you change C implementations, etc.

Don't make use of the block (or never use the pointer value) after it has been freed

If you can do what you need with a local "automatic" variable, do so instead of allocating memory.

Then be sure to write that code!

As soon as you write "malloc", stop, ask, and decide "where is the free going to be?"

Organize your code so that memory is allocated and deallocated in only a few clear places, and decide
explicitly who is responsible for freeing the allocated memory and make it clear in comments (at least) -
don't leave it up for inconsistency and confusion.

DOs

C_Coverage 1/5/17, 1:02:20 PM 38

One approach - A "creation" function for a struct that allocates memory for it and any of its members,
and a "destroy" function that does all of the deallocation. Then you only have to get it right in one place,
and then remember only to always use the create and destroy functions.

Use a tool to check on memory allocation correctness! (e.g. purify)

C_Coverage 1/5/17, 1:02:20 PM 39

cf. old card-reader input in FORTRAN

approach for ascii text files - read the characters comprising the record into a string, then can use
sscanf to parse it with library I/O

approach for binary data - read it unconverted into a block of memory, take it apart in various ways
(e.g. cast pointer to a structure type).

record-oriented input - input divided into records of fixed length or delimited in some way - e.g. lines

e.g. output value of an int containing decimal 10 as a value, you get 00001010 as the last eight bits
(depending on endianess).

We won't use binary I/O in this course.

C library also supports "binary I/O" - directly read/write streams or blocks of bytes of arbitrary size directly
as bit patterns.

C I/O library supports idea that input is a stream of individual characters

unread characters remain in the stream to be read in the next input operation.

important property - direct support for type-ahead from the console

Library will parse this stream for you in almost all situations

e.g. fgets and fputs are handy for read/write of a whole line to/from a C-string.

so before you write an elaborate function, check for what's in the library

a total waste of time, and your code is probably neither as good nor as reliable.

basic I/O functions are declared in <stdio.h>

DON'T REINVENT THE WHEEL/RECODE THE STANDARD LIBRARY

rare that you have to parse it yourself character by character - e.g. you are writing a parser or compiler of
some sort

review of stream concept

Information kept in an implementation defined struct type, named FILE, declared in <stdio.h>

Note: stdin, stdout, stderr are actually global variables of type FILE * defined and opened for you during
program startup by code in the Standard Library.

"r"

"w"

find the named file and open it in the specified mode (all needed for this course):

FILE* fopen(char * filename, char * mode)

Files and Streams:

I/O

C_Coverage 1/5/17, 1:02:20 PM 40

other modes exist, but aren't needed for this course.

return a pointer to the FILE struct if can find the file and open it, NULL if not.

"r" - fails to open - NULL is returned - can't read something that isn't there.

"w" - new empty file is created; existing file is overwritten, failure only if the file can't be created for
some reason (e.g. name is illegal, disk drive full, etc).

what if no file of that name? Long experience says it should depend on mode:

return EOF if an error, 0 if OK

int fclose(FILE *)

prototypes are int printf(char *, . . .); int scanf(char *, . . .);

e.g. float to double

... - push any number of arguments onto the stack, doing standard promotions

results undefined if the control string does not match the number and type of arguments - except if
too many arguments, the extra ones are ignored.

only information about the number and the types of the arguments is the information in the control
string

basic form

so you can get overflows or garbage I/O easy as pie!

newer compiler incorporate features of a favorite tool, "lint", and check this as much as they can

note that format string can be created at run time - doesn't have to be a constant -

compiler is not required to check that control string agrees with the arguments, and no way to tell at run
time either

C++ does things in a way that is usually more verbose, but is type safe.

why they are unsafe

variable argument lists in printf/scanf

printf(format, whatever) is equivalent to fprintf(stdout, format, whatever)

note: %f for double, because both float and double get converted to double on the stack

printf idea - cntrol string says how to convert from untyped values on the stack to ascii characters, put in
the stream

returned value is number of bytes written - not particularly useful, usually ignored.

use int fprintf(FILE *, char *, ...) or int printf(char *, ...) to output values of various types

Basic functions for stream I/O

C_Coverage 1/5/17, 1:02:20 PM 41

writes to the file all the characters in the supplied string up to but not including the null byte.

use fputs(char *, FILE *) to output a whole C-string

getchar() is the same as fgetc(stdin)

Note that everything can be read as a character.

regardless of the kind of character the next character is - will read whitespace, e.g.

Always use the Standard symbol EOF to check the returned value - don't assume you know what it is.

use ferror(FILE *) or feof(FILE *) to determine if the return of EOF is due to a "hard" I/O error or
just an end of file.

functions return true if the state of the stream is an error or eof.

reads and returns the next character from the stream. If an error or end of file, returns #defined EOF value

use int fgetc(FILE *), int getc(FILE *), int getchar(void) for single-character input

scanf(format, whatever) is equivalent to fscanf(stdin, format, whatever)

int scanf(char *, ...);

EOF is often -1, but use the EOF symbol!

despite the name, EOF does not always mean "end of file!"

return number of values successfully read, or a value #defined in the library as EOF

initial and intervening whitespace is almost always skipped when reading with scant

%d - look for a decimal integer, skip initial whitespace

actually scanf format strings can be used to do very elaborate parsing, but this is rarely used
and so probably not worth learning - you are better off learning how to use perl and regular
expressions instead.

" %c" - a space before the '%' - a space in the control string means to skip any amount of
whitespace at that point. - not mentioned in K&R

%c - grab the next character regardless of what it is

%10s - don't read and store any more than 10 characters (need 11 char destination for the null byte
at the end!)

%s - read in a string, and store as a C-string: skip initial whitespace, start reading and storing
characters until whitespace or EOF, then put the null byte in at the end

the idea of scanf - control string says how to parse the input, convert ascii char sequences to values. The
arguments are always a pointer to where to put the value. The characters in the stream are read and
processed one at a time to determine the value to be stored.

use int fscanf(FILE *, char *, ...) or int scanf(char *, ...) for "scanning" input for different
types of values

C_Coverage 1/5/17, 1:02:20 PM 42

note that " %s" or " %10s" with leading whitespace is redundant - don't look ignorant by using it. %s
really does skip leading whitespace, and doesn't need "backup" for it to happen!

Simplest: three #defines, kept together, change first two to change the maximum size allowed:
#define MAXINPUTLENGTH 31
#define INPUTFORMAT "%31s"
#define INPUTARRAYSIZE MAXINPUTLENGTH + 1
. . .
char buffer[INPUTARRAYSIZE];
. . .
scanf(INPUTFORMAT, buffer);

Fanciest - using Standard Library functions that do "I/O" into C strings to create a format string
at run time. sprintf, sscanf (and C++ stringstreams) are sometimes very handy, so good to know
about them. Requires only one #define, so best for single point of maintenance. But it takes run
time to generate the strings, so you should arrange to do it only once if possible.
#define INPUTARRAYSIZE 32
/* a global variable, authorized in project 1 specs */
char g_format_string[10];

int main(void)
{

/* do just once at startup */
sprintf(g_format_string, "%%%ds", INPUTARRAYSIZE-1);

. . .
}

/* in later code or other functions */
. . .

char buffer[INPUTARRAYSIZE];
. . .

scanf(g_format_string, buffer);

Craziest - Use macros to create the format string - esoteric and verbose, but it works; less
useful to learn about because we don't like macros, especially in C++
#define MAXINPUTLENGTH 31
#define INPUTARRAYSIZE MAXINPUTLENGTH + 1
/* we need both of the below because of how macros get processed */
#define STRINGIFYHELPER(x) # x
#define STRINGIFY(x) STRINGIFYHELPER(x)
/* two different higher-level macros */
/* Compiler concatenates a series of string literals into a single string
literal */
#define SAFESCANF(array_name) scanf("%" STRINGIFY(INPUTLENGTH) "s",
array_name)
#define SAFESCANF2(array_name, length) scanf("%" STRINGIFYHELPER(length) "s",
array_name)

. . .
char buffer[INPUTARRAYSIZE];
. . .
/* The following three lines all turn into:
scanf("%" "31" "s", buffer);
which gets turned into
scanf("%31s", buffer);
*/
scanf("%" STRINGIFY(MAXINPUTLENGTH) "s", buffer);

If you use a #define for the maximum input length, how can you get a corresponding format string?
Best is two #defines, one for the number of chars to read, the other to declare arrays with - help
prevent some typing errors.

C_Coverage 1/5/17, 1:02:20 PM 43

SAFESCANF(buffer);
SAFESCANF2(buffer, MAXINPUTLENGTH);

/* for further explanation, see demo code in C_examples directory */

%lf - look for something that can be a double value (might not have a decimal point) skipping initial
whitespace, and store it where the argument points

%f - ditto but for float (unusual, but note inconsistency with printf)

example - a123 12x45

value returned is the number of successful conversions performed

can tell if scanf failed by seeing if returned value is different from number of values expected

if scanf tried to read past the end of the file, then EOF returned

%c and %s always succeed (unless EOF encountered, or your hardware is broken, but %d, %f, etc
might not - if can't parse input as a number, stop, process no more input specifications in the format
string. NOTE: no requirement that "all" of the input has to be parsed as a number.

The integer n is the size of the char array in bytes starting from the supplied char * s.

test returned pointer value - if non-NULL, read was successful.

If succeeds, always gives you a valid C-string that fits into the array.

n-1 characters have been read and stored. A null byte is stored in the last cell of the array, and s is
returned.

A newline character has been read and stored. A null byte is stored in the next cell of the array, and s is
returned. You can tell if a whole line got read if the last character in the string is a '\n' character.

End of file was encountered after reading and storing at least one character. A null byte is stored in the
next cell of the array, and s is returned.

End-of-file was encountered before any characters were read, or a "hard" I/O occurred; NULL is
returned and the contents of s are undefined. If NULL is the returned value, use feof() to determine if
the cause is end-of-file or a "hard" I/O error condition.

Read characters from the stream f and store them into the array until one of the following happens:

use char * fgets(char * s, int n, FILE * f) to read an entire line (or part of a line) into a C-string.

#1. do the input operation

#3. use the data

if success, and ONLY if success,

#2. check for success

Important idea: if any possibility of input conversion failure, or end of file, must check the return value
before the data gets used - always make sure it happens in this order:

C_Coverage 1/5/17, 1:02:20 PM 44

#4. do the next step, which might involve going back to #1

if end of data, stop reading and do the next step

if data was bad, it is an error, deal with it

#5. do something appropriate

if fails,

People often write code that does #3 before #2, and sometimes even #3 before #1.

C++ makes this a little easier to get right than C, but still a common mistake

See C Coding Standards for more discussion.

C_Coverage 1/5/17, 1:02:20 PM 45

union U {
char c;
int i;
double d;

};

c, i, and d share the same set of bytes

obviously, only one value can be stored there at a time

like struct, except that members occupy same memory space, size is dictated by the member requiring
the largest memory space

in one compiler, struct S has sizeof = 16, union U has sizeof = 8

used only when memory is at a premium

enum Thing_type {C, I, D};
struct Thing {

enum Thing_type theType;
union U theValue;
};

thing.theValue.d = double_var;
thing.theType = D;
...
if (thing.theType == D)
double_var = thing.theValue.d; /* contains a double */

how tell what's there? Need another way to tell - either in your code's organization, or a separate
"type" indicator that you carry along and set/query to see what's there

/* demonstration of the difference between an union and a struct */

#include <stdio.h>

int main(void)
{

struct S {
char c;
int i;
double d;
} s;

union U {
char c;
int i;
double d;
} u;

/* The union is a lot smaller, even though the same number

Demo of difference between structs and unions with the same member types - try it on your machine!

Union type

C_Coverage 1/5/17, 1:02:20 PM 46

and types of members are declared. */
printf("struct S has size %d\n", sizeof(struct S));
printf("union U has size %d\n", sizeof(union U));

s.c = 'x';
s.i = 123;
s.d = 3.14159265;
/* all three values of the struct are stored separately */
printf("s contains: %c, %d, %f\n", s.c, s.i, s.d);

/* demo that only the last value stored in the union is well-defined */
u.c = 'x';
u.i = 123;
u.d = 3.14159265;
/* only the d value makes sense */
printf("u contains: %c, %d, %f\n", u.c, u.i, u.d);

u.d = 3.14159265;
u.c = 'x';
u.i = 123;
/* only the i value makes sense */
printf("u contains: %c, %d, %f\n", u.c, u.i, u.d);

u.i = 123;
u.d = 3.14159265;
u.c = 'x';
/* only the c value makes sense */
printf("u contains: %c, %d, %f\n", u.c, u.i, u.d);

return 0;
}

