
Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 1

Stroustrup Ch. 20

Lecture Outline Inheritance & virtual functions

Generally better terminology than "subclass" because Derived classes are usually more complex, more
specialized than Base class; a "superset" of the Base class.
In English: A Derived object is a Base object; or, objects from the Derived class are also Base class
objects.
Official pseudo-English terminology: A Derived is-a Base.

The Derived class inherits from the Base class.

public inheritance is the normal form of inheritance; others later

If base class is declared in another header, must #include that header before declaration of derived
class will work.

To declare that a class inherits from another class, the other class declaration must be visible to the
compiler - an incomplete declaration won't work.

You specify inheritance by listing whether it is public, private, or protected, and the class from which
this class is inheriting.

member variables laid out in declaration order with the derived member variables following the base
ones

class Base {
 int i;
 string sb;
};

class Derived : public Base {
 int j;
 int k;
};

Derived d;

d object layout in memory:

---Base subobject ----
|| [int i]
|| [string sb]
---Derived subobject ----
|| [int j]
|| [int k]

rule: subobjects and member variables are laid out in declaration order

Each class defines a subobject of the whole object.

E.g. as if compiler had copy-pasted in member variables and functions from the base class

void Base::print(): void Derived::print();
Derived::print() hides Base::print()

so e.g. if each class has a function of the same name, can disambiguate which you want.
But the names are also scoped in the original classes

Each derived class inherits the members from its base classes

Basic concept of inheritance

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 2

void Derived::foo()
{
 print(); // innermost scope is assumed, so Derived::print() is called
 Base::print(); // can explicitly scope the other one and call it

e.g. Derived::print() first calls Base::print() to print out Base class members, then prints out
derived class members

Derived::print() can call Base::print() - a common idiom.

no problem if base classes have nothing in common - later
just list additional classes after public/protected/private

Multiple inheritance object gets members from more than one base class

Or,base is most general, derived are specializations of the base class
Class hierarchy is upside-tree, base (root) is at top, most-derived (leaves) at bottom

Derived classes declarations refer to their base, but not vice versa.
Base classes have no information about their derived classes, but derived classes always defined in
terms of their base.
Not like human inheritance the parents don't know their kids, but the kids always know their parents

Note common notation is arrow from derived class to base class

Note on terminology

Public in Base or Derived means the same thing: outsiders have access.

Derived members can't access Base private - not a member of the Base class.
Base members can't access Derived parts - not a member of Derived class.

Private in Base or Derived means the same thing: only members of the class have access.

derived classes can access, but not outsiders
private to the world, public to derived

protected member functions are fine - these are services provided for derived classes
GUIDELINE: avoid protected member variables - better if they are all private

But protected members of Base class are available to Derived, but not public

Access to members with inheritance

Barbara Liskov (1988) - recent big ACM award -
The best simple interpretation of what inheritance means.

D is a subtype of B
"is-a" relationship D "is-a" B

If D is derived from B, then everywhere you can use a B, you can also use a D, and the program will still
be correct.

name, pay
get_name(), work()

Employee

e.g. list of employees that it manages
Manager is-a Employee and also has more:

Employee e; Manager m.

Example

SUBSTITUTION PRINCIPLE

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 3

everything valid for Employee is also valid for Manager - can substitute m for e
e.get_name(), m. get_name() // can use m wherever you used e
e.work(), m.work()

e = m;
e now has the Employee part of m, but not the Manager part!
This is called "slicing" the Manager part of m got "sliced" off.
Normally avoided - why would we want to discard part of an object?
Usually in the context of inheritance we refer to objects via pointers or references (which are pointers
under the hood).
can't do m = e (like a downcast) - nowhere for the manager part to come from

Slicing:

Any derived object is also a base object, so a base-type pointer can point to any derived-type object.
e.g. Base * bp;
Derived * dp = new Derived;
bp = dp; // no problem at all, is always valid
sometimes called an upcast - casting upwards in the inheritance tree
But always done implicitly - never explicitly
The implicit conversion is always valid, always correct, not a special situation at all! By definition it is
correct!
But notice: When using a Base * pointer, can only access members declared in the Base class!

Consequence of substitutability: A Base * pointer can point to a Derived object

Base * bp = new Base; // bp points to an object of type Base
D1* d1 = new D1; ;// d1 points to an object type D1
D2* d2 = new D2; // d2 points to an object type D2
. . .

let D1 and D2 inherit from Base
Static type - what is visible to the compiler based just on the content of the code (no run-time information)

bp has dynamic type Base
d1 has dynamic type D1, ditto d2 has dynamic type D2
bp = d2; // always legal, statically known because compiler knows D2 is-a Base
now bp has dynamic type D2!
Consider:
string s;
cin >> s;
if(s = "yes")
 bp = d1;
else
 bp = d2;
// dynamic type of bp only known at run time!
dynamic type is different from static type only for an object referred to by a pointer or reference!

Dynamic type - the most derived object type that the pointer or reference expression is actually pointing to
at runtime. Continuing example:

Inheritance adds the concept of dynamic type

Why use inheritance?

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 4

Put member variables and functions in the base class, derived classes then include it. To modify,
debug, fix it in the base class, it is then fixed everywhere.
Another tool for making code well-organized and easy to work with.

Reuse implementation code - traditional, original reason

The base class defines the public interface of a class; by inheriting from this, the derived classes
automatically are saying they have the same interface and so can be used in the same way. Turns out
to be the most powerful concept for making code well-organized and easy to work with.
In fact, useful to have base classes whose only purpose is to define an interface - don't do anything
else!
Involves polymorphism (virtual functions) to really get the punch.

More specifically, call the same function, but each class can have a different implementation of the
function.
Virtual functions in C++.

Polymorphism means you can talk to objects the same way (same interface), but they act differently
(different implementation), depending on the type of object they are.

Reuse interface - turns out to be by far the most important

everybody knows that you've inherited from base and can use base's public interface
the public members of the base class become public members of the derived class

protected members of base are accessible to derived
private members of base stay private to base - inheritance does not make private available outside of a
class's own members.
Only form of inheritance that obeys the substitution principle.

public inheritance

The public members and protected members become protected members of the derived class
 not used very often - has some value in certain multiple inheritance situations of allowing a base class to
be a pure interface class.

protected inheritance

The public and protected members of the base class become private members of the derived class
Derived class's member functions can use base class's public and protected members, but nobody else
can, either clients or further derived classes.

class Gizmo {
public:
 void transmogrify(); // a useful functionality
};

class Thing : private Gizmo {
public:
 void defrangulate() {
 transmogrify(); // provided by the base Gizmo
 }
 // can call Gizmo public members, but no client of Thing can access them
};
a "uses" relationship not really an isa because substitutability is violated

Used to mean "I want to use Base to help implement Derived internally, but don't want to add Base's
public interface to derived." Inherit implementation, but not interface.

In other words, private inheritance is nobody else's business.

private inheritance

Access levels for inheritance of the base class

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 5

a_Gizmo.transmogrify() does not mean you can use a_Thing.transmogrify()
Substitutability only works for the public interface!

class Thing {
public:
 void defrangulate() {
 my_gizmo.transmogrify();
 }
private:
 Gizmo my_gizmo;
 has a Gizmo member and can call its public functions to do work,
 but not accessible to anybody else
};
"has-a" relationship
usually works better than private inheritance - keeps the design simpler

Instead of privately inheriting from X, it is usually preferable to just have a private member variable of type
X and call its public members to do the work. Reusing the implementation, but without changes to
interface, or without any complications of inheritance.

Alternative to private inheritance

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 6

Concept: let each class deal with its own construction and destruction.

Each class ctor, dtor deals with the subobject member variables for the class.

The subobjects are constructed in declaration order! Base declared first, derived after.
Then most derived subobject destructed first, and base last.

Subobjects are constructed and destructor in the normal pattern: constructed in declaration order,
destructed in reverse declaration orrder.

But compiler looks at your code and calls constructors in a different order from what you might expect just
by looking at the code
A derived class can specify how its base class subobject should be initialized - but this happens before the
derived subobject gets constructed.

Ensures orderly construction - no cutting out the middleman!
Tricky part: A derived class ctor can supply arguments to its immediate base class ctor, but no higher!

class Base {
public:
 Base() : iB(1), jB(2), kB(3)
 {}
 Base(int x) : iB(1), jB(x)
 {kB = 3;}
private:
 int iB;
 int jB;
 int kB;
 };

class Derived : public Base{
public:
 Derived() : iD(4), jD(5), kD(6)
 {}
 Derived(int x, int y) : Base(x),
 iD(5), jd(y)
 {kD = 7;}
private:
 int iD;
 int jD;
 int kD;
 };

class DDerived : public Derived{
public:
 DDerived() : iDD(7), jDD(8), kDD(9)
 {}
 DDerived(int x, int y, int z) : Derived(x, y),
 iDD(9), jDD(z)
 {kDD = 11;}
private:
 int iDD;
 int jDD;
 int kDD;
 };

Example:

Derived classes can rely on base class always being properly initialized before they get initialized.

Constructors and destructors in Inheritance Hierarchies

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 7

note: DDerived can't invoke Base ctor in its constructor!

DDerived dd1;
DDerived dd2(10, 20, 30);

first Base initializers in declaration order, then body, then Derived initializers, then body
Each class does its own initialization; derived classes can rely on base class having initialized first.
Ctor body can assign to any member variables that it has access to, but happens only after the base
classes have been fully initialized.

Constructor: Concept: Initialize from the top down, and in order of declaration

This allows an orderly taking apart of the object by going in reverse order, specific things can be
deallocated, etc first, before more general things. Derived classes can rely on base class parts still
existing.
destructor body executed before member variable destructors - opposite of constructor order

Destructors: de-initialize in reverse order of construction: in reverse declaration order, and bottom up:

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 8

The most important feature of OOP.

favorite example is shapes in a graphical program - different shapes, objects in a container, and we want to
draw each one.

enum Shape_e {CIRCLE, SQUARE, etc};

class Shape {
public:
 Shape(Shape_e code_) : type_code(code_) {}
 Shape_e get_type_code() const
 {return type_code;}
 double get_size() {return size;} // example accessor
private:
 Shape_e type_code;
 double size; // example data
};

suppose each kind of shape carried a type code

Shape* theshape = get_next_shape_ptr();
switch(theshape-> get_type_code()) {
 case CIRCLE:
 frameoval using the data in theshape
 break;
 case SQUARE:
 framerect using the data in theshape
 break;
 case TRIANGLE:
 draw three lines using the data in theshape
 break;
 // etc
 }

decide how to draw each shape by switching on its type

could be done wiith if-else, uglier, but same concept - called branch on type logic.

Why a switch is better than if-else
how does a switch really work? - Compiler can often optimize it, but still takes time.

can get very slow if large number of classes

to add another shape, find every time the code is used, and add the appropriate branch/case
a maintenance nightmare - how do you make sure the code is right?

ugly, ugly, error prone!

This is evil, sinful!

The derived classes aren't really doing anything at all here ...
Actually could be done without any derived classes at all, just the Shape class

What not to do: switch or branch on type:

LET THE COMPILER DO THE WORK OF CALLING CODE BASED ON THE TYPE!
work in an inheritance relationship

What virtual funcs and polymorphism are for!

Virtual functions and polymorphism basics

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 9

a pointer to a derived type can always be converted to a base type
so can refer to different kinds of shapes with a Shape * pointer

shape has virtual draw function

class Shape {
 virtual void drawself();

void Circle::drawself()
 frameoval

void Square::drawself()
 framerect

void Triangle::drawself()
 draw three lines

each object knows how to draw itself:

Shape * theshape = get_next_shape_ptr();
theshape->drawself();

In client code, simply tell the object to draw itself!

if shapes is a container of Shape * pointers, then tell them all to draw themselves:
for_each(shapes.begin(), shapes.end(), mem_fn(&Shape::drawself));

p->drawself(); // automagically calls the drawself for a Circle if p points to a Circle, a Square if p points to a
square!

the actual function executed is chosen at run time, based on the dynamic type of the pointed-to object

Note on terminology: you OVERRIDE virtual functions not overload them!
you OVERRIDE a virtual function to get class specific behavior

Shape has a virtual draw function

How's it work? very efficient - Stroustrup summarized, some details later

MUST BE IN THE CLASS DECLARATION, can't be in the .cpp file for a class
must put "virtual" on the function declaration in the BASE class

putting "virtual" on them often was used a reminder that it could be called virtually, but it was optional.
But do not do this now - it is obsolete! Use only on a base class! It actually hid errors!
in C++11, use "override" specification for derived class function that overrides the base class function .
If signature does not match a base class virtual function, you now get a compiler error

it is inherited thereafter; all functions with the same signature in all derived classes are now virtual

compiler will generate code to look up and branch to the right function for the object at run time
if a class hierarchy has multiple levels, then you can do virtual calls using pointers at any level. But
often there is a single BASE class for a tree of classes that is the interface for the whole tree.

call the function (by name only, no class scope) with a pointer or reference of BASE class type - must get
dynamic type

a derived class can provide its own definition of a virtual function OVERRIDES any inherited one.
if doesn't provide its own definition, it gets the most derived, "closest" inherited one.
A derived class can also serve as a base class for functions declared as virtual in the actual base class -
call the functions through a derived class pointer, you get the version corresponding to the most derived
class.

How to declare and use virtual functions

If objects are deleted via a Base class pointer, you should declare Base destructor virtual.

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 10

Compiler will then make a virtual call to the derived class destructor when you delete it.
Subobjects won't get deleted otherwise!
A bit odd because this is a virtual function call, but names of the functions involved (the destructors) are
different!
A common pattern: create objects and point to each one with a base class pointer; then delete them with
that pointer.
Note: If the base destructor is declared virtual, then derived class destructors are also now virtual. Same
as with ordinary member functions, but in case of destructors, less obvious because name of functions are
different.
Suppose you have Leaf derived from Middle derived from Base, and ~Base() is declared virtual, but
~Middle() and ~Leaf() are not explicitly declared virtual - they are implicitly virtual. Thus deleting through
either a Base* and a Middle* with invoke ~Leaf(); which then calls ~Middle() then ~Base().

void foo(int, char) override;
this tells compiler that this is supposed to override a function from an inherited class. Compiler will
check for consistency in signature.
problem that this helps with: you could accidently misdeclare an overriding virtual function so that it
doesn't get called instead of the base class function you intended.

can put "override" after a virtual function declaration

class Thing final etc
if you try to inherit from Thing, compiler will flag as an error
problem this helps with: no straightforward way to say that you shouldn't derive from this class …
helps express the design better.

can put "final" in a class declaration to say that nobody should inherit from it:

virtual void foo(int, char) final;
Only makes sense if this is a derived class - otherwise, why is the function virtual?
Remember the derived "virtual" here is optional.
Not clear yet how useful this is.

can put "final" in a virtual function decaration to say that this function should not be overridden

C++11 has very few new features for OOP inheritance and virtual functions - a couple make it easier to
avoid errors and expess intent

Two C++11 features

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 11

Arrange a set of classes in an inheritance hierarchy. The base class defines the interface to all of the
derived classes. The virtual functions show where the behavior of derived classes might need to be
different. Derived classes override the virtual functions to produce their own behavior.
By doing virtual calls through a base class pointer, the client code can access the capabilities regardless of
the specific type of the object.

Each class type knows what to do when called; client is not responsible for keeping track of who should
do what!

By a good choice of base class and virtual functions, we can arrange it so that the client code for a family
of classes does not know about the specific classes or objects; talks to them only through the base class
interface!

If a feature must be changed, change it only in the affected classes, rest remains untouched.

This means that derived classes and objects can be added, modified, etc without the client code being
modified.

"Add features by adding code, not by changing code!"
"Hide what changes under a base class interface."

Makes it possible to add features without forcing change everywhere:

The fundamental Object-Oriented Programming Technique: Use a polymorphic class hierarchy -
inheritance with virtual functions.

choose a "default" virtual function definition that applies to every derived class unless overridden
captures idea of the common, default behavior for all objects in the hierarchy

Technique: "default" virtual functions

Derived::print() calls Base::print() to output the Base member variables, then Derived::print() adds
the information about its own member variables.
Repeat at each level of the hierarchy.
Contrast to the most Derived::print() accessing the data members of each Base class and printing it
out. Code is highly repetitious, difficult to maintain. E.g. suppose we add another variable to the
Base class

Example: Each class has a print() member function that outputs information about that classes member
variables. Each class is responsible for outputting its own information.

Technique: a virtual function can have a definition at each level of the hierarchy; the derived version can
call its base version before, during, or after doing its own work.

Let Derived class supply additional specialized work to the work done by the Base class.

Example: non-virtual of(), virtual vf():
Base::of()
{
 vf(); // does virtual call if Base has Derived classes
}

this->vf();
Why this works: if a member function calls a member function, the call is through the this pointer:

if this object's class is a base class, the this pointer has type Base *, so a virtual call will be made.

Called "non virtual interface pattern"
Separates interface in base class from details of implementation provided in derived classes

Can define a base class non-virtual function to do "setup" work common to all derived classes, and
then it can call a virtual function that does the specific work for each derived class.

Use to provide a class-specific piece of functionality in the context of an ordinary member function.

A non-virtual member function can call a virtual member function.

Basic techniques with virtual functions

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 12

You can have an actual concrete real dog or a cat, but you can't have a "mammal" or "animal" or "thing"
by itself. These are abstract categories for the concrete objects.

A way to convey the idea that there is no such object, only subtypes of this object

should be able to say "class is abstract" and "virtual function is pure" but no, can't do!
e.g. in ABC declaration: virtual void foo () = 0; // stupidest syntax in C++

Label a class as an abstract base class (ABC) by giving it at least one "pure virtual function"

So a "pure virtual" declaration means "this must get overridden"
If a class doesn't get an overriding declaration, then it can't be instantiated because the compiler
and linker won't know what function to call on it. So it is "abstract".

Each leaf class must supply or inherit an overriding definition of the pure virtual function.

 A a; // error "illegal use of abstract class"
Compiler will not let you declare an object from an abstract class

Because lacks a usable definition of the virtual function.
Any derived class that doesn't have an override definition is itself also an abstract class.

This class (ABC) is now an abstract class - you can't create an object of this class.

Declaring a pure virtual function does two things:

If all leaf classes have (or inherit) an overriding definition of the virtual function foo, then a virtual
call like base_ptr->foo(); will never reach the Base::foo!

Note that normally any definition of the pure virtual function won't get called. All derived classes have
their own version of the function, and you can't create an object of the abstract class which would
normally result in the function being called.

Therefore, normally no definition of the pure virtual function is provided in the ABC class; doesn't have
to be one because it will normally never be called.

explicit class qualification turns off the virtual function call - you say explicitly which version of the
function you want!
base_ptr->Base::foo();
Rarely, you need to do this.

But you can provide a definition if you want, and you can call it explicitly: Base::foo();

Now that this is perfectly clear, let's muddle it up.

If you don't declare a destructor function, the compiler will synthesize one for you. But if you declare
it, the compiler won't synthesize it. But the base class destructor will need to get called when
derived class object is destroyed, so if declared, it must be defined.

In Base.h
class Base {
Base (/* whatever */); // constructor
virtual ~Base() = 0; // pure virtual destructor
/* etc */
};
in Base.cpp
Base::~Base()
{ /* must have definition, even if empty */}

Example:

Convention: make the destructor function a pure virtual function (it should be virtual anyway, in this
context), but you must provide a definition for it, even if it is an empty definition.

Suppose you want a class to be abstract, but there is no obvious choice of which virtual function to make a
pure virtual function. What do you do?

You can often get part of the effect of an abstract base class by making it impossible for the client to
instantiate objects of the class without declaring a pure virtual function.

Technique: label a class as abstract

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 13

Needs to be protected, not private, so that Derived class ctor can invoke Base class ctor.
But note that a friend or derived class could instantiate it!

Make Base ctor protected - this way, only Derived class objects can be instantiated!

No good name for this: “pseudo abstract” - but a useful idiom.

all must be overridden
All functions might be pure virtual

The class just specifies how the subclasses are accessed by a common interface
A cool idea in Java, special construct called an "interface," not a class

One use of protected inheritance: another base class with protected inheritance that provides some
functionality to derived classes, allowing public base to be a pure interface.

A true interface class will have no member variables, but often handy to have a bit of functionality in such a
class.

E.g. a base class of simulation objecfs
Each one has a name and accessor function for that name, and a printing function that outputs the
name
Needs a constructor to initialize the name

where is the object currently located? - either fixed or changes, depending on the type of derived
class object
what does the object do when it is time to update its state? - either moves, about, acquires more
supplies, attacks, dies, depending on it type and its state.

but all other functions are pure virtual

Stroustrup doesn't like abstract classes that have member variables or non-pure-virtual functions, but I've
found them very useful if you know what you are doing in the design. See this in Project 4

insulating the main body of an application from the details of which GUI toolkit is being used

main body of code just needs to know about this class to use the widget.
the abstract base class for the widget provides the interface for the whole family of widgets.

so use a factory instead
somewhere create a BB_maker, as it to create a Slider, get the pointer, use it through the interface.

to create the specific widget, new BB_slider not insulated from details of BB toolkit, etc.

main body of code doesn't need to know anything about the BB versus the CW toolkit, etc.
"figure out what varies and encapsulate it"
example of a design pattern will return to.

Stroustrup example of interface widgets in Ch 21

Technique: a base class that specifies only an "interface" to a set of classes that are going to be used
polymorphically - called an "interface class".

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 14

Work through a specific example in detail.

Illustrate rules for which functions are inherited and overridden.

C inherits from B
D inherits from B

B inherits from A

E inherits from A

A

A a; B b; C c; D d; E e;
Object declarations

A * pa = &a;
B * pb = &b;
C * pc = &c;
D * pd = &d;
E * pe = &e;

Pointer declarations and initializations (could also do with new)

Class Hierarchy, objects, and pointers for examples

C ofc()
D ofd()

B ofb()

E ofe()

A ofa()

A has ofa

C has ofa, ofb, ofc
D has ofa, ofb, ofd

B has ofa, ofb

E has ofa, ofe

Inherited functions

a.ofa(); // ok
a.ofb(); // error doesn't have
c.ofa(); // ok
c.ofb(); // ok
c.ofe()// error

good and bad calls with an object

pa ->ofa(); // ok type of pointer gives class it is suposed to be
pa ->ofb(); // error doesn't have
pc-> ofa(); // ok
pc-> ofb(); // ok
pc-> ofe()// error

good and bad calls with a pointer

Facts about ordinary functions with different names

Specifics on Inheritance and Overriding relationships

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 15

void C::ofc()
{
 ofa(); // ok
 ofb(); // ok
 ofc(); // ok, recursive
 ofd() // error!
}

good and bad calls within a member function

C of() shadows B::of()
D of() shadows B::of()

B of() shadows A::of()

E of() shadows A::of()

A A::of()

A has of

C has A::of(), B::of(), C::of()
D has A::of(), B::of(), D::of()

B has A::of(), B::of()

E has A::of(), E::of()

Inherited functions

a.of(); // ok must mean A::of()
a.A::of(); // ok same thing
a.B::of(); // error doesn't have
c.of(); // ok must mean C::of()
c.B::of(); // ok
c.A::of(); // ok
c.E::of(); // error doesn't have

good and bad calls with an object

pa ->of(); // ok must mean A::of()
pa ->B::of(); // error doesn't have
pb ->of(); // ok must mean B::of()
pc-> A::of(); // ok
pc-> B::of(); // ok
pc-> C::of(); // ok
pc-> of(); // ok must mean C::of()
pc-> E::of()// error

good and bad calls with a pointer

void C::of()
{
 B::of(); // ok
 A::of(); // ok
 C::of(); // ok, recursive
 of(); // ok, recursive same thing

good and bad calls within a member function

Facts about ordinary functions same names, same signature

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 16

 E::of() // error!
}

C vf() {...} override
D vf() {...} override

B vf() {…} override

E vf() {...} override

A virtual vf() {...}

A has A::vf

C has A::vf(), B::vf(), C::vf()
D has A::vf(), B::vf(), D::vf()

B has A::vf(), B::vf()

E has A::vf(), E::vf()

Inherited functions

a.vf(); // ok must mean A::vf()
a.A::vf(); // ok same thing
a.B::vf(); // error doesn't have
c.vf(); // ok must mean C::vf()
c.B::vf(); // ok
c.A::vf(); // ok
c.E::vf(); // error doesn't have

good and bad calls with an object same as with ordinary functions

pa ->A::vf(); // get this one
pa ->B::vf(); // error doesn't have
pc-> A::vf(); // ok
pc-> B::vf(); // ok
pc-> C::vf(); // ok
pc-> E::vf()// error

if use scope qualifier to say which function, works just the same!

pc-> vf(); // ok must mean C::vf()
pd ->vf() // ok means D::vf()

if pointer to most derived class, and plain name, works just the same

good and bad calls with a pointer CAN BE THE same as with ordinary functions

assign a pointer to derived to a pointer to base
REMEMBER can convert upwards

A * p;

happens with a pointer to a base class that points to an object whose class is in the hierarchy

p ->vf(); // get's A::vf()
p = &a;

call with the base-class pointer to unqualified name of a function that is virtual in that base class

POLYMORPHISM MAGIC

Simple situation with virtual functions always have same name, same signature, a function declared in
every class

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 17

p ->vf(); // get's B::vf() OVERRIDES A::vf
p = &b;

p ->vf(); // get's C::vf() OVERRIDES A::vf and B::vf
p = &c;

p ->vf(); // get's D::vf() OVERRIDES A::vf and B::vf
p = &d;

p ->vf(); // get's E::vf() OVERRIDES A::vf
p = &e;

B * p;

p -> vf(); // get's B::vf()
p = &b;

p -> vf(); // get's C::vf()
p = &c;

p -> vf(); // get's D::vf()
p = &d;

can have more than one base class in a single inheritance hierarchy B is a base for C and D

(*p).vf();
note: calling with arrow-operator equivalent is also a virtual call

was the object identified with a pointer, as opposed to the actual object?

RULE: unqualified call of a virtual function through a pointer of the base class type calls the function for
the object's dynamic type - most derived type

All must be declared in the base class
Each class and either inherit or override the virtual functions of its base class

C vf2() {...} // inherits B::vf1, overrides A::vf2
D vf1() {...} // overrides B::vf1, inherits A::vf2

B vf1() {...} // overrides A::vf1, inherits A::vf2

E // inherits A::vf1, inherits A::vf2

A virtual vf1() {...}, virtual vf2() {...}

basically: call the most-derived-class virtual function for the object.

A * p;

p ->vf1(); // get's A::vf1()
p ->vf2(); // get's A::vf2()

p = &a;

p ->vf1(); // get's B::vf1()
p ->vf2(); // get's A::vf2()

p = &b;

p ->vf1(); // get's B::vf1()
p = &c;

call with the base-class pointer to unqualified name of a function that is virtual in that base class

Polymorphic calls

Complex situation with multiple virtual functions only some declared in each class

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 18

p ->vf2(); // get's C::vf2()

p ->vf1(); // get's D::vf1()
p ->vf2(); // get's A::vf2()

p = &d;

p ->vf1(); // get's A::vf1()
p ->vf2(); // get's A::vf2()

p = &e;

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 19

C vf2() {...} // inherits B::vf1, overrides A::vf2
D vf1() {...} // overrides B::vf1, inherits A::vf2

B vf1() {...} // overrides A::vf1, inherits A::vf2
A virtual vf1() {...} virtual vf2() {...} virtual vf3() {...}

Slightly different example - add another base class function

list in order of function name

B::vf1
C::vf2
A::vf3

class C:

D::vf1
A::vf2
A::vf3

class D

Focus on base classes: What are their possible virtual calls through A * pointer?

A member vars
vptr points to C's vtable
B member vars
C member vars

a C object:

A member vars
vptr points to D's vtable
B member vars
C member vars

a D object

[0] &B::vf1
[1] &C::vf2
[2] &A::vf3

C's vtable index, address's

[0] &D::vf1
[1] &A::vf2
[2] &A::vf3

D's vtable index, address's

Compiler puts these facts together in a table of virtual function addresses for each class, the vtable,
tucked somewhere in memory. Each OBJECT in the class contains a pointer to this table, the vptr now
e.g. 4 bytes bigger, no longer just simple struct-like collection of member variables

Notice how the vptr is at same place from the beginning of the object, so can be found for either C or D
object

Notice how each virtual function name corresponds to an index:

How are virtual functions implemented?

Inheritance&VirtualFunctions 10/30/17, 8:23:32 PM 20

[0] vf1
[1] vf2
[2] vf3

A * p = &c or &d
p -> vf1 call function whose address is in p->vptr[0]
p -> vf2 call function whose address is in p->vptr[1]
p -> vf3 call function whose address is in p->vptr[1]
or, in terms of a function pointer call:
p -> vf1(arg) would be (*p->vptr[0])(ptr, arg);

Each call through a A * pointer goes to the function at that vtable index, found using vptr

A tiny tad slower than a regular function call, a whole lot faster than switch-on-type logic
Could be beat by storing address of function directly in a member variable, but very difficult programming
(you have to write many lines of code to initialize the function pointer member variables, hard to maintain,
and saves only the subscripting operation.

Trade-offs

