
IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 1

Idioms & Design Patterns Behavioral

Singleton, Factory Method, Abstract Factory, Named Constructor

Creational Patterns and idioms

Composite, Facade, Adapter, Compiler Firewall

Structural patterns and idioms

Observer, MVC, Double-dispatch

Behavioral patterns and idioms

Idioms are small-scale patterns, in this context

E.g. normally everything has an abstract base class that defines the working
interfaces between the parts of the pattern

But an actuall implementation might not need this - the abstract base can be
collapsed into a single concrete class

One thing about most of the design patterns: presented in a very general form

Using one or more base classes to hide details from the client

e.g. Singleton

Other clever ideas using encapsulation, interfaces, class responsibilities to hide
details from the client.

Design patterns come in two basic flavors:

Patterns and idioms can be grouped roughly into:

You aren't taking advantage of the design pattern just by having some classes with
the "buzzword" names organized kinda like the pattern. The exact way in which the
classes relate to each other, and how key details are handled, is where the real power
of the pattern is!

Take the class relationships and the details seriously!

This means that a special case solution to a design problem will take less code, and
maybe run faster, but it will be much harder to generalize when new features and
capabilities get added to the code.

The need to extend a program is very common, even if it wasn't planned for.

The goal of many of the patterns is to achieve easy extensibility, at the expense of some
verbosity and some run-time overhead.

Key concepts for using design patterns:

Introduction to Design Patterns

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 2

Either use a design pattern from the beginning, to allow for future extensibility, or be
ready to refactor the special case solution to make use of a design pattern so that
future extensions will go more smoothly.

Don't wreck the pattern to make the code shorter or more efficient - you're missing the
point!

So the goal of the patterns is not short code, or fast code, but easy-to-extend code.

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 3

Example usage: e.g. different windows that show different views of data for the same data
set, stay up-to-date as data changes; add/remove window views at run time

Purpose: Allow an arbitrary collection of objects to depend on another so that when it
changes state, all of the dependent objects are notified and updated automatically. You
need to notify a varying list of objects that an event has occurred.

Solution: A Subject object keeps a list of Observer objects. Whenever the Subject changes
state, it broadcasts an update event to all of its Observers. The list of Observers can
change at run time.

The update and accessor interfaces define how they interact; - keeps e.g. display of
data decoupled from generating the data

Which observers are observing which subjects can be defined or changed at run time,
which also means additional observer types can be added without changing the Subject
code.

Advantage: Decouples Observers and Subjects

Often, there is only one possible Subject, so the base class and the Concrete Subject
are combined into a single concrete class.

Abstraction: Observers can be a base class so that different Observer classes can share
the same interface and do different things. Likewise for Subject.

Basic Pattern principle: Figure out what could vary, and hide it - usually behind a base class.

Also called publish/subscribe, closely related to Model-View-Controller

Observer

update()

Subject

attach(Observer *)
detach(Observer *)
notify()

observer list

ConcreteObserver

update()
ConcreteSubject

state

 * 1

notify:!
call update for
each observer

attach/detach:!
add to/remove from!
observer list

UML picture

Subject:

Pattern: Observer

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 4

Subject optionally is a base class; could be a concrete class. Maintains the state of the
data with other member functions (not shown).

Subject has container holding Observer base class pointers and attach/detach methods
to add/remove Observer pointers.

often one notify function for each kind of update.

Subject has notify function(s) that broadcast updates to all current Observers

Subject knows nothing about what kind of Observers are involved and treats them all
equally: if they are currently attached, they get all update broadcasts.

Subject is not responsible for what Observers are created, attached, or detached. The
client code is responsible for managing the Observers.

Observer is a base class for specific kinds of Observers, with virtual update functions
typically declared as empty implementations in the base class.

There may be multiple update functions depending on the kind of data being broadcast.

Different Observer classes will do different things with the update data.

If an Observer is not interesting in a particular kind of update, it won't override that
function; if it is, then its override does whatever that class is interested in.

Affects coupling between Observer and Subject - does Observer have to know about
Subject:

Observer code does not depend on Subject in any way.

Pro: Often, Observer can be completely decoupled from Subject:

Important: Usually best to have multiple update functions, one for each kind of
data that changes separately from others.

No advantage of minimizing number of update functions by “bundling” data
parameters that do not change simultaneously.

Con: Observer interface more complicated - typically one update function for each
kind of data or event, possible multiple parameters.

Pure Push - Subject pushes information to Observer by including all relevant
information as parameters of Observer update function(s).

Pro: Obsever interface can be very simple.

Pure Pull - Observer pulls information from the Subject; Subject has appropriate
public accessors. The update from Subject is only a signal that something has
changed; each Observer decides what information to get from the Subject.

How is data passed from Subject to Observer?

Observer:

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 5

Con: Often needs complex accessors to Subject's data, and typically end up with
some dependence on internals of Subject. - conflicts with major advantage of the
pattern.

Recommended: Try to do push as much as possible - usually works better.

Client code: creates/interacts with the Subject, creates/destroys Observers and attach/
detach them from Subject

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 6

Elaboration of Observer pattern for user interfaces

Important because there is a tendency for the functionality code to get intertwined with
the UI code, making it difficult to change either one - either for revisions/modifications, or
to port to a different UI library or platform

A good approach to the problem of how to separate the functionality "engine" underlying an
application from the User Interface code.

Has interface to access and control state

The "Model" is the Subject - contains the application's data and the functionality engine.

are driven by update notifications from the model

either "pull" the data out of the model when they need to draw

See Observer pattern discussion on advantages of “pure push” design, and choice
of notify/update functions and parameters.

or the model "pushes" the data into the View, which remembers the relevant data and
draws it when told to draw - common GUI pattern

The "Views" are the different windows, etc, that function as "Observers" - dynamically
changeable displays of the state of the application

controls the Model

creates/destroys views, and attaches/detaches them from the model

in command-language interfaces, usually only one such object

The "Controller" is the module that the human user uses to control the application.

UML diagram

Based on Observer:

Pattern: Model-View-Controller

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 7

View

update()

Model

do_function()!
notify()

 1 Controller

accept_command()

 1

Human User

1 *

update()
ConcreteView

human user operates the Controller to tell the Model what to do. Model tells the Views
what has changed. Human looks at the Views to decide what to do next.

Human

Views

Controller

Model

UML sequence diagram

Human Controller Model View

command
do function

update!
data

update

Flow of control:

In GUIs, common for the View and the Controller to be tightly coupled, Model-
(ViewController)

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 8

e.g. user tells Model what to do by using Controller functions tor selecting or
manipulating objects on the View.

Human
View

Controller
Model

typically predefined customizable classes

GUI "widgets" - e.g. buttons, menus

typically completely application-specific

application window display - e.g. drag operations on application-specific contents

important distinction: two levels of MVC logic in a typical GUI

so there are many possible ViewControllers

Typically each manipulatable object on the display is a distinct ViewController object

Mischief, difficulty happens when updating is not triggered by the Model

Controller controls the model which updates the View

See Observer discussion for pros and cons of “push” versus “pull” concepts of how
Views get information about data held by Model.

If Model is relied upon to look up individual Views, or has any knowledge of View
types, or calls anything except the update functions, the responsibilities have been
muddled, and the pattern broken.

Model just provides updates to Views, absolutely nothing more. In a typical GUI
application, either Controller or the OS window manager will invoke the View draw
function to update the display. Likewise Views know when their data has been
changed and the display is no longer valid. Controlling or dealing with when the
display gets drawn is absolutely not a Model responsibility.

Model has absolutely no responsibilities related to creating, destroying, or controlling the
Views, or knowing what kind of views there are. Model has nothing but a container of
View base class pointers, and the attach/detach functions must work strictly in terms of
the pointer values, not member functions or member variables of the Views.

Key to success is enforcing the strict flow of control, strict division of responsibilities, and
decoupling

Either have to modifiy GUI library, or else Model has to couple to specific GUI library

Do not want to couple Model views with the GUI views

Use adapter pattern to adapt Model View class to GUI Class hierarchy - a "class
adapter" works especially well.

in typical GUI library, there is a class hierarchy of GUI objects

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 9

Can use Multiple Inheritance to attach the Model View's interface to the appropriate class
in the GUI library

 * 1
View

update()
GUI View

redraw()

ConcreteView

state

Model

attach(View *)
detach(View *)
notify()

view list
state data

do_function_n()

internal engine

handle_mouse_click()

update()
redraw()
handle_mouse_click()

model->do function_n()

GUI Object

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 10

Problem: You have a system consisting of a bunch of functions that change their behavior
depending on a relatively small set of state changes. Traditional solution is to have lots of
tests or switches on the state in the functions.

Note that you only need one object for each state.

Note that its fine if the state objects have no member variables.

Instead, have a class for each state, whose functions behavie appropriately for that state.
Use a base class to define the common interface for all of the functions. Change state by
changing a pointer to point to an object of the appropriate type. Call the functions through
this pointer.

HandleInput()

 State

Concrete State B
HandleInput()

Concrete State C
HandleInput()

Concrete State A
HandleInput()

 State User 1 1

operate()
state

state->HandleInput!
!
state = new_state;

What varies: The system state. Hidden under a base class.

Warning: Use with care: This pattern can easily turn into overengineered complexity for
simple state machines.

State Pattern

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 11

Similar to state:

Problem: Allow for changes in the algorithm or strategy used to do something, both for
future extensions, and run time changes.

Solution: Represent the common interface for all of the algorithms with a base class;
instantiate the concrete class for the required strategy, and call it. The strategy can be
changed at any time by using a different concrete class object.

DoAlgorithm()

Strategy

Concrete Strategy B
DoAlgorithm()

Concrete Strategy C
DoAlgorithm()

Concrete Strategy A
DoAlgorithm()

StrategyUser 1 1

use_strategy()
strategy

strategy->DoAlgorithm

What can vary: The specific algorithm; Hidden under a base class.

Strategy Pattern

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 12

Problem: You have a lot of different ways of doing a basic process, but some of the
individual steps are different depending on which particular way you are using. But the basic
process is always the same.

Note that the base class method does virtual calls down to virtual functions overridden by
the derived class. Unlike the usual pattern where a the most derived virtual function is
called directly by the client, and then might call base class functions. This base-to-
derived virtual calling sequence is the "Hollywood principle." - Don't call us, we'll call you.

Solution: A base class has a "template" method that represents the basic way the process is
done - the "template" for the process (this is NOT a C++ template). The steps in the process
are done by calling virtual member functions in the same class. Concrete derived classes
override these virtual functions to represent the specific way the steps should be done.

operation1()!
operation2()!
operation3()

TemplateMethod()
TemplateMethod()
. . .!
operation1();!
. . .!
operation2();!
. . .!
operation3();!
. . .

AbstractClass

ConcreteClass
operation1()!
operation2()!
operation3()

What varies: the exact content of each step; hidden behind virtual functions, while base
class template method defines what stays constant

"Template" Method Pattern

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 13

Resembles Template Method Pattern

E.g. you want all of the functions to check preconditions, generate some logging
information at beginning and end of execution.

Problem: You have a polymorphic class hierarchy, but need to separate the implementation
provided by each derived class from the base class interface. For example, suppose you
want all the virtual functions to share some behavior, differing only in specifics associated
with derived classes. You forsee a need to change this sort of thing often.

Note that conventional public virtual functions supply both interface and derived-class
specific implementation.

Like a template method setup, except for removal of the virtual functions.from the public
interface.

Solution: Make the base class public interface functions NON-VIRTUAL. This means they
will always be called, not bypassed like virtual functions would be. They call the virtual
functions to allow for different implementations. These virtual functions are protected, in the
derived classes need access to them, or are private if not.

Allows the public interface into the class hierarchy to be stable and always involved
because it is non-virtual.

Allows the implementation to be done in terms of virtual functions that are not in public
interface.

#include <iostream>
using namespace std;
class Base { public:

void zap() { // the "template method"
cout << "Start zapping!" << endl;
defrangulate();
degauss();
transmogrify();
cout << "Done zapping!" << endl;
}

protected:
virtual void degauss()

{cout << "Base deguass" << endl;}
private:

virtual void defrangulate()
{cout << "Base defrangulate" << endl;}

virtual void transmogrify()
{cout << "Base transmogrify" << endl;}

};

class Derived0 : public Base {
private:
};

class Derived1 : public Base {
private:

virtual void defrangulate()

NVI version - zap() is the public interface; behaves as if virtual but with common behavior

Non-virtual Interface Pattern

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 14

{cout << "Derived1 defrangulate" << endl;}
};

class Derived2 : public Base {
private:

virtual void transmogrify()
{cout << "Derived2 transmogrify" << endl;}

virtual void degauss()
{cout << "Derived2 deguass" << endl;
Base::degauss();// do Base's version also
}

};

int main()
{

Derived0 d0; Derived1 d1; Derived2 d2;
(&d0)->zap();
(&d1)->zap();
(&d2)->zap();

}

/* Output
Start zapping!
Base defrangulate
Base deguass
Base transmogrify
Done zapping!
Start zapping!
Derived1 defrangulate
Base deguass
Base transmogrify
Done zapping!
Start zapping!
Base defrangulate
Derived2 deguass
Base deguass
Derived2 transmogrify
Done zapping! */

For comparison, try writing out the conventional virtual public interface version: Getting the
sequence of execution has to be duplicated in the derived classes.

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 15

Remember that having shared member variables in the base class by themselves does
not provide shared functionality - shared functionality means both shared member
variables and the member functions that operate on those shared member variables.

Problem: You need to implement some classes that share substantial functionality in
addition to interface. The shared interface will consist of functions that are virtual in the base
class, and the shared functionality will be placed in member variables and member
functions of the base class. Some of these will be public, others may be protected,
depending on what they do.

However, derived classes typically need to behave differently in some ways, meaning that
often the base class functionality has to be customized in some way for each different
derived class.

A good design puts as much shared code in the base class as possible while still permitting
derived classes to customize the behavior in straightforward ways. This maximizes code
reuse, giving single points of maintenance, and make it easier to ensure that Derived
classes behave in a consistent way when appropriate.

A Derived class virtual function can call Base class version of the same virtual
function. This enables the Derived class to provide its functionality before or after the
Base class functionality is used.

The Base class can have protected member functions that provide services that
Derived classes can call, possibly with parameters, in a pattern that will produce
customized behavior.

Base class functionality implemented with virtual functions that are overriden by Derived
class functions to provide different behavior; Derived class virtual functions can call Base
class functions in a customized pattern to produce the Derived class behavior.

Options or parametes can be set either at construction time via Base class
constructor parameters, or after construction, Derived class member functions calls
Base class setter functions called by Derived class member functions.

Base class functionality includes options or parameters for the Base class behavior.
Derived classes set these options or parameters as needed to change behavior of Base
class functions.

When applicable, produces a very elegant design because the Base class function
produces the overall pattern of the work, and typically most of the shared detailed
work, with the Derived classes filling in their specific details in a few places.

Base class functionality implemented with a member function following a template
method pattern or non-virtual interface pattern. This Base member function does all of
the shared functionality, but does “Hollywood” calls to Derived class virtual functions to
customize portions of that functionality. These Derived class functions typically do small
amounts of customized work that fit into the overall pattern provided by the Base class
template method.

Solution: Three basic techniques you can use, in whatever combination works well:

Patterns for Reusing Base Class Functionality in Derived Classes

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 16

Typically easy to refactor or extend if new Derived classes have different needs.

Note that typically the Base class template method member function is not overriden
by Derived classes (it might be marked “final”), and depending on the class structure,
might not even be a virtual function.

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 17

Problem: One component needs to save and restore the state of another component,
whenever it wants, and without having to know anything about the internals of the
component.

This is not a solution to the problem of saving program state to a disk file - that's a different
issue.

In C++, Memento should have all members private, but declare Originator as a friend;
This encapsulates all of the state information.

Solution: The controlling component asks the component whose state is being saved/
restored (the Originator) to create a Memento object whose contents are private for all other
components. The Originator gives the Memento object to the controlling component (the
Caretaker). When the Caretaker wants the Originator to return to a previous state, it gives
the corresponding Memento object to the Originator, who then uses the information in the
Memento to restore itself.

multiple states stored, and a chosen one restored

class Memento {
private:

friend Originator;
int i;
int j;
Memento();

};

class Originator {
public:

Memento * create_memento() {
Memento * m = new Memento;
m->i = i;
m->j = j;
return m;
}

void use_memento(Memento * m) {
i = m->i;
j = m->j;
}

private:
int i;
int j;

};

in Caretaker:
Originator originator;
vector<Memento *> saved_states;

Sketch example:

Memento Pattern

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 18

// save the state
Memento * m = originator.create_memento();
saved_states.push_back(m);

// restore state n
Memento * m = saved_states[n];
originator.use_memento(m);
// originator is now in state n

details about what might be part of the saved state - hidden inside the object;

what the caretaker might do with it - not part of originator's responsibility

What varies:

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 19

first object in chain is given a request

each object either handles it or passes it to the next object

decouples originator of request from handler of request

a series of class objects in a chain

Usually implemented with a base class that provides event interface and functionality for
linking objects in the chain.

enables each object to respond to the commands it is interested in, with objects being given
their chance to handle it in a specified order.

E.g. Window contains Dialog Box contains check boxes, text fields, etc.

Widgets inherit from a base class that provides the event interface and nesting
structure functions.

The chain is the nested structure of widgets currently on the screen.

If mouse pointer is on a text entry field, then select that field

E.g. event is left-click

If mouse pointer is on a check box, keystroke passed up to Dialog Box to handle

If Dialog Box doesn't handle it, pass to Window

If Window doesn't handle it, pass to Application

If Application doesn't handle it, give to Window Manager (the system) - e.g. "beep"

Event is alphameric keystroke

A user generated event is handled by seeing if the lowest-level relevant widget can
handle it.

often used in GUIs -

Chain of Responsibility

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 20

client has e.g. perform(AbstractCommand *), e.g. queue<AbstractCommand *>, etc.

put all the information for an action in an object, using abstract interface for them, e.g. virtual
void execute();

class AbstractCommand {
 public:
 virtual void execute() = 0;
 virtual void undo();
 };

class ConcreteCommand1 : public AbstractCommand {
public:
 virtual void execute();
 virtual void undo();
private:
 // member variables
 };

e.g. command line, menu item, button could all create the same "save" command object,
with its data (e.g. file name).

objects can be kept in a queue, passed from one place to another, created by different parts
of the program

necessary information is stored internally

when it is time to do the action, call its execute method - does whatever needs to be done.

To undo the action, call its undo() method - the object has all of the necessary information
stored internally, and the method knows how to reverse the operation.

each action is first prepared, then executed, then finish step done.

can be processing an action in each stage, but each one can be entered only if
previous action has completed it.

the action processor has a template method

each specific action class overrides these functions according to the kind of action
it implements.

action objects have a common prepare, execute, finish abstract base class

elsewhere in the system, a series of action objects are created and then sent to an
action processor

my action processor - a combination of template method and command objects

An example

Command

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 21

Stroustrup 22.3 has a discussion on this, which includes some of the techniques presented
here, but it uses the "Visitor pattern" as a label for the dispatching technique, which
misrepresents the purpose of Visitor. In general, Stroustrup is not very good on larger scale
OO design concepts like patterns.

if f is a virtual function defined in a base class, and p is Base *, then p->f() will call the
version of f that is defined for whatever type of object p is actually pointed to.

In C++, run-time polymorphism depends on the type of one object

trivial at compile time and if object types are known - just use function overloading:
f(Derived1 *, Derived2 *)

But at run time, we normally have base type pointers:

Base * p1 = new Derived1;

Base * p2 = new Derived2;

call a function with p1 and p2 involved, run the version of it that corresponds to Derived1
and Derived1, Derived1 and Derived2, etc.

But what if we want to execute a function that depends on the run-time type of more than
one object?

Main dimension: are we double-dispatching on two objects from the same class
hierarchy, or from different class hierarchy?

torpedo, spaceship, spacestation, asteroid

class hierarchy of space objects

collide between torpedo1, torpedo2, between torpedo1, spaceship1, etc

Collisions in a space game

circle, rectangle, ellipse

intersect between circle1, rectangle2, etc.

Intersecting shapes

Same tree cases - objects are from possibly different classes from the same class
hierarchy

class hierarchy of widget types - windows, buttons, checkboxes, text field, etc

GUI

Different hierarchies cases - more common

Some examples:

Double dispatch, multimethods - function called depends on the type of more than one
object

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 22

class hierarchy of kinds of input events - mouse cursor entering, left button click,
keystroke on keyboard, etc.

get an event - e.g. left mouse button down

determine which widget it is happening in - e.g. window

execute a piece of code that depends on the kind of widget and the kind of
event

top level of code is a loop around handling events

class hierarchy of event types

events happen in simulated time

class hierarchy of processors

processors do things in response to the events

what happens depends on the kind of processor and the kind of event

Event-driven simulators

C++ doesn't directly support it at all!!

call a function foo with two arguments: (foo ob1 ob2)

{code for this combination}

defmethod foo(Derived1 o1, Derived1 o2)

{code for this combination}

defmethod foo(Derived1 o1, Derived2 o2)

{code for this combination}

defmethod foo(Derived1 o1, Derived3 o2)

Other languages do - e.g. CLOS

In general, dispatching code based on two types is pretty common and important - double
dispatch - in general, multiple dispatch, multimethods

intersect (virtual Shape * s1, virtual Shape * s2);

Might-have been -

So how do you get the same result in C++? Relatively awkward because the compiler
doesn't do very much of the work for you.

Three general ways to get it - all with problems.

1. Combination of virtual functions and overloaded functions

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 23

Example: Processor, Event base classes

Event * eptr = // next event to process
Processor * pptr = // next relevant processor
eptr->send_self(pptr); // execute the function for the combination of event and
processor

Top level

class Event
virtual void send_self(Processor * p) = 0;

class A_event : public Event
virtual void send_self(Processor * p)

{p->handle_event(this);}

class B_event : public Event
virtual void send_self(Processor * p)

{p->handle_event(this);}

class Processor
virtual void handle_event(A_event * e) {}
virtual void handle_event(B_event * e) {}

class Processor1 : public Processor
virtual void handle_event(A_event * e) {// code for P1 A }
virtual void handle_event(B_event * e) {// code for P1 B }

class Processor2 : public Processor
virtual void handle_event(A_event * e) {// code for P2 A}
virtual void handle_event(B_event * e) {// code for P2 B}

Slick, extremely fast, correctness enforced at compile/link time

Pros

Adding a new event or processor type requires modifications in base class

Unsuitable for a library that the user is not supposed to have to modify

Cons

Combination of virtual functions and overloaded functions - different hierarcies case

Hierarchy of Shapes, compute intersections of them

top level
 Shape * s1 = new Rectangle, * s2 = new Circle;
 result = s1->intersect(s2);

class Shape {
 virtual bool intersect(Shape *) = 0;

Combination of virtual functions and overloaded functions - same hierarchy case

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 24

 virtual bool intersect(Rectangle *) = 0;
 virtual bool intersect(Circle *) = 0;
};

class Rectangle : public Shape {
 virtual bool intersect(Shape * s)
 {return s->intersect(this);}
 virtual bool intersect(Rectangle *) {//compute Rectangle/Rectangle}
 virtual bool intersect(Circle *) {//compute Rectangle/Circle}
};

class Circle : public Shape {
 virtual bool intersect(Shape * s)
 {return s->intersect(this);}
 virtual bool intersect(Rectangle *) {//compute Circle/Rectangle}
 virtual bool intersect(Circle *) {//compute Circle/Circle}
};

s-> goes to Circle::intersect(Rectangle) {// compute Circle/Rectangle

s1->goes to rectangle::Intersect(Shape * s)

result = s1->intersect(s2);

very fast, compiler enforces correctness

Pros

if you add another Shape type, base and all sibling classes have to be modified

unsuitable for a library that the user is not supposed to have to modify

Cons

Commonly seen in GUI frameworks

events have different types - e.g. an enum Event_type.

example: mouse button is pressed down - what function should be run?

depends on where the mouse is pointing.

user generates a stream of events - mouse moves, clicks, keys, etc.

virtual void handle_event(Event_type e).

Widget class has a function

base class is Widget

each widget (window, button, menu item, etc) on the screen is associated with a region
of the screen.

2. Combination of virtual functions and switch on type

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 25

bool point_is_in_me(Mouse_point p);

figure out which widget the mouse is pointing to, save as Widget * widget_ptr.

automagically calls the event handler for the kind of widget -e.g. a button.

call widget_ptr->handle_event(event_type);

Button::handle_event(Event_type e)
 switch(e) {
 case BUTTON_DOWN:
 /* button has been pressed do button pressed stuff */
 case BUTTON_RELEASED:
 /* button has been released do button released stuff */
 etc
 default:
 /* can't handle this event ignore it or call base
 class handle_event to deal with it*/
 }

traditional, simple

Pros

Clever ways also to delegate events so that the switch in a widget only has to
switch on the cases it is interested in - using the Chain of Responsibility pattern

tedious code - GUI framework + "wizards" can automate a lot of this;

move the mouse, press/release buttons, hit a key on the keyboard

Which they tend to be in GUI frameworks - only a few kinds of basic user actions -
determined by the standard hardware on the machine.

But tends to get complicated as the event handling concept is so flexible, used for
more than just user-generated events, so opens maintenance problems.

Can be serious maintenance problem - but not so bad if event types are relatively few
and pretty stable

Cons

Slicker version - use a map from typeid to function pointers to replace switch on type

Alexandrescu, Andrei, Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley, 2001.

use a 2D vector (of vectors) of function pointers - fill up at beginning, then access at
run time void(*fp)(Base1*, Base2*);

Table Look-up

3. Look-up

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 26

write a registry function that gives each class a unique ID number, store those
function pointers at those (i, j) cells

to dispatch a function call, get Id number for each type, execute the function in that i, j
cell

very fast, very general

Pro:

complex, requires code to ensure registration gets done, table populated.

Con:

std::type_index is a C++11 wrapper class template for type_info that provides a
value that can be ordered with comparison operators (e.g. operator< for a map
key) or hashed (for an unordered_map).

declared in <typeindex>

Argument can be a type name, an object, or derefenced pointer; result is a value
unique for the corresponding type

Use map<std::type_index, map<std::type_index,, function_pointer_type>>
dispatch_map

dispatch_map[type_index(Event_A)][type_index(Processor1)] = fp;

populate with function pointers for each combination of types

Retrieve function pointer from object pointers with
fp = dispatch_map[type_index(*event_ptr)][type_index(*processor_ptr)];

uses compiler-supported RTTI facility; simplifies code

set-up is simpler than the 2d table

Pro:

not as fast as the 2d table - log time instead of small constant time

still more setup code than the virtual/overloaded function solution

Con:

Map Look-up

IdiomsDesPattsBehavioral 3/16/17, 11:45:49 AM 27

Iterator - support traversal of a data structure without having to expose internal details of the
structure or how it is traversed. A fundamental component of the STL - nuff said.

Visitor - involves virtual/overload application of double-dispatch in traversing a data
structure and applying an operation in the form of a Vistor object to each node or the
structure. Makes it easier to add additional operations without modifying the data structure
classes, but requires that each node in the data structure make its state fully available to the
Visitor.

Some others

