
LibraryOrgStdContainers 2/7/17, 12:35:49 PM 1

Library Organization and Standard Containers

Stroustrup ch 30 overview of std lib

Stroustrup ch. 31 STL Containers

Stroustrup ch. 34 sections on “almost containers”

containers, “algorithms”, and iterators

iterators point to items in containers

“algorithms” are function templates written in terms of iterators

so same algorithm function can work on all appropriate containers

Focus on containers first

“Standard Template Library”

A lot of additions made in C++11; some refinements in C++14.

Not specialized things

Provide good implementations of things likely to be generally useful.

Containers have very good performance in big O sense

Complexity is actually part of the specifications in the Standard!

E.g. why no ordered array or ordered list - tree-based containers are better.

Why no hash table containers in original STL - no guaranteed performance.

Added later by popular demand, but a good big O can't be specified ---

Avoid providing facilities that result in or encourage poor performing code

Container philosophy

A basic concept of the containers and the Standard Library

e.g. std::list<> or std::map<>

these were in the original "Standard Template Library" that was incorporated into the C++ Standard
Library, still sometimes called STL, though that is not the official name

often write std::container_name<> to refer to one of the standard container templates

terminology

elements in a container

Container highlights

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 2

must be all the same type

copy ctor - usually needed if the container has an internal array of objects

copy assignment operator

destructor - if a class type

move constructor and move assignment will be used if available and appropriate

must be swappable in normal sense - e.g. using std::swap (which copies and also moves if possible).

all containers contain objects, usually copies of supplied objects, and move them by assignment - so
elements must have properly defined public members:

Thing my_thing;
vector<Thing> v;
v.push_back(std::move(my_thing)); // we don’t need my_thing any more, so move it into the container;

Std containers have move versions of functions for adding items (take object by rvalue reference)

But client code can provide movable objects to be put into the container - faster than full copying:

vector<Thing> v;
Thing t1 {“Bill”, 42, “green”}; // construct with three parameters.
v.push_back(t1); // copy it into a new cell at the end
v.emplace_back(“Pete”, 666, “red”); // construct a Thing with these parameters in a new cell.

Done with C+11 template magic: variadic templates and “perfect forwarding” - another use of rvalue
references.

Client code can also ask for an object to be constructed “in place” inside the container, instead of copied or
moved in - can be faster, more convenient:

a default ctor

an equality operator

a less than operator

for some containers, algorithms, the objects in the container might also need:

If a container has a class type object for its contents, when that item is removed (e.g. with erase() member
function), the dtor is automatically run to destroy that object.

want polymorphic types, different subtypes

each object must be represented in more than one container

note that delete of int or delete of a Thing object wont compile!

the container is no longer general - purpose, but has a different behavior in case of pointers

NOTE: containers do not *ever* do a delete on an item, even it if is a pointer! Why?

use pointers to objects in a container if

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 3

Experience shows that if you allocate objects and put pointers to them into a container, you rarely
want the container to take responsibility for getting rid of the objects - you created them, you should
destroy them when you know it time to do so. The container is responsible for its guts - e.g. list
nodes - not other objects that you happen to give it pointers to.

If it has a pointer to an object for its contents, when that item is removed, nothing is done to the pointed-to
object,

same concept as in Project 2

act like pointers to elements in the container

.begin(), .end() return iterators to first object, and “one past the last object”

behave like pointer-to-const - you can't modify what they point to

compiler chooses a version that returns the const iterator instead of plain iteratore

note: begin() and end() return const_iterators if the container is const

 .cbegin() and .cend() will return const iterators even if container is non-const

e.g. list<Person *>::iterator it;

type is available as container_name::iterator

or as subtle as threading through the leaf nodes in a binary tree

or as wild as following through the bins in a hashed container

can be as simple as an actual pointer (the above just typedefs it)

more later, but each container has its own types of iterators

vector<Thing> iter++ goes to next cell in the internal array

list<Thing>, iter++ goes to next node

e.g. set<Thing>, iter++ goes to next item in order (red-black tree traversal)

use like a pointer, but contains whatever needed, and advances however needed

for(it = container.begin(); it != container.end(); ++it) // the idiom

concept of "past the end" - actually simpler that "at the end", because avoids have to special case the last
member in an iteration, and avoids having to define < or > for iterators

Why should we avoid defining < or > for iterators? No efficient implementation in many cases!

iterators as an abstracted pointer

through template magic and overloaded functions, automatically supplied by begin() and end() and
other functions.

Gotcha #1. If the container is const, then you must use a const_interator to access its items

Three gotchas with iterators

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 4

If a member function that accesses a member variable container is const, it means that the container is
const in the function, so a const_iterator has to be used.

class Thing {
public:
Thing() {

for(int i = 1; i < 11; ++i)
ints.push_back(i);
}

void printem() const;
private:
list<int> ints;
};

void Thing::printem() const
{

// error - need a const_iterator here!
for(list<int>::iterator it = ints.begin(); it != ints.end(); ++it)

cout << *it << endl;
}

int main()
{

Thing t;
t.printem();

}

A common error:

for(auto it = ints.begin(); it != ints.end(); ++it)
cout << *it << endl;

Easy fix! auto keyword "automatic declare" a variable to have same type as initializer:

Easier to type, and automatically becomes a const_iterator if that's what's needed!

A serious problem with sequence containers that are array based, less so for node-based.

If iterator invalidated, the results of using the iterator are UNDEFINED

a RUN TIME ERROR, not a compile-time error

no warning, just have to program carefully - efficiency again!

best solutions depend on container type - not completely general.

Gotcha #2. Depending on the container, altering the container contents may INVALIDATE an iterator
already pointing into the container

Consider that could always create/destroy with pointer-to-const object

const Thing* p = new Thing; // initialize pointer-to-const

delete p; // it is legal to destroy object using pointer-to-const

A const_iterator is analogous to a pointer to const object.

Gotcha #3. A const_iterator means you can’t use the iterator to modify the pointed-to item inside the
container. But you can add or remove items using a const_iterator to designate the location!

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 5

that causes the object to be destroyed, but see above - that’s legal.

container.erase(it) is not modifying the pointed to-object, but telling the container which object to
remove.

container.insert(it, x) is not modifying the pointed-to object, but telling the container where to insert x.

Note: a non-const iterator will implicitly convert to a const_iterator

Change made in C++11, but obscure.

Therefore, erase() and insert() member functions are defined as accepting a const_iterator argument.

list<Thing> t;

for(list<Thing>::iterator iter = etc

list<Thing>::iterator is the type of the iterator for a list of Things

list<Thing>::value_type is Thing

list<Thing>::pointer_type is Thing*

- a way to access useful information about an instantiated container - type aliases or typedefs inside the
class template

others are mostly useful for writing other templates, but occasionally useful in just using a template.

The types defined inside a container class template

usually just operator<

can get effect of operator> just by reversing the arguments

can get effect of operator== by just trying both < and >

S 35.5.3

can get other relations automatically generated by rel_ops template classes

arcane tidbit!

a function, supplied by function pointer, will work, but function object usually simpler and preferred

puts in address order, not order of pointed-to C-strings

see note about operator< on char * doesn't do what you think it will

ditto for ANY pointers in containers

have to define function object that says how to order the pointers based on the pointed-to data

for pointers, have to define function objects

Comparison operation - used in algorithms, associative containers

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 6

vector, list, deque

adapted to stack, queue, priority-queue

sequences - items in the order they were explicitly placed into the container

map, set, multimap, multiset - ordered

unordered_map, etc - hash-table based

associative - items are always sorted by the comparison function

Two basic container types

vector, deque

contain an internal dynamically allocated array

array-based

list, map, set, multimap, multiset

allocate space for one item at a time

node-based

Unordered containers probably a combination of both

node-based - iterator points to a node, stays valid if other nodes added or removed

if items added or removed, incrementing an existing iterator value to point to the next item is invalid

array-based - iterator points to a cell, may be invalidated if number of items changes - e.g. memory gets
reallocated, or an item is removed and other items "moved up" to fill the empty cell.

This implementation determines whether an iterator pointing to an item stays valid if other items are
added or removed

iterate through the container; if we want to erase the item at the iterator, then we want to call cont.erase
with the iterator, but continue the scan somehow with ++ on the iterator

auto it = assoc_cont.begin();
while (it != assoc_cont.end()) {

if(dontwant(*it))
assoc_cont.erase(it++); //point to correct next node before erasing

else
++it;

}

For associative containers, to scan and erase, just post-increment the iterator in the call to erase

For sequence containers, member functions give you a correct next iterator if you are scanning the
container

Issue often appears when scanning through a container and removing particular items:

Two different underlying implementations:

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 7

auto it = vec.begin();
while (it != vec.end()) {

if(dontwant(*it))
it = vec.erase(it); // get the next value for the iterator back

else
++it;

}

vec.erase(it) returns an iterator to the true next item; can use this to scan a vector and remove things.

vec.insert(item) returns an iterator pointing to the next true element

vec.erase(remove_if(vec.begin(), vec.end(), dontwant), vec.end())

Scott Meyer's suggestion (see later on remove algorithm)

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 8

no efficient way to find an element "by number" - have to count from the end - O(n)

add and remove at both ends, and insert using an iterator, but no subscript operator.

why? inherently not very efficient - use some other container is recommended

no built-in "insert in order" function - have to do it yourself

optimized for linked-list representation, while vector and deque have array-like properties, so algorithms
work well for them.

List has a sort member function

can take advantage of speed of pointer changes - just cut and splice to eliminate them

notice that the remove algorithm (later) does something very different

List has a remove member function that erases all elements that match a specified value

list

forward_list<type>

more limited than list<>

only a single member variable - pointer to first node

no size() function! - use empty() instead! (good in general)

no insert() function because that normally mean insert before the interator locaton

only insert_after - insert the new item after the iterator location.

no operation supported that requires finding the end of the list in order to do the operation, or scanning
the list from the begining.

#include <forward_list>
using namespace std;

forward_list<int> fl;
fl.push_front(42);
// fl.push_back(42); // error - not provided
auto it = fl.begin(); // ok
// auto rit = fl.rbegin() // error - no reverse iterators

// cout << fl.size() << endl; // error -size function not provided

principle - don't support stupid operations

faster, less memory demand than list<> - good for use in high-performance, limited memory situations if it
is all you need.

concept - provide a lightweight list container that can be traversed only in the forward direction

forward_list<type>

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 9

you can insert before a place pointed to by an iterator, but it could be quite slow.

push_front not supplied because it would be ridiculous

vector - insert

inserting/removing objects can involve moving multiple objects or very expensive copy/assignment of
multiple objects if move not available.

push_back is provided, but not push_front.

vector used in the sort algorithms (can be quite efficient)

means linear search might be surprisingly fast …

because contains a contiguous array, can be traversed very rapidly on modern CPUs

most commonly, no duplicate items, but these are well defined if duplicates are allowed.

by default, uses the operator< for comparisons

binary_search returns true/false and so tells you whether or not the searched-for thing is present, but
not where it is, nor where to put it if it isn’t present.

lower_bound returns an iterator that tells you where it is if it is present, or where to put it if it is not, but
not directly whether or not it is there - you have to do another comparison.

oddness in these two very similar algorithms as commonly used

vector<int> vi;
/* populate vi with values in sorted order, smallest to largest */
int probe;
cin >> probe; // get probe value from user
bool found = binary_search(vi.begin(), vi.end(), probe);
if(found) {

cout << “Found!” << endl;
}

else {
cout << “Not found!” << endl;
}

using binary_search algorithm

vector<int> vi;
/* populate vi with values in sorted order, smallest to largest */
int probe;
cin >> probe; // get probe value from user
auto it = lower_bound(vi.begin(), vi.end(), probe); // returns vector<int>::iterator
if(it != vi.end() && *it == probe) { // does non-end() iterator point to matching value?

cout << “Found - erasing ” << *it << endl;
vi.erase(it);

using lower_bound algorithm to erase if present, insert if not

if vector is in sorted order (either sort algorithm used or inserted in order), then can use binary_search
and lower/upper bound algorithms to find things very quickly

vector

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 10

}
else { // not there, and iterator points to where to put it (possibly at end)

cout << “Not Found - inserting ” << probe << endl;
vi.insert(it, probe);
}

Basic concept for searching a container: specify what to search for with a probe object of the same
type as what is in the container. Called homogenous lookup - the type of the probe is the same as the
type of the things in the container.

class Thing {
public:

Thing(const string& name_) : name(name_) {}
const string& get_name() const

 {return name;}
bool operator< (const Thing& rhs) const

 {return name < rhs.name;}
friend ostream& operator<< (ostream& os, const Thing& t);

private:
 string name;
};

ostream& operator<< (ostream& os, const Thing& t)
{

os << "Thing " << t.id << ' ' << t.name;
return os;

}

vector<Thing> things = {Thing("Dick"), Thing("Harry"), Thing("Tom")}; // in order

while(true) {
cout << "Enter name: ";
string str;
cin >> str;
Thing probe(str);
auto it = lower_bound(things.begin(), things.end(), probe);
if(it != things.end() && it->get_name() == str)

cout << “Found: " << *it << endl;
else

cout << “Not found" << endl;
}

Example: Using a Thing type that has string name

Trivial in case of vecter<int> or vector<string>, but what if the specification isn’t of the same type? We
have to construct a probe object from the specification so that the probe type matches the container
type.

Can’t do this with binary_search algorithm, unfortunately.

template<typename IT, typename T, typename Comparison>
IT lower_bound(IT first, IT last, const T& value, Comparison comp);

For homogenous lookup, IT is the iterator type, T is normally the type of objects in the vector, and comp
takes arguments of type const T&.

But lower_bound algorithm has a form where you supply a comparison function that allows you to do a
custom comparison:

Instead of constructing a homogenous probe Thing from the string, can’t we look things up just with
the string? Called heterogenous lookup - the type of the probe is different from the type of the things
in the container.

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 11

Has a first argument that matches the type of objects in the vector (what you get when you dereference
an iterator)

Has a second argument that matches type T in the above template declaration - it can be either the
same type as the objects in the vector, or a different type.

The comparison function returns true if the first argument comes before the second in a way consistent
with the container ordering.

But fine print in the Standard says how the Comparison function can be used for heterogenous lookup:

bool compare_Thing_to_string(const Thing& t, const string& s)
{return t.get_name() < s;}

while(true) {
cout << "Enter name: ";
string str;
cin >> str;
auto it = lower_bound(things.begin(), things.end(), str, compare_Thing_to_string);
if(it != things.end() && it->get_name() == str)

cout << "found: " << *it << endl;
else

cout << "not found" << endl;
}

Example: Using a Thing type that has string name

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 12

int a[5] = {1, 2, 3, 4, 5};

struct S {int i; char c; double d;};

struct S s = {42, 'x', 3.14}; // in C
S s = {42, 'x', 3.14}; // in C++

// combine them in array of structure types
S sary[3] = {{1, 'a', 1.1}, {2, 'b', 2.2}, {3, 'c', 3.3} };

With structs and build-in arrays, we've always been able to initialize contents with { }

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
// ugh!

But with vector<> and other containers had to call member functions to do initializations in most cases

vector<int> v = {1, 2, 3, 4, 5}; // hooray!

in C++11 Std. Lib. containers support initialization with { } syntax!

map<int, string> m = { {1, "hello"}, {2, "there"}, {3, "world"}, {4, "!!!"} };

Even for map container:

Other uses of { } uniform initialization elsewhere, but not as important

But take care here - some complex container constructors can be tricky …

A great usability improvement

Uniform initialization syntax with { }

Concept: very fast - no memory allocation/deallocation needed

no size overhead - only member variable is the array, size is available as a constant in the code

#include <array>
using namespace std;

array<int, 5> a_5i; // has sizeof 5 * sizeof(int)
array<double, 10> d_10; // has sizeof 10 * sizeof(double)

trivial copy/assign - note move is identical to copy since shallow copy works correctly

Provides an interface a lot like vector<>, but wrapped around a fixed-size array

array<type, size>

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 13

operator[] is unchecked, at() member function is checked (like vector:)

no push functions, no pop functions, use subscript, at, or iterators

template <typename T, int N>
class array {
public:

int size() const {return N;}
private:

T elements[N];

};

array<int, 5> ary; gets instantiated as:
public:

int size() const {return 5;}
private:

int elements[5];

sketch of class template

All the advantages of both a built-in array and a vector. Good for memory limited, high-speed applications
like embedded systems.

Concept - template parameter can be a built-in type with a value used in the code

basically two layers - a map array of pointers into blocks of memory --

last block filled from front to back

first block filled from back to front

so works like vector’s push_back at both ends

a complicated container that combines some features of both lists and vectors

e.g. ++ operation must determine if we are at the end of a block; if so, check the map to find the next block,
and point to the first item in it

iterators more complicated than vector or list

not as fast as a list, but a lot better at front than array/vector would be

relatively fast operations on each end - both push_back and push_front

not as fast as an array or vector, but a lot better than a list would be

relatively fast subscript access of individual elements

deque

adapters - wrapper around a vector or other container

push to put an item into container

stacks, queue, priority_queue

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 14

pop'ing removes the top element, but doesn't return a value. First, look at top using top(), front(), or
back(), and then pop

check using empty before looking at the top, front, or back value.

so not always suitable

can use push/pop front/back with vector or list to get your own stack or queue

give basic interface, but do not allow access to stuff "in the middle" - no iterators.

typically uses a heap algorithm on a vector - also available to you

priority_queue - elements with the same priority do not have a defined order

“associative” isn’t the best word to use here … “ordered” or “tree” is better - these containers always
keep their items in order, and use a tree representation -

interface similar to our Ordered_list

set<int> si; // in order of size

puts in address order, not order of pointed-to C-strings

see note about operator< on char * doesn't do what you think it will

set<char*> scl; // in order of address!

For example, to set up a set container of Thing* with a custom ordering specified with a function
object:

// order Thing pointers by the ID numbers of the Things
struct Less_Thing_ptrs {

bool operator() (const Thing* tp1, const Thing* tp2) const
{return tp1->get_ID_number() < tp2->get_ID_number();}

};

set<Thing* Less_Thing_ptrs> things;

can specify custom ordering with second template parameter:

a binary tree of elements ordered using < or a ordering you supply.

if already there, item is *not* inserted

returns std::pair<iterator-type, bool> where
second is true if insertion succeeded, and iterator points to it;
false if already there, and iterator points to where it is.

often don't care - just try to insert them all, at the end you have exactly one of each

insert(x) puts it into the tree, self balances as needed, returns what happened.

set is actually the simplest, most basic

Associative containers -

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 15

allows you to easily create the unique "set" of a bunch of items.

Example: read a bunch of “words” from a file and get the unique set of them:
set<string> words;
ifstream input(“input.txt”);

// read and insert each white-space delimited string
string word;
while(input >> word) {

words.insert(word);
}

// how many different strings were found?
cout << words.size() << “ different words found” << endl;

// output them in alphabetical order
for (string& word : words) {

cout << word << endl;
}

.begin() to .end() gives them in order

does binary search through the tree

find(x) returns an iterator pointing to x if it is present, .end() if not.

note that x doesn't have to be a complete object, only the part used in the comparison.

can be clumsy, or neat, depending on the nature of the object.

class Thing {
string name;
int cost;
public:
Thing(const string& name_) : name(name_) : cost(0) {}
void set_cost(int cost_) {cost = cost_;}
bool operator< (const Thing& rhs) const

{return name < rhs.name;}
};

set<Thing> things;
Thing t1("gizmo");
things.insert(t1); // put it in
...
string v;
cin >> v;
Thing probe(v);
set<Thing>::iterator it = things.find(probe);

Homogenous lookup: in order to find an object in the tree, you have to construct a probe object that
compares the same as the object you want.

Heterogenous lookup - can be done, but a bit cryptic, and more than one way to do it. A C++14 extension,
not very well known. See the handout.

objects in the container are supposed to be unmodifiable

A gotcha for set containers

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 16

container might now be corrupted

e.g. for set<Thing>, consider iter->set_name("dohickey");

e.g. for set<Thing *>

you can't change which object is pointed to by a item in the container, but you can change that
object!

compiler won't warn you if you disorder the container by changing the Thing's key fields!

If pointers in the container, the pointers are unmodifiable, but not the pointed-to object

required to ensure that you can't disorder the container by changing one of the objects in it so that the
ordering by key field is no longer valid

some early incorrect implementations turned set<Thing> into set<const Thing>

set::iterator and set::const_iterator behave the same way - you are supposed to get a compiler error
if you try to modify an item in a set with a set::iterator, just like for a set::const_iterator

don't declare a set<const T>

if pointers to unmodifiable objects, declare set<const T *> and always use const T * consistently
throughout the program,

Preferably, don't provide a way to modify the key field once it is set.

if pointers to modifiable objects, declare set<T *> and make sure your code doesn't modify the
key field in an object being pointed-to from the container.

Recommendation: don't put const in a set declaration just to maintain the set ordering - it is
supposed to take care of that for you. Sticking in an unnecessary const can make your code clumsy
trying to preserve the const correctness that this requires.

How is unmodifiability implemented?

Only one workable approach: Make a copy of it, remove it from the container, change the copy, and put
it back in - now it will be in the correct order.

What if you need to modify the key value of an object in the container?

like the cost in Thing doesn't change ordering

In general, avoid using a cast if at all possible. Do this only if absolutely unavoidable.

Get a reference or pointer and do a const_cast to temporarily remove the constness, change the
object through the reference or pointer

not so good if the object is really expensive to copy.

Do the same as if you were changing the key value: Copy the object from the container, remove it
from the container, change the copy, and put the changed one into the container.

three approaches:

what if you need to change some non-key part of the object?

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 17

get the pointer, change the non-key fields

can be safe if the object’s class makes is key field immutable (like Thing’s name)

Use a container of non-const pointers to the objects

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 18

map<key-type, mapped-value-type, key-ordering-relation>

third parameter default to operator< of the key-type

example:

map<string, int> name_map; // strings in order

struct Reverse_string_order {
bool operator() (const string& s1, const string& s2) const

{return s1 > s2; //reverse order!}
};

map<string, int, Reverse_string_order> reverse_name_map;

declare with 2 or 3 template type arguments:

The map container compares the keys in the pairs to do the ordering,otherwise just uses the same code as
set does (or map and set are two different interfaces to an underlying red-black tree container.)

e.g.
template <typename T1, typename T2>
struct pair {

pair(T1 first_, T2 second_) : first(first_), second(second_) {}
T1 first;
T2 second;

};

often handy to use for your own purposes

pair<string, int> p ("hello", 23);

p.first is string containing hello

p.second is int 23

make_pair is a function template that infers the types

string s; int i;

an example of a function template being used to construct an object from a class template

template <typename T1, typename T2>
pair<T1, T2> make_pair(T1 first_, T2 second_)
{

return pair<T1, T2>(first_, second_)
}

e.g.

make_pair(s, i) returns a pair<string, int> containing a copy of s and i

pair is a template struct with members .first, .second

map container - a set whose elements are pair<> objects

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 19

can't change the key!

common error: forgetting the const when you declare the iterator or a pair type to use with a map
container

can declare the iterator with auto or:

map<string, Thing>::key_type ... string

map<string, Thing>::mapped_type ... Thing

map<string, Thing>::value_type ... pair<const string, Thing>

typedef map<string, Thing> Thing_map_t;

e.g. Thing_map_t::iterator it = my_thing_map.begin();

auto it = my_thing_map.begin();

e.g. void print_second (Thing_map_t::value_type& the_pair)
{

cout << the_pair.second << endl;
}

your own typedefs (or type aliases)

standard container typedefs/type aliases are your friends to help avoid this error, and save lots of
typing

the pair used in a map is pair<const key_type, mapped_type>.

concept: the iterator returned by the find function points to the pair in the container - you can access
either the first or the second of the pair

pair<const key_type, value_type> x(key, value);

pair<iterator_type, bool> ret = m.insert(x);

pair<iterator_type, bool> ret = m.insert(make_pair(key, value));

the bool tells you whether the insertion was successful, the iterator tells you where the new pair or
existing pair is in the tree.

pair<const string, Thing> my_pair(s, t);

pair<map<string, Thing>::iterator_type, bool> result = things.insert(my_pair);

e.g.

if insert succeeded, the iterator points to the new pair in the map - not particularly useful, but there it
is.

insert(const value_type& v) returns a pair<iterator_type, bool>

insert/find/erase - general purpose, but often awkward because you have to work with the pair<> that is
there

Two ways of accessing map elements

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 20

result.second is true if insert worked, false if not because a pair with the same key was
already there.

if succeeded, the iterator points to where it is in the map.

if need to put it in, call erase with the iterator (ret.first), then insert again

if (!ret.second) {
m.erase(ret.first);
m.insert(my_pair);

or change the second using the iterator - key is const, but not the mapped value
if (!ret.second) {

ret.second->second = my_mapped_value;

insertion fails if key was already there - returned pair.second will be false

m.emplace(keyvalue, mappedvalue);

also have emplace - provide the two arguments for the pair:

string name;
cin >> name;
auto it = things.find(name);

== .end() if not there.

it->first

pointed-to pair.first is the key of the pair

it->second

pointed-to pair.second is the value of the pair.

find(key) returns an iterator that points to the pair (cf. set)

erase(const_iterator) will remove the pair pointed to by the supplied iterator.

erase(key_type) will remove the pair with the specified key, if present

m[key] is a reference to the mapped-value (the second) in the pair

subscript operator is convenient in many cases, but it is subtle - need to understand it!

if a pair with that key was already there, the insert didn't happen, but the iterator points to the pair
that was already there, so you get a reference to the value (second) that is already there

if a pair with that key wasn't already there, the insert happens, and you get a reference to the value
(second) that is now there

either way, the returned reference to the second gives you a way to either read it or write it

subscript works by first calling insert with a pair whose first (the key) is the subscript value and whose
second is the default ctor'd value, and then returning a reference to the second of whatever the
returned iterator is pointing to:

subscript - operator[]

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 21

tricky fact: you can’t use subscript operator on a const map - because it might add a pair, the map
has to be modifiable!

for built-in types, the appropriate type of zero

for user-defined types, default ctor'd value - must have default ctor.

more: if pair<key, v> not there, it is put in, with value being default value

so if subscript on left-hand side, we end up creating the pair, searching, inserting, then changing what
was inserted - less efficient than simply inserting; how much so depends on the nature of the second of
the pair.

so you can find out if key was already present by testing for default value - but only if the default value
could not be an actual value.

can't remove any keys, or keep them out, using just subscript operator!

so can pollute the map with bogus keys if e.g. they are user supplied - can take more time to clean
it up!

Subscript operator is not the most efficient choice for looking things up, because any keys used in the
lookup that aren't there will be added!

m[key] = value;

put it in with subscript on lhs if you want that key, value pair to be there unconditionally

m.insert(make_pair<key, v>);

Fastest insertion is calling insert with make_pair - but it works only if key is not already there!

my_value = m[key]; // adds pair with default value if not there

Don’t use on right-hand side to “read out” the value unless you are sure it is already there, or you don’t
mind the map being updated with the default value for the key!

Bad:
if(m.find(key) == m.end())

// not there
else

my_value_type v = m[key]; // searches a second time!

Also Bad:
if(m.count(key) == 0) // count() does a search!

not there
else

my_value_type v = m[key]; // searches a second time!

Good:
auto it = m.find(key); // search once
if(it == m.end())

// not there
else

my_value_type v = it->second;

Don’t double search just so you can use a subscript … pointless! - use find, check iterator, get the
second to get the value

Recommendation on using subscripts:

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 22

To get identifcal function pointer types, all command-handling functions must have same signature and
return value - e.g. return void and have one argument: (Data& data)

typedef void (*Command_fp_t)(Data&);
typedef map<string, Command_fp_t> Command_map_t;

void load_command_map(Command_map_t& cm)
{

cm["defrangulate"] = do_defrangulate_command;
cm["transmogrify"] = do_transmogrify_command;

}

Or use brace initializiation and move semantics to be less verbose:

Command_map_t load_command_map()
{

Command_map_t cm = {
{“defrangulate”, do_defrangulate_command},
{“transmogrify”, do_transmogrify_command}
};

return cm;
}

// get the command from the user
cin >> command;
auto it = command_map.find(command);
if(it == command_map.end())

throw Error("Unrecognized command!");
// get the function pointer
command_fp_t cfp = it->second;
cfp(data); // call the command function

inside the command handling loop, use the find function:

// get the command from the user
cin >> command;
// get the function pointer with the subscript operator
command_fp_t cfp = command_map[command];
// it will be zero if the command is unrecognized
// because zero is the default ctor'd value for a function pointer
if(cfp)

cfp(data); // call the command function
else {

// remove the bad command
command_map.erase(command);
throw Error("Unrecognized command!");
}

or use the subscript operator, test for default value, erase if wasn’t there - less efficient, but instructive
on how the subscript operator works for a map container.

pretty neat, but also a good exercise

instead of bunch of if-elses or a switch, use a map to translate input command strings or codes to
function pointers

cute example using map<string, command_function_ptr>

hashed containers have interfaces like set and map, with some additional member functions.

unordered containers

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 23

basic use is very easy if you know how to use set or map.

default hash function supplied for built-in types, std::string, a few other library types.

complete interface is much more elaborate than set and map.

interface includes instrumentation and control functions to allow testing and tuning of the hashing.

Also, "hash" names were already in use for incompatible implementations.

Called unordered_set, unordered_map, etc. because if you iterate through the container, you will get all the
elements just like with the other containers, but they come out in a strange order - depends on the hashing
function - which is conceptually no meaningful order at all - so they are "unordered."

Hash containers useful only if great speed required, and lots of memory available, and memory demands
do not slow down the application.

Not a good default choice - use only when justified and after testing to confirm performance.

To ensure really are fast, can require careful tuning - why they have an elaborate instrumentation interface
- can see how well the hash is working, control the rehashing, etc.

I have observed bad cases with my own hash functions …

Even if using strings, what if the strings are not random? How well will they hash?

*** Do not use unordered containers in this course! ***

analogous to subscripting a built-in array

not checked, but very fast!

subscript operators are not range-checked!

the what() message is something like “range error”

.at() member functions provide range checked access, throw a std::out_of_range() exception

it could have come from anywhere in the program!

A local try-catch is often pointless and clumsy

Problem: if you have a top-level catch for this exception, there is no useful information available about
where or why the index was out of range!

if using subscripts on vector or array, check range yourself ahead of time, or use looping constructs that
guarantee valid subscripts.

if using a map or set, use the find function and check the returned iterator, then dereference it only if it is !
= .end()

Recommendation: Prefer your own range checks

operator[] vs. .at() member function

Why .at() is not that useful

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 24

as usual, safety means slow!

but Perl syntax actually seems more obscure, at least to me ...

similar to Perl containers

e.g.. your List and String class - only a couple of pointers, etc.

remember, the data in a container is dynamically allocated; the container object itself is not very big

typedef list<string> line_t;
typedef vector<line_t> paragraph_t;
typedef map<int, paragraph_t> document_t;

int main()
{

document_t doc;

// fill the document

// three different ways to output paragraph 23 line 4 of the document
// there shouldn't be any copying of the containers or data ...

document_t::iterator it = doc.find(23);
paragraph_t& para = it->second;
line_t& line = para[4];
for(line_t::iterator it = line.begin(); it != line.end(); it++)

cout << *it << endl;

line_t& line2 = doc[23][4];
for(line_t::iterator it = line2.begin(); it != line2.end(); it++)

cout << *it << endl;

for(line_t::iterator it = doc[23][4].begin(); it != doc[23][4].end(); it++)
cout << *it << endl;

}

iterators point to things inside the container, making it possible to refer to things deep inside with no
problem and no unnecessary data copying. Example:

a container can have other containers as a member

e.g. each string is a word, each list is a line of text, the vector is the lines.

typedefs and reference types can really clarify the code

vector<list<string>> paragraph;

the paragraphs are numbered, can be looked up by number

map<int <vector < list <string> >>>

Containers of containers

How to pick a container

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 25

What items will be in the container?

What kind of order do they need to be in?

How are you going to put the items in the container?

How do you need to access the items in the container?

What algorithms will be used on the items?

First, get clear on:

e.g. use binary search if container items are in order

Use vector by default, with appropriate algorithms to access it.

you want the objects to be in order of when they were put in, or some other arbitrary order

you want to use std lib algorithms that require a sequence container (many of them).

Use sequence containers if

Never use a linear algorithm if you can apply a logarithmic one easily!

you need fast logarithmic lookup automatically

either operator< or an ordering that you specify

e.g. for convenience in output

you want the objects to be always in some kind of sorted order

Since they are node-based, can be handy if iterators need to stay valid while information added or
removed.

Use associative containers if

use at() function to throw an exception if index is out of bounds

Has subscripting just as fast as a built-in array.

Adding to the end will be efficient (with push_back).

safely control a for loop with subscripting by calling size() to get the number of elements really there

Can do it, but it will be slow

Don't use if need to add/remove at the front, or insert/remove in the middle very often.

Can use algorithms like binary search that depend on fast subscripting for efficiency.

Use vector if you want something like an built-in array

How to choose a sequence container

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 26

binary_search, lower_bound

especially the standard algorithms

Never use a linear algorithm if you can apply a logarithmic one easily!

Remember that iterators point to a cell in an internal array, not to a specific item, so can change their
meaning or become invalid if other items are added or removed.

a good default choice - can be expected to work very well in many situations

Use array instead of vector if the size is fixed and you still want to take advantage of STL interface

Has subscripting, but slower than a built-in array

Slower than vector overall, but reasonably fast at both front and back modifications

Still stinks for modifications in the middle.

Use a deque if you need vector-like capabilities but with operations at the front as well as the back

No way to quickly compute a subscript to go directly to the middle, as in binary search

does it by counting nodes in the list, then finding the middle node!

See handout!

Crazy, but true: the STL binary search algorithms will work on a linked list, but you don't want it -
ridiculously inefficient - a glitch in the STL philosophy

Can only do linear searches of the list

iterator points to the node containing the item itself

Iterators to items remain valid if other items are moved around, inserted, or removed

e.g. sorting.

Remember to use list's own member functions where provided, for speed

note that linked-list is basically slower traversal than vector on most machine architectures most of the
time!

Use a list if you want to modify in the middle quickly, and don't mind linear operations elsewhere

e.g. can get a stack just with push/pop_back, etc of a vector

use stack, queue, priority_queue - can tell immediately what it is used for, and how it will behave

Use adapters to be more expressive about the purpose of the container

Especially if the values are different type from the key.

Use a map if you need to look values up from a key.

How to choose associative containers

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 27

E.g. given a string, find the corresponding int

e.g. a container of student records, which includes the student id number - the value

 key is student id number as a separate object

but might still be worth it

if key is part of the value, some storage inefficiency

having to work with pairs is clumsy.

disadvantages:

Use a multimap if multiple values with the same key.

Avoids map's storage inefficiency of duplicating the key, if key is part of the stored object

Interface is MUCH simpler than map, so easier, more efficient to use.

it is the "set" of integers that you processed - why it is called a "set"

set<int> - insert numbers in it, will contain each different number only once

Especially if you want to "automatically" ensure that each item is represented in the container only
once:

E.g. to find a student record by ID, construct a dummy student record that contains the ID number.

Possibly less efficient than using find on a map.

No problem with build-in types - no construction time.

Disadvantage: to lookup an object with find(), you have to construct an object that matches the one you
are looking for.

See the handout

Or use heterogenous lookup, which needs a more complicated comparisons

Disadvantage that if you want to modify the objects in the set container, you get into const-correctness
problems - avoid if possible.

Use a multiset if you want multiple objects that compare alike.

Use a set if you need to look up items where the key is either the stored object itself or part of the stored
object.

Note: sometimes using more memory slows things down - due to page faults, etc, in VM systems.

Best approach: Write code so that you can easily switch containers, then test performance in realistic
conditions.

BUT DON”T USE IN THIS COURSE.

Use a unordered_set or unordered_map if lookup speed is critical and you are willing to trade memory
space to get it.

LibraryOrgStdContainers 2/7/17, 12:35:49 PM 28

Std. Lib. containers are very general - a custom container could suit a particular situation better.

If you don't know what that is, might as well use the general container!

BUT a custom container is likely only to be better if it takes advantage of something in the situation that the
general container cannot.

Often, you can easily assemble a custom container by using a combination of the library containers.

Example - doing a hash container using previous STL containers

Example - double-ended map - lookup either with "key" or "value" and get the other one

Build your own custom container only if necessary for efficiency.

