
1MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

Lecture Outline - Multiple Inheritance and RTTI
Stroustrup Ch 21, 22.
Note: His diagrams are not UML diagrams!

Basic concept of multiple inheritance
Inherit from more than one class
class Derived : public Base1, public Base2 {

Derived object has Base1 member variables followed by Base2 member variables
Has both sets of member functions
Base constructors run in declaration order, destructors in reverse declaration order

Mixin Multiple inheritance
Mixin multiple inheritance is no problem, and can be very useful at times

concept: base classes are orthogonal - have nothing in common
no tricky ambiguity or duplication issues

Simply add some functionality or an interface to derived classes.
class Base1 {
public:

void defrangulate();
};
class Base2 {
public:

void transmogrify();
};
class Base3 {
public:

void munge();
};

Derive from combinations of class to get combinations of functionality
class D1 :public Base1, public Base3 {
}; can defrangulate and munge
class D2: public Base2, public Base3 {
}; can transmogrify and munge
class D3; public Base1, public Base2, public Base3 {
}; can do all three

An example later - allows you to connect together two different class systems
A GUI toolkit class hierarchy and a whole functionality system

Model-View-Controller and Observer patterns
Use for capability classes and queries solution to the fat interface problem

Class has a base class with a common interface and (possibly) implementation
Each capability class is an interface class describing a way of talking to an object
Class inherits also from one or more capability classes
A dynamic_cast is used to find out whether an object implements a particular interface

Implications of multiple inheritance
If two base classes have a member of the same name, you have to disambiguate which one you
mean in order to access it.

2MultipleInheritanceRTTI.oo3 11/7/13 1:06:27Implications of multiple inheritance
If two base classes have a member of the same name, you have to disambiguate which one you
mean in order to access it.

class Base1 has void foo();
class Base2 has void foo();
class D inherits from both
D d;
d.foo() // ambiguous - you have to say which one you want

d.Base2::foo();
Confusing: Function overloading won't sort it out - compiler looks for the function name first, and balks
immediately if the name is ambiguous.

If a class has two bases with virtual functions in each base, a virtual call can only access the
virtual functions in the one base corresponding to the pointer.

class Base1 has virtual void vf1();
class Base2 has virtual void vf2();
Base1 * p1; Base2 * p2;
p1->vf2(); // compile error - p1 is a Base1 *, no information about Base2
p2->vf1(); // compile error
If you have the Base1 pointer and you need to access a Base2 virtual function, use dynamic_cast to
do a cross-cast.

Run-time adjustments to the addresses in the pointers can be necessary - so some run-time cost of
using MI.

3MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

Duplicated bases - diamond shaped inheritance - produces ambiguities.
"Dreaded diamond" inheritance pattern
Base, D1 isa Base, D2 isa Base, DD is a D1 and isa D2

Duplicated Base members - ambiguity - has two Base subobjects
have to explicitly qualify which one you mean in the D1 and D2 classes

4MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

Duplicated bases - diamond shaped inheritance - produces ambiguities.

Example code
#include <iostream>

using namespace std;

class B {
public:

B(int i_) : i(i_)
{cout << "B " << i << " ctor" << endl;}

void print() {cout << "B has " << i << '\n' << endl;}
private:

int i;
};

class D1 : public B {
public:

D1(int i_, int j_) : B(i_), j(j_)
{cout << "D1 " << j << " ctor" << endl;}

private:
int j;

};

class D2 : public B {
public:

D2(int i_, int j_) : B(i_), j(j_)
{cout << "D2 " << j << " ctor" << endl;}

private:
int j;

};

class DD : public D1, public D2 {
public:

DD(int i_, int j_, int k_, int m_) : D1(i_, j_), D2(i_*10, k_), m(m_)
{cout << "DD " << m << " ctor" << endl;}

private:
int m;

};

int main()
{

B b(0);
b.print();

D1 d1(1, 11);
d1.print();

D2 d2(2, 22);
d2.print();

DD dd(3, 22, 33, 111);
// dd.print();// error - it's ambiguous!

dd.D1::print();
dd.D2::print();

cout << "done" << endl;
}

/*
B 0 ctor
B has 0

B 1 ctor
D1 11 ctor
B has 1

B 2 ctor
D2 22 ctor
B has 2

B 3 ctor
D1 22 ctor
B 30 ctor
D2 33 ctor
DD 111 ctor
B has 3

B has 30

done

*/

5MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

Duplicated bases - diamond shaped inheritance - produces ambiguities.

Example code
#include <iostream>

using namespace std;

class B {
public:

B(int i_) : i(i_)
{cout << "B " << i << " ctor" << endl;}

void print() {cout << "B has " << i << '\n' << endl;}
private:

int i;
};

class D1 : public B {
public:

D1(int i_, int j_) : B(i_), j(j_)
{cout << "D1 " << j << " ctor" << endl;}

private:
int j;

};

class D2 : public B {
public:

D2(int i_, int j_) : B(i_), j(j_)
{cout << "D2 " << j << " ctor" << endl;}

private:
int j;

};

class DD : public D1, public D2 {
public:

DD(int i_, int j_, int k_, int m_) : D1(i_, j_), D2(i_*10, k_), m(m_)
{cout << "DD " << m << " ctor" << endl;}

private:
int m;

};

int main()
{

B b(0);
b.print();

D1 d1(1, 11);
d1.print();

D2 d2(2, 22);
d2.print();

DD dd(3, 22, 33, 111);
// dd.print();// error - it's ambiguous!

dd.D1::print();
dd.D2::print();

cout << "done" << endl;
}

/*
B 0 ctor
B has 0

B 1 ctor
D1 11 ctor
B has 1

B 2 ctor
D2 22 ctor
B has 2

B 3 ctor
D1 22 ctor
B 30 ctor
D2 33 ctor
DD 111 ctor
B has 3

B has 30

done

*/

6MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

virtual inheritance: Heavyweight solution to the "dreaded diamond" problem.
Remove ambiguity of Base subobject, but complicates object construction.
Use is not required in this course - but you might be able to try it out if you want.
virtual inheritance - construct a single shared subobject - very different from normal

complicates the addressing, causes some run-time overhead
has to be anticipated in the class design - not necessarily possible to retrofit the design
don't use if the design can be modified to make it unnecessary

D1 virtually inherits from Base, D2 virtually inherits from Base, DD isa D1 and isa D2
B becomes a virtual base class.

DD gets only one Base subobject
gets a pointer to a single chunk of memory for the base subobject
No longer any ambiguity about base object members

7MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

virtual inheritance: Heavyweight solution to the "dreaded diamond" problem.

Initialization problem: Does D1 or D2 initialize the Base subobject? Who controls it? Ambiguity is not
allowed!

Answer: The leaf class has to invoke the base constructor of the virtual base class
violation of the normal immediate-base-only constructor rule
Any other attempts to invoke the base constructor are ignored!
Notice that depends on the type of object declared - most derived one gets to say what happens

See example - derived from bottom of diamond gets to initialize the base subobject
The D1, D2 initializations of Base do nothing!

Run time cost: single base subobject is referred to by indirection - through a pointer - means a bit
of run-time cost compared to a non-virtual inheritance.
Complexity and overhead leads to recommendation to avoid using virtual inheritance except where
it is actually needed - try to avoid!
Example code and execution

#include <iostream>
using namespace std;

class B {
public:

B() : i(0)
{cout << "B " << i << " default ctor" << endl;}

B(int i_) : i(i_)
{cout << "B ctor arg is " << i << endl;}

void print() {cout << "B has " << i << endl;}
private:

int i;
};

class D1 : virtual public B {
public:

D1(int i_, int j_) : B(i_), j(j_)
{cout << "D1 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D1 has " << j << endl;}
private:

int j;
};

class D2 : virtual public B {
public:

D2(int i_, int j_) : B(i_), j(j_)
{cout << "D2 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D2 has " << j << endl;}
private:

int j;
};

class DD : public D1, public D2 {
public:
// DD(int i_, int j_, int k_, int m_) : D1(i_, j_), D2(i_*10, k_), m(m_) // error - tries to
call B() constructor if not defined

DD(int i_, int j_, int k_, int m_) : B(99), D1(i_, j_), D2(i_, k_), m(m_)
{cout << "DD ctor args are " << i_ << ", " << j_ << " for D1, and "<< i_ << ", "<<

k_ << " for D2, and "<< m_ << endl;}
void print() {cout << "DD has " << m << endl;}

private:
int m;

};

class DDD : public DD {
public:
// DDD(int i_, int j_, int k_, int m_, int n_) : DD(i_, j_, k_, m_), n(n_) // error - tries
to call B() constructor if not defined

DDD(int i_, int j_, int k_, int m_, int n_) : B(999), DD(i_, j_, k_, m_), n(n_)
{cout << "DDD ctor args are " << i_ << ", " << j_ << ", " << k_ << ", " << m_ << "

for DD, and " << n_ << endl;}
void print() {cout << "DDD has " << n << endl;}

private:
int n;

};

int main()
{

cout << "\nB b(0);" << endl;
B b(0);
b.print();

cout << "\nD1 d1(10, 11);" << endl;
D1 d1(10, 11);
d1.B::print();
d1.print();

cout << "\nD2 d2(20, 22);" << endl;
D2 d2(20, 22);
d2.B::print();
d2.print();

cout << "\nDD dd(30, 32, 33, 333);" << endl;
DD dd(30, 32, 33, 333);
dd.B::print();
dd.D1::print();
dd.D2::print();
dd.print();

cout << "\nDDD ddd(40, 42, 43, 444, 4444)" << endl;
DDD ddd(40, 42, 43, 444, 4444);
ddd.B::print();
ddd.D1::print();
ddd.D2::print();
ddd.DD::print();
ddd.print();
cout << "done" << endl;

}
/*
Demo of non-default construction

B b(0);
B ctor arg is 0
B has 0

D1 d1(10, 11);
B ctor arg is 10
D1 ctor args are 10 for B, and 11
B has 10
D1 has 11

D2 d2(20, 22);
B ctor arg is 20
D2 ctor args are 20 for B, and 22
B has 20
D2 has 22

DD dd(30, 32, 33, 333);
B ctor arg is 99
D1 ctor args are 30 for B, and 32
D2 ctor args are 30 for B, and 33
DD ctor args are 30, 32 for D1, and 30, 33 for D2, and 333
B has 99
D1 has 32
D2 has 33
DD has 333

DDD ddd(40, 42, 43, 444, 4444)
B ctor arg is 999
D1 ctor args are 40 for B, and 42
D2 ctor args are 40 for B, and 43
DD ctor args are 40, 42 for D1, and 40, 43 for D2, and 444
DDD ctor args are 40, 42, 43, 444 for DD, and 4444
B has 999
D1 has 42
D2 has 43
DD has 444
DDD has 4444
done
*/

8MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

virtual inheritance: Heavyweight solution to the "dreaded diamond" problem.

Example code and execution
#include <iostream>
using namespace std;

class B {
public:

B() : i(0)
{cout << "B " << i << " default ctor" << endl;}

B(int i_) : i(i_)
{cout << "B ctor arg is " << i << endl;}

void print() {cout << "B has " << i << endl;}
private:

int i;
};

class D1 : virtual public B {
public:

D1(int i_, int j_) : B(i_), j(j_)
{cout << "D1 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D1 has " << j << endl;}
private:

int j;
};

class D2 : virtual public B {
public:

D2(int i_, int j_) : B(i_), j(j_)
{cout << "D2 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D2 has " << j << endl;}
private:

int j;
};

class DD : public D1, public D2 {
public:
// DD(int i_, int j_, int k_, int m_) : D1(i_, j_), D2(i_*10, k_), m(m_) // error - tries to
call B() constructor if not defined

DD(int i_, int j_, int k_, int m_) : B(99), D1(i_, j_), D2(i_, k_), m(m_)
{cout << "DD ctor args are " << i_ << ", " << j_ << " for D1, and "<< i_ << ", "<<

k_ << " for D2, and "<< m_ << endl;}
void print() {cout << "DD has " << m << endl;}

private:
int m;

};

class DDD : public DD {
public:
// DDD(int i_, int j_, int k_, int m_, int n_) : DD(i_, j_, k_, m_), n(n_) // error - tries
to call B() constructor if not defined

DDD(int i_, int j_, int k_, int m_, int n_) : B(999), DD(i_, j_, k_, m_), n(n_)
{cout << "DDD ctor args are " << i_ << ", " << j_ << ", " << k_ << ", " << m_ << "

for DD, and " << n_ << endl;}
void print() {cout << "DDD has " << n << endl;}

private:
int n;

};

int main()
{

cout << "\nB b(0);" << endl;
B b(0);
b.print();

cout << "\nD1 d1(10, 11);" << endl;
D1 d1(10, 11);
d1.B::print();
d1.print();

cout << "\nD2 d2(20, 22);" << endl;
D2 d2(20, 22);
d2.B::print();
d2.print();

cout << "\nDD dd(30, 32, 33, 333);" << endl;
DD dd(30, 32, 33, 333);
dd.B::print();
dd.D1::print();
dd.D2::print();
dd.print();

cout << "\nDDD ddd(40, 42, 43, 444, 4444)" << endl;
DDD ddd(40, 42, 43, 444, 4444);
ddd.B::print();
ddd.D1::print();
ddd.D2::print();
ddd.DD::print();
ddd.print();
cout << "done" << endl;

}
/*
Demo of non-default construction

B b(0);
B ctor arg is 0
B has 0

D1 d1(10, 11);
B ctor arg is 10
D1 ctor args are 10 for B, and 11
B has 10
D1 has 11

D2 d2(20, 22);
B ctor arg is 20
D2 ctor args are 20 for B, and 22
B has 20
D2 has 22

DD dd(30, 32, 33, 333);
B ctor arg is 99
D1 ctor args are 30 for B, and 32
D2 ctor args are 30 for B, and 33
DD ctor args are 30, 32 for D1, and 30, 33 for D2, and 333
B has 99
D1 has 32
D2 has 33
DD has 333

DDD ddd(40, 42, 43, 444, 4444)
B ctor arg is 999
D1 ctor args are 40 for B, and 42
D2 ctor args are 40 for B, and 43
DD ctor args are 40, 42 for D1, and 40, 43 for D2, and 444
DDD ctor args are 40, 42, 43, 444 for DD, and 4444
B has 999
D1 has 42
D2 has 43
DD has 444
DDD has 4444
done
*/

9MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

virtual inheritance: Heavyweight solution to the "dreaded diamond" problem.

Example code and execution
#include <iostream>
using namespace std;

class B {
public:

B() : i(0)
{cout << "B " << i << " default ctor" << endl;}

B(int i_) : i(i_)
{cout << "B ctor arg is " << i << endl;}

void print() {cout << "B has " << i << endl;}
private:

int i;
};

class D1 : virtual public B {
public:

D1(int i_, int j_) : B(i_), j(j_)
{cout << "D1 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D1 has " << j << endl;}
private:

int j;
};

class D2 : virtual public B {
public:

D2(int i_, int j_) : B(i_), j(j_)
{cout << "D2 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D2 has " << j << endl;}
private:

int j;
};

class DD : public D1, public D2 {
public:
// DD(int i_, int j_, int k_, int m_) : D1(i_, j_), D2(i_*10, k_), m(m_) // error - tries to
call B() constructor if not defined

DD(int i_, int j_, int k_, int m_) : B(99), D1(i_, j_), D2(i_, k_), m(m_)
{cout << "DD ctor args are " << i_ << ", " << j_ << " for D1, and "<< i_ << ", "<<

k_ << " for D2, and "<< m_ << endl;}
void print() {cout << "DD has " << m << endl;}

private:
int m;

};

class DDD : public DD {
public:
// DDD(int i_, int j_, int k_, int m_, int n_) : DD(i_, j_, k_, m_), n(n_) // error - tries
to call B() constructor if not defined

DDD(int i_, int j_, int k_, int m_, int n_) : B(999), DD(i_, j_, k_, m_), n(n_)
{cout << "DDD ctor args are " << i_ << ", " << j_ << ", " << k_ << ", " << m_ << "

for DD, and " << n_ << endl;}
void print() {cout << "DDD has " << n << endl;}

private:
int n;

};

int main()
{

cout << "\nB b(0);" << endl;
B b(0);
b.print();

cout << "\nD1 d1(10, 11);" << endl;
D1 d1(10, 11);
d1.B::print();
d1.print();

cout << "\nD2 d2(20, 22);" << endl;
D2 d2(20, 22);
d2.B::print();
d2.print();

cout << "\nDD dd(30, 32, 33, 333);" << endl;
DD dd(30, 32, 33, 333);
dd.B::print();
dd.D1::print();
dd.D2::print();
dd.print();

cout << "\nDDD ddd(40, 42, 43, 444, 4444)" << endl;
DDD ddd(40, 42, 43, 444, 4444);
ddd.B::print();
ddd.D1::print();
ddd.D2::print();
ddd.DD::print();
ddd.print();
cout << "done" << endl;

}
/*
Demo of non-default construction

B b(0);
B ctor arg is 0
B has 0

D1 d1(10, 11);
B ctor arg is 10
D1 ctor args are 10 for B, and 11
B has 10
D1 has 11

D2 d2(20, 22);
B ctor arg is 20
D2 ctor args are 20 for B, and 22
B has 20
D2 has 22

DD dd(30, 32, 33, 333);
B ctor arg is 99
D1 ctor args are 30 for B, and 32
D2 ctor args are 30 for B, and 33
DD ctor args are 30, 32 for D1, and 30, 33 for D2, and 333
B has 99
D1 has 32
D2 has 33
DD has 333

DDD ddd(40, 42, 43, 444, 4444)
B ctor arg is 999
D1 ctor args are 40 for B, and 42
D2 ctor args are 40 for B, and 43
DD ctor args are 40, 42 for D1, and 40, 43 for D2, and 444
DDD ctor args are 40, 42, 43, 444 for DD, and 4444
B has 999
D1 has 42
D2 has 43
DD has 444
DDD has 4444
done
*/

10MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

virtual inheritance: Heavyweight solution to the "dreaded diamond" problem.

But can get ambiguity about virtual functions.
If Base declares a virtual function, and both D1 and D2 override it, and DD does not, then DD can't be
compiled - the compiler reports more than one overriding definition, and it has no basis for resolving
the ambiguity.

#include <iostream>
using namespace std;

class B {
public:
// B() : i(-1)
// {cout << "B " << i << " default ctor" << endl;}

B(int i_) : i(i_)
{cout << "B ctor arg is " << i << endl;}

void print() {cout << "B has " << i << endl;}
virtual void avf() {cout << "B avf called" << endl;}

private:
int i;

};

class D1 : virtual public B {
public:

D1(int i_, int j_) : B(i_), j(j_)
{cout << "D1 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D1 has " << j << endl;}
void avf() override {cout << "D1 avf called" << endl;}

private:
int j;

};

class D2 : virtual public B {
public:

D2(int i_, int j_) : B(i_), j(j_)
{cout << "D2 ctor args are " << i_ << " for B, and " << j_ << endl;}

void print() {cout << "D2 has " << j << endl;}
// following causes error in DD declaration unless DD also overrides it

void avf() override {cout << "D2 avf called" << endl;} // declaration of DD error
private:

int j;
};

class DD : public D1, public D2 {
public:
// DD(int i_, int j_, int k_, int m_) : D1(i_, j_), D2(i_*10, k_), m(m_) // error - tries
to call B() constructor if not defined

DD(int i_, int j_, int k_, int m_) : B(99), D1(i_, j_), D2(i_, k_), m(m_)
{cout << "DD ctor args are " << i_ << ", " << j_ << " for D1, and "<< i_ << ",

"<< k_ << " for D2, and "<< m_ << endl;}
void print() {cout << "DD has " << m << endl;}

// following required
void avf() override {cout << "DD avf called" << endl;}

private:
int m;

};

11MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

RTTI
Compiler can generate information that identifies the class of an object

made available in the vtable, so doesn't take up any more space in the object
but is only available for classes that have virtual functions - only time a vtable is present.
makes sense because only if virtual functions are present is there any issue about the type of an
object being unknown

the one place in the language where dynamic type rather than static type is involved
One use is kinda handy - identifying the actual type of an object for debugging purposes:

typeid operator (an operator, not a function)
normal use:

typeid(<an object>) - returns a reference to a type_info object that has information about the exact
type of the object - can be compared, ordered, etc.

A name() function returns a pointer to a C-string containing the type name in implementation-defined
form.
use to print out the type of an object at run time:

Base * ptr;
ptr = a pointer to some object in the class hierarchy
if(trace)

cout << typeid(*ptr).name() << " being processed" << endl;
the string returned by name is implementation-defined, so might not be good for an end user to
see, but certainly useful for debugging, analysis by developer.

Sometimes the design is such that you need to interrogate an object to see what its type is:
Virtual functions are better, but sometimes they won't do the trick.
Fat-interface dilemma.
Crummy design situation that you can't avoid or fix.

You're stuck with branch-on-type programming.
Don't use your own type codes, use RTTI instead
Usual procedure is to use a dynamic_cast to determine the type of an object

12MultipleInheritanceRTTI.oo3 11/7/13 1:06:27

Kinds of casts used in inheritance situations
static_cast<> can cast up or down, but is not checked

upcast:
Base * p = static_cast<Base *>(derived_ptr);
upcast is redundant, explicit cast is poor style, since always valid - Substitution principle
Base * p = derived_ptr; // instead

downcast:
Derived * p = static_cast<Derived *>(base_ptr);
not checked, so undefined if base_ptr does not actually point to a Dervied object

dynamic_cast<> can cast up, down, and "sideways" (cross-cast, when multiple inheritance is
involved)

Up-cast with dynamic_cast is redundant for same reasons as upcast with static_cast.
Downcast can be checked for validity

Derived * p = dynamic_cast<Derived *>(base_ptr)
if(p)

// p is guaranteed to point to a Derived
else

// p doesn't point to a Derived
can be used for compiler-supported branch-on-type programming if you are forced into it.
Dynamic casts used to solve fat interface problem:

Instead of fat interface, see if you can downcast safely; if so, can access the derived interface
safely.

if(Derived * p = dynamic_cast<Derived *>(base_ptr))
// use p to access something found only in Derived interface

else
// can't validly access Derived interface

Cross-cast example - check to see if object in one hierarchy (pointed to be Base1 * base1_ptr) is also
in another (Base2).

Base1 * base1_ptr = some object's address;
Base2 * base2_ptr = dynamic_cast<Base2 *>(base1_ptr)
if(base2_ptr)

// base1_ptr (and now base2_ptr) indeed points to a Base2-derived object as well as a
Base1-derived object.
else

// base1_ptr (and also base2_ptr) does not point to a Base2-derived object
See capability class discussion ...

