
1MultipleSources_Linker.oo3 1/12/10 1:52:10

Multiple source files and the linker
Intro

Real C and C++ programs have a large number of source files, not just one
E.g. a typical Windows application might have something like 100 source files

each file corresponds to a "module" - a piece of code that forms a logical unit of some sort
consists of things that "go together"
can be re-used in another project as a unit
can be developed, tested, modified, etc by itself

keeps projects much more managable.
How do you do this?
Start with sanity check on how headers and compilations work

2MultipleSources_Linker.oo3 1/12/10 1:52:10

Headers, prototypes, and the linker
Intro example: scary C

<beginning of file>
int main(void)
{

int i = 2;
double x;
x = sqrt(i);
/* what is the value of x? */

}
What's in a header file?

common misconception - library code is not present, just declarations
mostly function prototypes - in C

e..g. #include math.h, get function declaration (prototype)
double sqrt(double);
means: "sqrt" is the name of a function that takes one double argument, and returns one
double argument.
compiler can tell what needs to be pushed onto the stack, and where to find the return value

generates the corresponding code
sometimes, global variable declarations

objects used for I/O - like stdin, stdout (in C), cin, cout (in C++)
also templates in C++

library code is present, but as a template
function prototypes

Why supplied?
How does the compiler use a function prototype?

3MultipleSources_Linker.oo3 1/12/10 1:52:10

Review how the compilation process works in C and C++
start with source file, .c or .cpp
preprocessing

preprocessor strips out comments
preprocessor looks for # lines and acts on them
#include filename means copy the file into this place in the source file
library header files have class declarations and prototypes in them
result is a bunch of c/c++ source code - no comments, no more # statements
result is a TRANSLATION UNIT - or COMPILATION UNIT - what compiler actually works on

each TRANSLATION UNIT compiled completely independently of everything else
once #includes done, compiler should have all the information needed to generate machine code

result is object file - can find in varieous prog env.
contains a notation for every function call

a function called "foo" called here
another for every function definition

a function named "foo" starts here
libraries are standard collections of object modules that have been precompiled for you

prog. env. normally knows or is told where the standard library is
linker stitches these together for you

assembles object modules, decides layout in memory, where everything is going to be
finds every function call, sticks in address of where the function will be
goes only by function name
common error: forget to define a function - linker gives you "undefined symbol" error

need to learn to tell the difference, because the fix is very different from undefined errors
produced by the compiler
you called foo, but linker can't find the code for foo
most IDEs say "link error", but gcc says "ld" before the error message.

result is executable file - application, etc. What you actually run.
to execute, loader puts in memory, makes any additional address adjustments needed
then goes to start-up code in executable, eventually calls your main function

You can have your own multiple source code files
Each one usually called a MODULE

contains a class or a group of related classes
contains a set of functions that go together - e.g. math library

compile each one separately, object modules can then be linked together
rules:

Must be able to compile each one separately, get separate object module
Linker has to know about every object module you want it to use

e.g. library files are usually "automatically" known to the linker
you tell it in various ways for your own, depending on programming environment

4MultipleSources_Linker.oo3 1/12/10 1:52:10

You can have your own multiple source code files

rules:

Linker has to be able to match every function call with a function definition
All functions that are called must be defined somewhere in the whole program, and only once in the
whole program

how do you enable one module to call functions or use classes in another?
Point from before: class declarations and function prototypes are supposed to tell the compiler
everything it needs to know in order to compile code that uses the class or calls the function.
So idea: put declarations in a "header file" to communicate between modules.

5MultipleSources_Linker.oo3 1/12/10 1:52:10

Concept of header file and .c or .cpp "implementation" file
choose structs, classes, functions that make up a module
put struct or class declarations and function prototypes in the header file

(also any #includes needed to process the declarations)
put function definitions in the .c or .cpp or implementation file

#include the .h file to bring in the declarations and prototypes
in IDE, add the .c or .cpp file to the project - will get compiled along with everything else

use makefile in Unix
Any other module that needs the module simply #includes the header file!

the header file contains all the declarations needed to enable another module to call this one
do not have to recompile the .c or .cpp file unless the code changes.

What you have to get right to make this work
The .h file has to have every declaration in it that's needed about the other module

remember the compiler only knows what is in the header file - nothing else
Each function definition must appear once, and only once in the whole program

One-Definition Rule (ODR): it is an error to declare twice a struct or class of the same name, and it is
an error to define twice a function (in C) of same name or a function of same signature (in C++)!
Special cases:

OK to have multiple declarations (prototypes) of a function as long as they agree.
Simply makes it a lot easier to use libraries (both standard and your own)

OK to have multiple declarations of global variables as long as:
In the whole program there is exactly one defining declaration, e.g.

int x = 0; // no extern, an initializer
All other declarations are referencing declarations with extern, e.g.

extern int x;
The complete translation unit must not have duplicate conflicting declarations or definitions in it

C/C++ compiler doesn't want to have to figure out whether two or more declarations are consistent
with each other - can be a mess!
Makes for the only serious complication in doing multiple source files.

Getting duplicate declarations
easy to happen: say three modules, a, b, and c

a uses b and c
b uses c
main modules needs all three

a.h
#include "b.h"
#include "c.h"

b.h
#include "c.h"

main
#include a.h // brings in b.h and c.h stuff
#include b.h // brings in c.h
#include c.h
// uniquely c brought in three times
// uniquely b brought in two times
// uniquely a stuff only once
compiler is VERY UPSET about b and c!

6MultipleSources_Linker.oo3 1/12/10 1:52:10

Getting duplicate declarations
easy to happen: say three modules, a, b, and c

main
#include a.h // brings in b.h and c.h stuff
#include b.h // brings in c.h
#include c.h
// uniquely c brought in three times
// uniquely b brought in two times
// uniquely a stuff only once
compiler is VERY UPSET about b and c!

Other issues problem:
redundant includes

a.h includes b.h
b.h includes c.h
c.h includes a.h - but we've already done that!

Circular - infinite regression, preprocessor eventually gives up
a.h includes b.h
b.h includes c.h
c.h includes a.h

Preventing duplicate includes
First, remember you can #define a symbol

#define PI 3.14
preprocessor does text-editor replacement - everywhere it finds "PI", changes it to "3.14"
in C++ we use const variables instead for this sort of thing
but preprocessor keeps a symbol table showing symbol and substitute value for it

PI 3.14
now you can also just define a symbol without providing a substitute value - goes into the symbol table

#define XYZ
PI 3.14
XYZ

it's a convention to make preprocessor symbols all upper case to distinguish them from real variables
Using a feature of the preprocessor - CONDITIONAL COMPILATION

#if expression
stuff
#endif
if the expression is true, then stuff is LEFT IN and processed
if the expression is false, then stuff is LEFT OUT and ignored
stuff will be the declarations
can use this to control whether the declarations are left in are not
So common and important that a special form of if has been provided to use together with a
preprocessor symbol:

#ifndef - IF NOT DEFINED
#ifndef XYZ - true if XYZ is not in the symbol table

Here's the pattern: called an INCLUDE GUARD - guards against duplicate includes
#ifndef XYZ
#define XYZ
declarations
#endif

7MultipleSources_Linker.oo3 1/12/10 1:52:10

Preventing duplicate includes

Using a feature of the preprocessor - CONDITIONAL COMPILATION

if symbol XYZ is not defined, then process everything up to the endif, otherwise IGNORE everything
up to the endif
If this is the first time the preprocessor has seen this, then

XYZ is not defined (not in the symbol table) so:
define XYZ - add XYZ to the preprocessor symbol table
keep the declarations in the translation unit

if the preprocessor sees this again, then
XYZ is now defined (in the symbol table)
IGNORE the declarations
continue reading after the #endif

So here is the pattern for a .h file:
#ifndef YOUR_PREPROCESSOR_SYMBOL
#define YOUR_PREPROCESSOR_SYMBOL
declarations
#endif

What to use for YOUR_PREPROCESSOR_SYMBOL?
A good choice - something that you can consistently cook up that will be unique to each header file
my personal choice: the header file name spelled out in all caps

MEETING_H
NOTE: DO NOT USE LEADING UNDERSCORES IN PREPROCESSOR SYMBOLS

two leading underscores are reserved for the C/C++ implementation developers to use (or one
followed by an Upper-case letter

implementation-specific symbols - not standardized
you risk a name collision - will produce an extremely hard-to-find bug
you risk confusing the reader that you are interacting in a non-standard way with the library code

So, the declarations get processed by the compiler only ONCE, no matter how many times the
Meeting.h file gets #included
System header files <math.h>, <cmath> already have their own include guards, so you don't have to
worry about them

8MultipleSources_Linker.oo3 1/12/10 1:52:10

Global variables within and between modules
A global variable is defined at the "file level" - not inside any functions

its scope is the rest of the file - name is known to apply to this piece of memory in the rest of the code
in the translation unit.
compiler/linker/loader arrange to put it somewhere where it will last for whole program execution

not recycled memory like stack
value placed in it remains as long as the program is running
special start-up code initializes global variables (along with all other "statically allocated" memory)
before execution starts at main function

<beginning of file>
...
int gv = 3; /* iniitialzed before program starts execution */
...
void foo()
{

printf("global value is %d\n", gv); /* gv known here */
}

int main ()
{

foo();
gv = 5; /* known here */
foo();

}

etc

now suppose we split this into modules: one with main, other with foo
ODR: can only be one piece of memory for this global variable name
so the defining declaration of gv can only be in ONE of the two modules
we need a referencing declaration of it in the other module

We have to tell compiler whether or not we are defining the actual variable here, or just referring to
it in some other module

main.c
...
extern int gv; /* declaration: gv is an int defined EXTERNally to this module */
...
int main ()
{

foo();
gv = 5; /* known here */
foo();

}

Compiler notes that gv is an int, but it doesn't know where in memory it is going to be, so annotate
object module and let linker match up this "gv" with the actual gv and plug in the address
module a.c
...
int gv = 3; /* definition & initialization of gv */
...
void foo()

{
printf("global value is %d\n", gv); /* gv known here */

}

9MultipleSources_Linker.oo3 1/12/10 1:52:10

Global variables within and between modules

now suppose we split this into modules: one with main, other with foo

module a.c
...
int gv = 3; /* definition & initialization of gv */
...
void foo()

{
printf("global value is %d\n", gv); /* gv known here */

}

The compiler sees the definition/iniitialization, and arranges to set aside memory space;
Object module is annotated to show that there is a global variable named gv defined in this module
Linker will match up the defined gv in module a with the named gv in main
if you leave off the extern, then you are trying to define a second gv - violates the one-definition rule!
Linker error.

different compiler/linkers will behave differently in C - most will merge into one definition, force you
to follow the ODR even if you didn't realize it.

if you have header files, involved, then do it this way:
the C++ way, works well in C.

a.h
etc
extern int gv; this is a declaration only
etc

a.c
#include "a.h"
etc
int gv = 3; /* here is the definition - ok, matches the declaration in a.h */
etc
...
void foo()
{

printf("global value is %d\n", gv); /* gv known here */
}

main.c
#include "a.h"
...
int main ()
{

foo();
gv = 5; /* known here */
foo();

}

Summary for modules
Multiple modules:

As many modules as you want
a .h and .c or .cpp file for each one
main module - .c or .cpp file that has main function in it

often doesn't need a .h file
See Handout - assigned soon - for a Guideline summary of what should be in the files.

10MultipleSources_Linker.oo3 1/12/10 1:52:10

Final concept: Linkage: internal and external
Linkage means whether the symbol can be used by the linker across object modules

Internal linkage - only within the module
external linkage - can be used across modules

Functions and file-global variables normally have "external" linkage
Ordinary functions are "global" - with external linkage - by default - can be called from anywhere -
compiler just needs the prototype to compile the call correctly, then linker will hook it up with no further
action on your part.

note that linker can hook it up without the prototype - prototype is for the benefit of the compiler
The compiler puts an annotation in the object module that these names are available outside the
module for the linker to match up with calls or extern declarations.

You can give them "internal" linkage if you want
Changes the compiler annotation to say that the name is not available outside of the module - linker
can not use it to match up with names used in other modules.

remember here that a module corresponds to a translation unit.
So if a global variable or function has internal linkage, it can only be referred to in the same source
file!
Same concept as "private" in a class, except it applies to a source file. global, but private to this file

Do it with the keyword "static" - another stupid use of this overworked keyword
module a.c
...
static int gv = 3; /* definition & initialization of gv, internal linkage only */
...
void foo()
{

printf("global value is %d\n", gv);
}

main.c
...
int main ()
{

foo();
gv = 5; /* NOT known here*/
foo();

}

can also do with functions:
a.c
...
static void foo() /* or prototype appears first */

{whatever}
goo ()
{

foo(); /* ok has internal linkage in this module */
}

main.c
...
int main ()

{
foo(); /* NOT OK foo() does not have external linkage - link error will result */

}

11MultipleSources_Linker.oo3 1/12/10 1:52:10

Final concept: Linkage: internal and external

can also do with functions:

main.c
...
int main ()

{
foo(); /* NOT OK foo() does not have external linkage - link error will result */

}

Using "static" for internal linkage is not used as often with C++ because public/private class
concept is so much more flexible and powerful

Also can use namespaces to produce the same effect.
What is the original meaning of the static keyword? Original usage, occasionally useful

You want a local variable that is not on the stack - lasts for the whole duration of the program.
it is "statically" allocated - stays in the same place, instead of being allocated and deallocated on
the stack as the function is entered and left.

Example: a function that counts how many times it is called

void count_calls()
{

static int counter = 0; // gets set to zero only on first call
counter++; // add one
cout << counter << endl;

}

compiler inserts some special code to keep track of whether to do the initialization or not.
Another use - class-wide member variables and functions - see the handout - occasionally useful,
often used to replace global variables

