
OperatorOverloading&Templates 2/4/16, 6:02:26 PM 1

Operator Overloading, Templates.
• H: A Summary of Operator Overloading, then read • S 18 and • S 19. Skip 19.2.5, 19.2.6. Skim 19.3.
• S 23 Templates. Skim 23.5.2, skip 23.5.2.1, 23.5.2.2, 23.7.1

operator+, operator*, operator<<

In C++, every operator in the language has a function-like name:

E.g. CoinMoney m1, m2;

m1 + m2

CoinMoney operator+ (CoinMoney m1, CoinMoney m2) --- l.h.s., r.h.s

You can assign a different meaning to the operator for a user-defined type by defining the function
with the appropriate arguments.

Can't change what it means to add two numbers!

Too much mischief!

You are not allowed to overload the operators for built-in types

First parameter has to be an object of the class type

CoinMoney operator+ (CoinMoney m2) --- r.h.s. only

l.h.s. argument must be this type of object.

If you define this function as a member function, the first argument is implicit

so x + m1 can't be a member function, m1 + x can be.

Usual custom - make operator functions member functions when possible

Must define as a non-member function.

non-member functions do not have access to private data

normally, use reader/writer access functions

e.g. maybe this is the only place you need to - why clutter things?

but in this particular case you need to be able to get to it from outside the class

or data does need to be completely private and should NOT have any reader/writter functions

sometimes having to use public accessors to get at private data is inconvenient, or not right

How do you access the member variable values?

in a class declaration, you can declare a function to be a "friend" of a class - grant access to private
members.

friend <function prototype> anywhere in the class declaration

Friend Functions

This class declares another class as a friend

Its member functions have access to the private members of the class

friend class <classname> anywhere in the class declaration

Friend classes

If LHS object is not of the class type, the operator function can't be a member function.

e.g. cout << m1 << endl

Extremely handy. Output your own objects however you want:

<< m.quarters << " quarters, totaling $" << m.value();

os << m.nickels << " nickels, " << m.dimes << " dimes, "

return os;

{

}

ostream& operator<< (ostream& os, CoinMoney m)

Can't be a member function! Left-hand parameter isn't the right type!

first parameter must be declared as REFERENCE to OSTREAM

returned type must be declared as REFERENCE to OSTREAM

function MUST return its ostream parameter!

Four points!

How to do it:

cout is an object from the class ostream, initialized at program start, to output to the console.

ostream class defined in library <iostream.h>, <iostream>

operator<< has been overloaded for all of the built in types

basic form of << overload:

code for outputting characters

return os;

}

ostream& operator<< (ostream& os, type x) {

cout << x << y; ==> ((cout << x) << y)

each << operates on an ostream lhs, other objecr rhs, returns the ostream, so next can work on
it.

cascaded I/O

reference because you don't want to copy the ostream object - lots of internal state information
would be lost -

"pass through" reference argument. Same object returnd (alias for it) as passed in.

accepts a reference to an ostream object, and returns the reference, for two reasons

Digress a bit.

Overloading the output operator

In handout

have to use reference parameter for the object

istream& operator>> (istream& is, CoinMoney& m);

cout << "Enter values for x, nickels, dimes, quarters, and i" << endl;

cin >> x >> m1 >> i;

Can overload the input operator the same way, but less common

Overloading the input operator

Operator Overloading -

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 2

operator+, operator*, operator<<

In C++, every operator in the language has a function-like name:

E.g. CoinMoney m1, m2;

m1 + m2

CoinMoney operator+ (CoinMoney m1, CoinMoney m2) --- l.h.s., r.h.s

You can assign a different meaning to the operator for a user-defined type by defining the function
with the appropriate arguments.

Can't change what it means to add two numbers!

Too much mischief!

You are not allowed to overload the operators for built-in types

First parameter has to be an object of the class type

CoinMoney operator+ (CoinMoney m2) --- r.h.s. only

l.h.s. argument must be this type of object.

If you define this function as a member function, the first argument is implicit

so x + m1 can't be a member function, m1 + x can be.

Usual custom - make operator functions member functions when possible

Must define as a non-member function.

non-member functions do not have access to private data

normally, use reader/writer access functions

e.g. maybe this is the only place you need to - why clutter things?

but in this particular case you need to be able to get to it from outside the class

or data does need to be completely private and should NOT have any reader/writter functions

sometimes having to use public accessors to get at private data is inconvenient, or not right

How do you access the member variable values?

in a class declaration, you can declare a function to be a "friend" of a class - grant access to private
members.

friend <function prototype> anywhere in the class declaration

Friend Functions

This class declares another class as a friend

Its member functions have access to the private members of the class

friend class <classname> anywhere in the class declaration

Friend classes

If LHS object is not of the class type, the operator function can't be a member function.

e.g. cout << m1 << endl

Extremely handy. Output your own objects however you want:

<< m.quarters << " quarters, totaling $" << m.value();

os << m.nickels << " nickels, " << m.dimes << " dimes, "

return os;

{

}

ostream& operator<< (ostream& os, CoinMoney m)

Can't be a member function! Left-hand parameter isn't the right type!

first parameter must be declared as REFERENCE to OSTREAM

returned type must be declared as REFERENCE to OSTREAM

function MUST return its ostream parameter!

Four points!

How to do it:

cout is an object from the class ostream, initialized at program start, to output to the console.

ostream class defined in library <iostream.h>, <iostream>

operator<< has been overloaded for all of the built in types

basic form of << overload:

code for outputting characters

return os;

}

ostream& operator<< (ostream& os, type x) {

cout << x << y; ==> ((cout << x) << y)

each << operates on an ostream lhs, other objecr rhs, returns the ostream, so next can work on
it.

cascaded I/O

reference because you don't want to copy the ostream object - lots of internal state information
would be lost -

"pass through" reference argument. Same object returnd (alias for it) as passed in.

accepts a reference to an ostream object, and returns the reference, for two reasons

Digress a bit.

Overloading the output operator

In handout

have to use reference parameter for the object

istream& operator>> (istream& is, CoinMoney& m);

cout << "Enter values for x, nickels, dimes, quarters, and i" << endl;

cin >> x >> m1 >> i;

Can overload the input operator the same way, but less common

Overloading the input operator

Operator Overloading -

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 3

operator+, operator*, operator<<

In C++, every operator in the language has a function-like name:

E.g. CoinMoney m1, m2;

m1 + m2

CoinMoney operator+ (CoinMoney m1, CoinMoney m2) --- l.h.s., r.h.s

You can assign a different meaning to the operator for a user-defined type by defining the function
with the appropriate arguments.

Can't change what it means to add two numbers!

Too much mischief!

You are not allowed to overload the operators for built-in types

First parameter has to be an object of the class type

CoinMoney operator+ (CoinMoney m2) --- r.h.s. only

l.h.s. argument must be this type of object.

If you define this function as a member function, the first argument is implicit

so x + m1 can't be a member function, m1 + x can be.

Usual custom - make operator functions member functions when possible

Must define as a non-member function.

non-member functions do not have access to private data

normally, use reader/writer access functions

e.g. maybe this is the only place you need to - why clutter things?

but in this particular case you need to be able to get to it from outside the class

or data does need to be completely private and should NOT have any reader/writter functions

sometimes having to use public accessors to get at private data is inconvenient, or not right

How do you access the member variable values?

in a class declaration, you can declare a function to be a "friend" of a class - grant access to private
members.

friend <function prototype> anywhere in the class declaration

Friend Functions

This class declares another class as a friend

Its member functions have access to the private members of the class

friend class <classname> anywhere in the class declaration

Friend classes

If LHS object is not of the class type, the operator function can't be a member function.

e.g. cout << m1 << endl

Extremely handy. Output your own objects however you want:

<< m.quarters << " quarters, totaling $" << m.value();

os << m.nickels << " nickels, " << m.dimes << " dimes, "

return os;

{

}

ostream& operator<< (ostream& os, CoinMoney m)

Can't be a member function! Left-hand parameter isn't the right type!

first parameter must be declared as REFERENCE to OSTREAM

returned type must be declared as REFERENCE to OSTREAM

function MUST return its ostream parameter!

Four points!

How to do it:

cout is an object from the class ostream, initialized at program start, to output to the console.

ostream class defined in library <iostream.h>, <iostream>

operator<< has been overloaded for all of the built in types

basic form of << overload:

code for outputting characters

return os;

}

ostream& operator<< (ostream& os, type x) {

cout << x << y; ==> ((cout << x) << y)

each << operates on an ostream lhs, other objecr rhs, returns the ostream, so next can work on
it.

cascaded I/O

reference because you don't want to copy the ostream object - lots of internal state information
would be lost -

"pass through" reference argument. Same object returnd (alias for it) as passed in.

accepts a reference to an ostream object, and returns the reference, for two reasons

Digress a bit.

Overloading the output operator

In handout

have to use reference parameter for the object

istream& operator>> (istream& is, CoinMoney& m);

cout << "Enter values for x, nickels, dimes, quarters, and i" << endl;

cin >> x >> m1 >> i;

Can overload the input operator the same way, but less common

Overloading the input operator

Operator Overloading -

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 4

Basic Templates

my_int = my_double;

my_int = sqrt (int_var);

Thing * = pointer_to_gizmo; // illegal

e.g. conversion rules:

C++ is a strongly typed language - there is strict set of rules on what types that variables can have,
and when one type can be used as another type.

Enables compiler to generate very fast and efficient code

Most programming languages work this way.

C++ is also statically typed - types of variables are known and fixed at compile time.

Lisp is a language that is dynamically typed; every "variable" can have any kind of value at all - numbers,
strings, lists, even code (since code is a list of expressions).

(defun example()
(let (x y z)
(setq x 5)
(print x)
(setq y 10)
(print y)
(setq z (+ x y))
(print z)
;;(setq z (append x y)) ;; comment out

(setq x (list 'a 'b))
(print x)
(setq y (list 15 "foo"))
(print y)
(setq z (append x y))
(print z)

(setq z (+ x y))

))

;output:

5
10
15

> Error: value 5 is not of the expected type LIST.
> While executing: CCL::APPEND-2
> Type Command-. to abort.

commenting out append of numbers
5
10
15
(A B)
(15 "foo")
(A B 15 "foo")
> Error: value (A B) is not of the expected type NUMBER.
> While executing: CCL::+-2
> Type Command-. to abort.

Can't add lists, etc

Example - playing around with variable values in lisp

Every value is actually an object that carries its type with it - so at run time, every operator or function
knows what to do with it; it it turns out to be the wrong type, you get a run-time error

But this run-time checking can be very slow. Statically typed is faster

Compare to LISP

void swap (int& a, int& b)
{

int temp = a;
a = b;
b = temp;

}

Example of how clumsy this can be:

But strong and static typing has a serious pitfall - impossible to use the same code to work on
different types

swap(double_var1, double_var2);

A conversion from double to int is allowed (though it loses information)

But the fuction can't be called, because a reference to an int can't be set to refer to a double - same
concept as disallowed pointer conversions.

Will this work for doubles?

No, because pointers will not be converted to integers

Will this work for C strings?

No - compiler will reject because an string can't be converted into an integer

What about for string objects?

Have to write a different version of swap for every type - what a pain!

Code will be fast and efficient, but are we doomed to writing it out over and over again?

Concept of generic programming - writing code that applies to all kinds of types, and letting compiler
modify it as needed for the type we want.

you write the code using a template, and specifying a TYPE PARAMETER (one or more)

The compiler generates the appropriate code for the TYPE PARAMETER when it is needed

in C++, this is done with TEMPLATES

A recipe for the compiler to follow to generate some code for you.

Both function templates and class templates

Concept of the template:

Generic Programming and Templates

Std. Lib. uses them very heavily - almost all templates, in fact

Very fancy template programming is now the cutting-edge concept ...

For your own code

To help understand how to use Std. Library code

But simple use of templates is easy and worth knowing

C++ templates can be extremely sophisticated

Intro

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 5

my_int = my_double;

my_int = sqrt (int_var);

Thing * = pointer_to_gizmo; // illegal

e.g. conversion rules:

C++ is a strongly typed language - there is strict set of rules on what types that variables can have,
and when one type can be used as another type.

Enables compiler to generate very fast and efficient code

Most programming languages work this way.

C++ is also statically typed - types of variables are known and fixed at compile time.

Lisp is a language that is dynamically typed; every "variable" can have any kind of value at all - numbers,
strings, lists, even code (since code is a list of expressions).

(defun example()
(let (x y z)
(setq x 5)
(print x)
(setq y 10)
(print y)
(setq z (+ x y))
(print z)
;;(setq z (append x y)) ;; comment out

(setq x (list 'a 'b))
(print x)
(setq y (list 15 "foo"))
(print y)
(setq z (append x y))
(print z)

(setq z (+ x y))

))

;output:

5
10
15

> Error: value 5 is not of the expected type LIST.
> While executing: CCL::APPEND-2
> Type Command-. to abort.

commenting out append of numbers
5
10
15
(A B)
(15 "foo")
(A B 15 "foo")
> Error: value (A B) is not of the expected type NUMBER.
> While executing: CCL::+-2
> Type Command-. to abort.

Can't add lists, etc

Example - playing around with variable values in lisp

Every value is actually an object that carries its type with it - so at run time, every operator or function
knows what to do with it; it it turns out to be the wrong type, you get a run-time error

But this run-time checking can be very slow. Statically typed is faster

Compare to LISP

void swap (int& a, int& b)
{

int temp = a;
a = b;
b = temp;

}

Example of how clumsy this can be:

But strong and static typing has a serious pitfall - impossible to use the same code to work on
different types

swap(double_var1, double_var2);

A conversion from double to int is allowed (though it loses information)

But the fuction can't be called, because a reference to an int can't be set to refer to a double - same
concept as disallowed pointer conversions.

Will this work for doubles?

No, because pointers will not be converted to integers

Will this work for C strings?

No - compiler will reject because an string can't be converted into an integer

What about for string objects?

Have to write a different version of swap for every type - what a pain!

Code will be fast and efficient, but are we doomed to writing it out over and over again?

Concept of generic programming - writing code that applies to all kinds of types, and letting compiler
modify it as needed for the type we want.

you write the code using a template, and specifying a TYPE PARAMETER (one or more)

The compiler generates the appropriate code for the TYPE PARAMETER when it is needed

in C++, this is done with TEMPLATES

A recipe for the compiler to follow to generate some code for you.

Both function templates and class templates

Concept of the template:

Generic Programming and Templates

Std. Lib. uses them very heavily - almost all templates, in fact

Very fancy template programming is now the cutting-edge concept ...

For your own code

To help understand how to use Std. Library code

But simple use of templates is easy and worth knowing

C++ templates can be extremely sophisticated

Intro

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 6

my_int = my_double;

my_int = sqrt (int_var);

Thing * = pointer_to_gizmo; // illegal

e.g. conversion rules:

C++ is a strongly typed language - there is strict set of rules on what types that variables can have,
and when one type can be used as another type.

Enables compiler to generate very fast and efficient code

Most programming languages work this way.

C++ is also statically typed - types of variables are known and fixed at compile time.

Lisp is a language that is dynamically typed; every "variable" can have any kind of value at all - numbers,
strings, lists, even code (since code is a list of expressions).

(defun example()
(let (x y z)
(setq x 5)
(print x)
(setq y 10)
(print y)
(setq z (+ x y))
(print z)
;;(setq z (append x y)) ;; comment out

(setq x (list 'a 'b))
(print x)
(setq y (list 15 "foo"))
(print y)
(setq z (append x y))
(print z)

(setq z (+ x y))

))

;output:

5
10
15

> Error: value 5 is not of the expected type LIST.
> While executing: CCL::APPEND-2
> Type Command-. to abort.

commenting out append of numbers
5
10
15
(A B)
(15 "foo")
(A B 15 "foo")
> Error: value (A B) is not of the expected type NUMBER.
> While executing: CCL::+-2
> Type Command-. to abort.

Can't add lists, etc

Example - playing around with variable values in lisp

Every value is actually an object that carries its type with it - so at run time, every operator or function
knows what to do with it; it it turns out to be the wrong type, you get a run-time error

But this run-time checking can be very slow. Statically typed is faster

Compare to LISP

void swap (int& a, int& b)
{

int temp = a;
a = b;
b = temp;

}

Example of how clumsy this can be:

But strong and static typing has a serious pitfall - impossible to use the same code to work on
different types

swap(double_var1, double_var2);

A conversion from double to int is allowed (though it loses information)

But the fuction can't be called, because a reference to an int can't be set to refer to a double - same
concept as disallowed pointer conversions.

Will this work for doubles?

No, because pointers will not be converted to integers

Will this work for C strings?

No - compiler will reject because an string can't be converted into an integer

What about for string objects?

Have to write a different version of swap for every type - what a pain!

Code will be fast and efficient, but are we doomed to writing it out over and over again?

Concept of generic programming - writing code that applies to all kinds of types, and letting compiler
modify it as needed for the type we want.

you write the code using a template, and specifying a TYPE PARAMETER (one or more)

The compiler generates the appropriate code for the TYPE PARAMETER when it is needed

in C++, this is done with TEMPLATES

A recipe for the compiler to follow to generate some code for you.

Both function templates and class templates

Concept of the template:

Generic Programming and Templates

Std. Lib. uses them very heavily - almost all templates, in fact

Very fancy template programming is now the cutting-edge concept ...

For your own code

To help understand how to use Std. Library code

But simple use of templates is easy and worth knowing

C++ templates can be extremely sophisticated

Intro

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 7

You define the function template

When your code uses the function, the compiler generates the suitable definition of the function -
INSTANTIATING the template

A key feature of function templates - very useful in a variety of ways

Class templates have to have the types explicitly specified!

Compiler deduces the relevant types from the type used in the arguments of the call

Function template approach:

function templates can be useful - StdLib is full of them, for handy & often used things - later.

template <typename T>
void swapem (T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

Swapem as a template: T (can be anything) is TYPE PARAMETER

the template parameter is the name of a type - always - and might not be a class type!

these days, new "typename" keyword often used instead of "class" in the template declaration header

defined at top level of a file

often put in a header file

compiler must see the template definition first - before your use of it in code

swapem(my_int1, my_int2);

void swapem (int&a int& b)
{

int temp = a;
a = b;
b = temp;

}

compiler will generate the code:

If you write:

swapem(str1, str2); // str1 and str2 are string

void swap (string& a string& b)
{

string temp = a;
a = b;
b = temp;

}

compiler will generate the code:

If you write:

Template example

Compiler error checks and warnings

Fast run speed

You get to have the benefits of strong static typing

But don't have to write repetitious code.

Advantage:

template <class T1, class T2>
void print_both(T1 a, T2 b)
{ cout << a << b << endl;}

if you write print_both(my_char, my_double);

void print_both(char a, double b);

compiler will create and call:

Can have more than one type parameter:

suppose class Thing does not have a public assignment operator

code example:
template <class T>
void swapem(T &a, T &b){
 T temp = a;
 a = b;
 b = temp;
}

class Thing {
public:

Thing(int i_, char c_) : i(i_), c(c_) {}
int i;
char c;
friend ostream& operator<< (ostream&, const Thing&);

private:
Thing& operator= (const Thing& rhs);

};

ostream& operator<< (ostream& oss, const Thing& t)
{

oss << '[' << t.i << ", " << t.c << ']';
return oss;

}

int main(){
 Thing thing1(1,'A'), thing2(2, 'B');
 cout << "thing1: " << thing1 << ", thing2: " << thing2 << endl;
 swap(thing1, thing2);
 cout << "thing1: " << thing1 << ", thing2: " << thing2 << endl;
 return 0;
}

main.cpp:19: error: 'Thing& Thing::operator=(const Thing&)' is private

 swapem(thing1, thing2) would fail to compile as a result because the assignment statements would
be illegal

some template error messages can be confusing, though - lots of room for improvement in current
compilers!

g++ is actually among the better ones - parse it apart patiently - it tells you everything

For example

char s1[20] = "Hello";

char s2[20= " Goodbye";

swapem (s1, s2); //?? allowed?

char * p1 = s1;

char * p2 = s2;

this swaps the pointers, but not the strings!

swapem (p1, p2); ???

swapem(char * s1, char * s2); ???

how would you swap the contents of the two strings?

Other exaple - what does the instantiated code actually do?

After compiler instantiates the template, subject to normal rules of compilation and execution: code must
be correct and make sense;

Additional detail about function templates:

e.g. swapem(char * s1, char * s2);

First, compiler looks for exact type match with non-template function

Second, a directly applicable template

e.g. print_both(int, int)

Third, do ordinary argument conversions on a non-template function

What rules does the compiler follow to instantiate vs. when to use other overloaded functions:

Function templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 8

You define the function template

When your code uses the function, the compiler generates the suitable definition of the function -
INSTANTIATING the template

A key feature of function templates - very useful in a variety of ways

Class templates have to have the types explicitly specified!

Compiler deduces the relevant types from the type used in the arguments of the call

Function template approach:

function templates can be useful - StdLib is full of them, for handy & often used things - later.

template <typename T>
void swapem (T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

Swapem as a template: T (can be anything) is TYPE PARAMETER

the template parameter is the name of a type - always - and might not be a class type!

these days, new "typename" keyword often used instead of "class" in the template declaration header

defined at top level of a file

often put in a header file

compiler must see the template definition first - before your use of it in code

swapem(my_int1, my_int2);

void swapem (int&a int& b)
{

int temp = a;
a = b;
b = temp;

}

compiler will generate the code:

If you write:

swapem(str1, str2); // str1 and str2 are string

void swap (string& a string& b)
{

string temp = a;
a = b;
b = temp;

}

compiler will generate the code:

If you write:

Template example

Compiler error checks and warnings

Fast run speed

You get to have the benefits of strong static typing

But don't have to write repetitious code.

Advantage:

template <class T1, class T2>
void print_both(T1 a, T2 b)
{ cout << a << b << endl;}

if you write print_both(my_char, my_double);

void print_both(char a, double b);

compiler will create and call:

Can have more than one type parameter:

suppose class Thing does not have a public assignment operator

code example:
template <class T>
void swapem(T &a, T &b){
 T temp = a;
 a = b;
 b = temp;
}

class Thing {
public:

Thing(int i_, char c_) : i(i_), c(c_) {}
int i;
char c;
friend ostream& operator<< (ostream&, const Thing&);

private:
Thing& operator= (const Thing& rhs);

};

ostream& operator<< (ostream& oss, const Thing& t)
{

oss << '[' << t.i << ", " << t.c << ']';
return oss;

}

int main(){
 Thing thing1(1,'A'), thing2(2, 'B');
 cout << "thing1: " << thing1 << ", thing2: " << thing2 << endl;
 swap(thing1, thing2);
 cout << "thing1: " << thing1 << ", thing2: " << thing2 << endl;
 return 0;
}

main.cpp:19: error: 'Thing& Thing::operator=(const Thing&)' is private

 swapem(thing1, thing2) would fail to compile as a result because the assignment statements would
be illegal

some template error messages can be confusing, though - lots of room for improvement in current
compilers!

g++ is actually among the better ones - parse it apart patiently - it tells you everything

For example

char s1[20] = "Hello";

char s2[20= " Goodbye";

swapem (s1, s2); //?? allowed?

char * p1 = s1;

char * p2 = s2;

this swaps the pointers, but not the strings!

swapem (p1, p2); ???

swapem(char * s1, char * s2); ???

how would you swap the contents of the two strings?

Other exaple - what does the instantiated code actually do?

After compiler instantiates the template, subject to normal rules of compilation and execution: code must
be correct and make sense;

Additional detail about function templates:

e.g. swapem(char * s1, char * s2);

First, compiler looks for exact type match with non-template function

Second, a directly applicable template

e.g. print_both(int, int)

Third, do ordinary argument conversions on a non-template function

What rules does the compiler follow to instantiate vs. when to use other overloaded functions:

Function templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 9

You define the function template

When your code uses the function, the compiler generates the suitable definition of the function -
INSTANTIATING the template

A key feature of function templates - very useful in a variety of ways

Class templates have to have the types explicitly specified!

Compiler deduces the relevant types from the type used in the arguments of the call

Function template approach:

function templates can be useful - StdLib is full of them, for handy & often used things - later.

template <typename T>
void swapem (T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

Swapem as a template: T (can be anything) is TYPE PARAMETER

the template parameter is the name of a type - always - and might not be a class type!

these days, new "typename" keyword often used instead of "class" in the template declaration header

defined at top level of a file

often put in a header file

compiler must see the template definition first - before your use of it in code

swapem(my_int1, my_int2);

void swapem (int&a int& b)
{

int temp = a;
a = b;
b = temp;

}

compiler will generate the code:

If you write:

swapem(str1, str2); // str1 and str2 are string

void swap (string& a string& b)
{

string temp = a;
a = b;
b = temp;

}

compiler will generate the code:

If you write:

Template example

Compiler error checks and warnings

Fast run speed

You get to have the benefits of strong static typing

But don't have to write repetitious code.

Advantage:

template <class T1, class T2>
void print_both(T1 a, T2 b)
{ cout << a << b << endl;}

if you write print_both(my_char, my_double);

void print_both(char a, double b);

compiler will create and call:

Can have more than one type parameter:

suppose class Thing does not have a public assignment operator

code example:
template <class T>
void swapem(T &a, T &b){
 T temp = a;
 a = b;
 b = temp;
}

class Thing {
public:

Thing(int i_, char c_) : i(i_), c(c_) {}
int i;
char c;
friend ostream& operator<< (ostream&, const Thing&);

private:
Thing& operator= (const Thing& rhs);

};

ostream& operator<< (ostream& oss, const Thing& t)
{

oss << '[' << t.i << ", " << t.c << ']';
return oss;

}

int main(){
 Thing thing1(1,'A'), thing2(2, 'B');
 cout << "thing1: " << thing1 << ", thing2: " << thing2 << endl;
 swap(thing1, thing2);
 cout << "thing1: " << thing1 << ", thing2: " << thing2 << endl;
 return 0;
}

main.cpp:19: error: 'Thing& Thing::operator=(const Thing&)' is private

 swapem(thing1, thing2) would fail to compile as a result because the assignment statements would
be illegal

some template error messages can be confusing, though - lots of room for improvement in current
compilers!

g++ is actually among the better ones - parse it apart patiently - it tells you everything

For example

char s1[20] = "Hello";

char s2[20= " Goodbye";

swapem (s1, s2); //?? allowed?

char * p1 = s1;

char * p2 = s2;

this swaps the pointers, but not the strings!

swapem (p1, p2); ???

swapem(char * s1, char * s2); ???

how would you swap the contents of the two strings?

Other exaple - what does the instantiated code actually do?

After compiler instantiates the template, subject to normal rules of compilation and execution: code must
be correct and make sense;

Additional detail about function templates:

e.g. swapem(char * s1, char * s2);

First, compiler looks for exact type match with non-template function

Second, a directly applicable template

e.g. print_both(int, int)

Third, do ordinary argument conversions on a non-template function

What rules does the compiler follow to instantiate vs. when to use other overloaded functions:

Function templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 10

A function template that will call another function based on any number of arguments

Basis for some very useful templates, like std::make_shared

// a function template that calls the relevant function
// named "f" that accepts the supplied arguments as a parameter pack
template<typename... Args>
void callit(Args... args)
{
 cout << "\nin callit with parameter pack of size " << sizeof...
(args) << endl;
 f(args...); // the version of f that matches the parameter pack
}

// a set of overloaded functions
void f(int i)
{
 cout << "f(int) called with " << i << endl;
}

void f(int i, int j)
{
 cout << "f(int, int) called with " << i << ' ' << j << endl;
}

void f(int i, double d)
{
 cout << "f(int, double) called with " << i << ' ' << d << endl;
}

void f(int i, const string& s)
{
 cout << "f(int, string) called with " << i << ' ' << s << endl;
}

void f(int i, int j, double d, const string& s)
{
 cout << "f(int, int, double, string) called with "
 << i << ' ' << j << ' ' << d << ' ' << s << endl;
}

int main()
{
 callit(42);
 callit(1, 2);
 callit(1, 2.2); // int double is preferred overload
 callit(1, string("Hello"));
 callit(1, "Hello"); // string literal converts to string variable
 callit(1, 2, 3.14, "Goodbye");
// callit(1, 2, 3); // compile fails because there is no matching
function

// callit(string("Hello")); // compile fails because there is no
matching function
}

/* output:

in callit with parameter pack of size 1
f(int) called with 42

in callit with parameter pack of size 2
f(int, int) called with 1 2

in callit with parameter pack of size 2
f(int, double) called with 1 2.2

in callit with parameter pack of size 2
f(int, string) called with 1 Hello

in callit with parameter pack of size 2
f(int, string) called with 1 Hello

in callit with parameter pack of size 4
f(int, int, double, string) called with 1 2 3.14 Goodbye
*/

A simple variadic template example

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 11

A function template that will call another function based on any number of arguments

Basis for some very useful templates, like std::make_shared

// a function template that calls the relevant function
// named "f" that accepts the supplied arguments as a parameter pack
template<typename... Args>
void callit(Args... args)
{
 cout << "\nin callit with parameter pack of size " << sizeof...
(args) << endl;
 f(args...); // the version of f that matches the parameter pack
}

// a set of overloaded functions
void f(int i)
{
 cout << "f(int) called with " << i << endl;
}

void f(int i, int j)
{
 cout << "f(int, int) called with " << i << ' ' << j << endl;
}

void f(int i, double d)
{
 cout << "f(int, double) called with " << i << ' ' << d << endl;
}

void f(int i, const string& s)
{
 cout << "f(int, string) called with " << i << ' ' << s << endl;
}

void f(int i, int j, double d, const string& s)
{
 cout << "f(int, int, double, string) called with "
 << i << ' ' << j << ' ' << d << ' ' << s << endl;
}

int main()
{
 callit(42);
 callit(1, 2);
 callit(1, 2.2); // int double is preferred overload
 callit(1, string("Hello"));
 callit(1, "Hello"); // string literal converts to string variable
 callit(1, 2, 3.14, "Goodbye");
// callit(1, 2, 3); // compile fails because there is no matching
function

// callit(string("Hello")); // compile fails because there is no
matching function
}

/* output:

in callit with parameter pack of size 1
f(int) called with 42

in callit with parameter pack of size 2
f(int, int) called with 1 2

in callit with parameter pack of size 2
f(int, double) called with 1 2.2

in callit with parameter pack of size 2
f(int, string) called with 1 Hello

in callit with parameter pack of size 2
f(int, string) called with 1 Hello

in callit with parameter pack of size 4
f(int, int, double, string) called with 1 2 3.14 Goodbye
*/

A simple variadic template example

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 12

A function template that will call another function based on any number of arguments

Basis for some very useful templates, like std::make_shared

// a function template that calls the relevant function
// named "f" that accepts the supplied arguments as a parameter pack
template<typename... Args>
void callit(Args... args)
{
 cout << "\nin callit with parameter pack of size " << sizeof...
(args) << endl;
 f(args...); // the version of f that matches the parameter pack
}

// a set of overloaded functions
void f(int i)
{
 cout << "f(int) called with " << i << endl;
}

void f(int i, int j)
{
 cout << "f(int, int) called with " << i << ' ' << j << endl;
}

void f(int i, double d)
{
 cout << "f(int, double) called with " << i << ' ' << d << endl;
}

void f(int i, const string& s)
{
 cout << "f(int, string) called with " << i << ' ' << s << endl;
}

void f(int i, int j, double d, const string& s)
{
 cout << "f(int, int, double, string) called with "
 << i << ' ' << j << ' ' << d << ' ' << s << endl;
}

int main()
{
 callit(42);
 callit(1, 2);
 callit(1, 2.2); // int double is preferred overload
 callit(1, string("Hello"));
 callit(1, "Hello"); // string literal converts to string variable
 callit(1, 2, 3.14, "Goodbye");
// callit(1, 2, 3); // compile fails because there is no matching
function

// callit(string("Hello")); // compile fails because there is no
matching function
}

/* output:

in callit with parameter pack of size 1
f(int) called with 42

in callit with parameter pack of size 2
f(int, int) called with 1 2

in callit with parameter pack of size 2
f(int, double) called with 1 2.2

in callit with parameter pack of size 2
f(int, string) called with 1 Hello

in callit with parameter pack of size 2
f(int, string) called with 1 Hello

in callit with parameter pack of size 4
f(int, int, double, string) called with 1 2 3.14 Goodbye
*/

A simple variadic template example

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 13

/* Demonstrate a simple use of variadic templates to implement
a simple function that outputs all of its arguments which can be
any number and type. Also shown is a simple wrapper that calls the
same function given any number and type of arguments.
*/

#include <iostream>
using namespace std;

// an no-parameter "last" version of print in the "recursive"
instantiation
void print()
{

cout << endl;
}

// a parameter-taking "last" version which prints a '$' before its output
// to show when it gets called.
// if present, this one is called in preference to the no-parameter
version
// so comment it out to see the no-parameter version at work.
template <typename T>
void print(const T& arg)
{
 cout << '$' << arg << endl;
}

// the "recursive" version of print
// it prints the size of the args list between < and > as part of the
output
template <typename T, typename... Ts>
void print(const T& firstArg, const Ts&... args)
{
 // cout << '<' << sizeof...(args) << '>' << firstArg;
 cout << firstArg << ' ';
 print(args...);
}

// a demonstration of a wrapper for a variadic template
template<typename... Args>
void zap(Args... args)
{
 print(args...);

}

int main()
{
 print(7.5, "hello", 42);

 zap("hello", 42, 7.5, "zap");
}

/* output with no-parameter version of "last" print:
7.5 hello 42
hello 42 7.5 zap
*/

/* output with no-parameter version of "last" print,
with the sizeof... output present in the "recursive" version
notice how the sizeof... is zero at the end

<2>7.5<1>hello<0>42
<3>hello<2>42<1>7.5<0>zap
*/

/* output with parameter version of "last" print,
with the sizeof... output present in the "recursive" version
showing '$' followed by last element:

<3>7.5<2>hello<1>42$
<4>hello<3>42<2>7.5<1>zap$
*/

Common example of variadic templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 14

/* Demonstrate a simple use of variadic templates to implement
a simple function that outputs all of its arguments which can be
any number and type. Also shown is a simple wrapper that calls the
same function given any number and type of arguments.
*/

#include <iostream>
using namespace std;

// an no-parameter "last" version of print in the "recursive"
instantiation
void print()
{

cout << endl;
}

// a parameter-taking "last" version which prints a '$' before its output
// to show when it gets called.
// if present, this one is called in preference to the no-parameter
version
// so comment it out to see the no-parameter version at work.
template <typename T>
void print(const T& arg)
{
 cout << '$' << arg << endl;
}

// the "recursive" version of print
// it prints the size of the args list between < and > as part of the
output
template <typename T, typename... Ts>
void print(const T& firstArg, const Ts&... args)
{
 // cout << '<' << sizeof...(args) << '>' << firstArg;
 cout << firstArg << ' ';
 print(args...);
}

// a demonstration of a wrapper for a variadic template
template<typename... Args>
void zap(Args... args)
{
 print(args...);

}

int main()
{
 print(7.5, "hello", 42);

 zap("hello", 42, 7.5, "zap");
}

/* output with no-parameter version of "last" print:
7.5 hello 42
hello 42 7.5 zap
*/

/* output with no-parameter version of "last" print,
with the sizeof... output present in the "recursive" version
notice how the sizeof... is zero at the end

<2>7.5<1>hello<0>42
<3>hello<2>42<1>7.5<0>zap
*/

/* output with parameter version of "last" print,
with the sizeof... output present in the "recursive" version
showing '$' followed by last element:

<3>7.5<2>hello<1>42$
<4>hello<3>42<2>7.5<1>zap$
*/

Common example of variadic templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 15

e.g. Ordered_list of Player *, String

e.g. List of doubles, Strings, Ordered_lists, etc.

A class template is a class definition in which member variables have parameterized types

Gives generic but type-safe containers

Java has a quasi-template concept as a result - but not statically typed.

Class templates are extremely useful for container classes

Build a class that has oridinary member variable data types

Make sure it works right.

Change the relevant data types to template type parameters.

Instantiate by giving the types

There you go!

How to create a class template:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

start with

template <typename T1, typename T2>
class Thing {

T1 x;
T2 y;
void defrangulate() {/* incredibly complex code */}
};

After fully debugging it, change to

compiler generates:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

Thing<int, double> thing1;

compiler generates:

class Thing {
String x;
Item y;
void defrangulate() {/* incredibly complex code */}
};

Thing<String, Item> thing2;

use by:

micro example of class template:

classname<typeparameter>

classname<sometype> when instantiated

e.g. Ordered_list was originally a non-template class that was a smart array of ints

now, a template class Ordered_list instantiated with ints is named:

Ordered_list<int>

must use this name everywhere we would have used the plain name before.

The name of a template class:

Occasionally *very* handy!

Even for ordinary classes, you can have member functions that are template functions!

Every member function of a class template is a function template!

Member functions defined inside the class declaration - no problem, same as non-template classes

Class name becomes the template class name in template form:

Member functions defined outside the class declaration -

template <typename T> class Thing {
void foo() {

blah;
blah;
}

};

definition inside

template <typename T> class Thing {
void foo();
};

void Thing<T>::foo() {
blah;
blah;
}

definition outside:

Simple example:

Defining class template member functions

template <typename T>
 class Thing {

T data_var;
list<T> data_list

};

How about class templates that use other class templates : no problem:

template <typename T>
 class Thing {

Thing (SomeType initial_value = Gizmo<T>) // as long as SomeType can be initialized with a Gizmo
};

How about default parameters for class member functions that are templated types? Can do:

// define inside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot)
{

blah;
blah;

}
};

// define outside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot);

};
template <typename T>
template <typename OT>
void Thing<DT>::foo(OT ot)
{

blah;
blah;

}

Looks odd, but it is correct

How about member functions that have an additional template type parameter? Can do, just a nested
sort of template declaration:

template <typename T1, typename T2>
class Thing {
public:

Thing (T1 x_, T2 y_) : x(x_), y(y_) {}
private:

T1 x;
T2 y;

};

Suppose we have

foo(Thing<int, double> (42, 3.14));

We want to instantiate it as an unnamed object with int, double and initialize it, say to give it to another
function. Have to write:

template <typename T1, typename T2>
Thing<T1, T2> make_Thing(T1 t1, T2 t2)
{

return Thing<T1, T2> t(t1, t2);
}

Writing out the class instantiation parameters can be inconvenient, but can't be avoided with class
template - we have to specify the types. However, suppose we write the following function template:

foo(make_Thing(42, 3.14));

Now we can create and initialize our template class object and let the compiler deduce what T1 and T2 are
from the function arguments:

Common pattern in the Standard Library: a function template that uses type deduction of parameters to
instantiate and return a class template object - many facilities come in pairs of templates: the instantiating
function and the class object.

std::make_pair<int_var, my_string> creates and returns std::pair<int, std::string> initialized with int_var
and my_string.

e.g.

Template Magic Trick #1 Using a function template to infer types in creating a class template

template <typename T>
class Thing {

T x;
static int counter;
void defrangulate() {/* incredibly complex code */}
};

template<typename T>
int Thing<T>::counter = 0; // initialize it

Yes, you can have them, but …

There is a different static int counter for each instantiation of T ! - Shared with the same T Things, but not
shared between different T Things.

What about static member variables?

Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 16

e.g. Ordered_list of Player *, String

e.g. List of doubles, Strings, Ordered_lists, etc.

A class template is a class definition in which member variables have parameterized types

Gives generic but type-safe containers

Java has a quasi-template concept as a result - but not statically typed.

Class templates are extremely useful for container classes

Build a class that has oridinary member variable data types

Make sure it works right.

Change the relevant data types to template type parameters.

Instantiate by giving the types

There you go!

How to create a class template:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

start with

template <typename T1, typename T2>
class Thing {

T1 x;
T2 y;
void defrangulate() {/* incredibly complex code */}
};

After fully debugging it, change to

compiler generates:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

Thing<int, double> thing1;

compiler generates:

class Thing {
String x;
Item y;
void defrangulate() {/* incredibly complex code */}
};

Thing<String, Item> thing2;

use by:

micro example of class template:

classname<typeparameter>

classname<sometype> when instantiated

e.g. Ordered_list was originally a non-template class that was a smart array of ints

now, a template class Ordered_list instantiated with ints is named:

Ordered_list<int>

must use this name everywhere we would have used the plain name before.

The name of a template class:

Occasionally *very* handy!

Even for ordinary classes, you can have member functions that are template functions!

Every member function of a class template is a function template!

Member functions defined inside the class declaration - no problem, same as non-template classes

Class name becomes the template class name in template form:

Member functions defined outside the class declaration -

template <typename T> class Thing {
void foo() {

blah;
blah;
}

};

definition inside

template <typename T> class Thing {
void foo();
};

void Thing<T>::foo() {
blah;
blah;
}

definition outside:

Simple example:

Defining class template member functions

template <typename T>
 class Thing {

T data_var;
list<T> data_list

};

How about class templates that use other class templates : no problem:

template <typename T>
 class Thing {

Thing (SomeType initial_value = Gizmo<T>) // as long as SomeType can be initialized with a Gizmo
};

How about default parameters for class member functions that are templated types? Can do:

// define inside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot)
{

blah;
blah;

}
};

// define outside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot);

};
template <typename T>
template <typename OT>
void Thing<DT>::foo(OT ot)
{

blah;
blah;

}

Looks odd, but it is correct

How about member functions that have an additional template type parameter? Can do, just a nested
sort of template declaration:

template <typename T1, typename T2>
class Thing {
public:

Thing (T1 x_, T2 y_) : x(x_), y(y_) {}
private:

T1 x;
T2 y;

};

Suppose we have

foo(Thing<int, double> (42, 3.14));

We want to instantiate it as an unnamed object with int, double and initialize it, say to give it to another
function. Have to write:

template <typename T1, typename T2>
Thing<T1, T2> make_Thing(T1 t1, T2 t2)
{

return Thing<T1, T2> t(t1, t2);
}

Writing out the class instantiation parameters can be inconvenient, but can't be avoided with class
template - we have to specify the types. However, suppose we write the following function template:

foo(make_Thing(42, 3.14));

Now we can create and initialize our template class object and let the compiler deduce what T1 and T2 are
from the function arguments:

Common pattern in the Standard Library: a function template that uses type deduction of parameters to
instantiate and return a class template object - many facilities come in pairs of templates: the instantiating
function and the class object.

std::make_pair<int_var, my_string> creates and returns std::pair<int, std::string> initialized with int_var
and my_string.

e.g.

Template Magic Trick #1 Using a function template to infer types in creating a class template

template <typename T>
class Thing {

T x;
static int counter;
void defrangulate() {/* incredibly complex code */}
};

template<typename T>
int Thing<T>::counter = 0; // initialize it

Yes, you can have them, but …

There is a different static int counter for each instantiation of T ! - Shared with the same T Things, but not
shared between different T Things.

What about static member variables?

Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 17

e.g. Ordered_list of Player *, String

e.g. List of doubles, Strings, Ordered_lists, etc.

A class template is a class definition in which member variables have parameterized types

Gives generic but type-safe containers

Java has a quasi-template concept as a result - but not statically typed.

Class templates are extremely useful for container classes

Build a class that has oridinary member variable data types

Make sure it works right.

Change the relevant data types to template type parameters.

Instantiate by giving the types

There you go!

How to create a class template:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

start with

template <typename T1, typename T2>
class Thing {

T1 x;
T2 y;
void defrangulate() {/* incredibly complex code */}
};

After fully debugging it, change to

compiler generates:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

Thing<int, double> thing1;

compiler generates:

class Thing {
String x;
Item y;
void defrangulate() {/* incredibly complex code */}
};

Thing<String, Item> thing2;

use by:

micro example of class template:

classname<typeparameter>

classname<sometype> when instantiated

e.g. Ordered_list was originally a non-template class that was a smart array of ints

now, a template class Ordered_list instantiated with ints is named:

Ordered_list<int>

must use this name everywhere we would have used the plain name before.

The name of a template class:

Occasionally *very* handy!

Even for ordinary classes, you can have member functions that are template functions!

Every member function of a class template is a function template!

Member functions defined inside the class declaration - no problem, same as non-template classes

Class name becomes the template class name in template form:

Member functions defined outside the class declaration -

template <typename T> class Thing {
void foo() {

blah;
blah;
}

};

definition inside

template <typename T> class Thing {
void foo();
};

void Thing<T>::foo() {
blah;
blah;
}

definition outside:

Simple example:

Defining class template member functions

template <typename T>
 class Thing {

T data_var;
list<T> data_list

};

How about class templates that use other class templates : no problem:

template <typename T>
 class Thing {

Thing (SomeType initial_value = Gizmo<T>) // as long as SomeType can be initialized with a Gizmo
};

How about default parameters for class member functions that are templated types? Can do:

// define inside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot)
{

blah;
blah;

}
};

// define outside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot);

};
template <typename T>
template <typename OT>
void Thing<DT>::foo(OT ot)
{

blah;
blah;

}

Looks odd, but it is correct

How about member functions that have an additional template type parameter? Can do, just a nested
sort of template declaration:

template <typename T1, typename T2>
class Thing {
public:

Thing (T1 x_, T2 y_) : x(x_), y(y_) {}
private:

T1 x;
T2 y;

};

Suppose we have

foo(Thing<int, double> (42, 3.14));

We want to instantiate it as an unnamed object with int, double and initialize it, say to give it to another
function. Have to write:

template <typename T1, typename T2>
Thing<T1, T2> make_Thing(T1 t1, T2 t2)
{

return Thing<T1, T2> t(t1, t2);
}

Writing out the class instantiation parameters can be inconvenient, but can't be avoided with class
template - we have to specify the types. However, suppose we write the following function template:

foo(make_Thing(42, 3.14));

Now we can create and initialize our template class object and let the compiler deduce what T1 and T2 are
from the function arguments:

Common pattern in the Standard Library: a function template that uses type deduction of parameters to
instantiate and return a class template object - many facilities come in pairs of templates: the instantiating
function and the class object.

std::make_pair<int_var, my_string> creates and returns std::pair<int, std::string> initialized with int_var
and my_string.

e.g.

Template Magic Trick #1 Using a function template to infer types in creating a class template

template <typename T>
class Thing {

T x;
static int counter;
void defrangulate() {/* incredibly complex code */}
};

template<typename T>
int Thing<T>::counter = 0; // initialize it

Yes, you can have them, but …

There is a different static int counter for each instantiation of T ! - Shared with the same T Things, but not
shared between different T Things.

What about static member variables?

Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 18

e.g. Ordered_list of Player *, String

e.g. List of doubles, Strings, Ordered_lists, etc.

A class template is a class definition in which member variables have parameterized types

Gives generic but type-safe containers

Java has a quasi-template concept as a result - but not statically typed.

Class templates are extremely useful for container classes

Build a class that has oridinary member variable data types

Make sure it works right.

Change the relevant data types to template type parameters.

Instantiate by giving the types

There you go!

How to create a class template:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

start with

template <typename T1, typename T2>
class Thing {

T1 x;
T2 y;
void defrangulate() {/* incredibly complex code */}
};

After fully debugging it, change to

compiler generates:

class Thing {
int x;
double y;
void defrangulate() {/* incredibly complex code */}
};

Thing<int, double> thing1;

compiler generates:

class Thing {
String x;
Item y;
void defrangulate() {/* incredibly complex code */}
};

Thing<String, Item> thing2;

use by:

micro example of class template:

classname<typeparameter>

classname<sometype> when instantiated

e.g. Ordered_list was originally a non-template class that was a smart array of ints

now, a template class Ordered_list instantiated with ints is named:

Ordered_list<int>

must use this name everywhere we would have used the plain name before.

The name of a template class:

Occasionally *very* handy!

Even for ordinary classes, you can have member functions that are template functions!

Every member function of a class template is a function template!

Member functions defined inside the class declaration - no problem, same as non-template classes

Class name becomes the template class name in template form:

Member functions defined outside the class declaration -

template <typename T> class Thing {
void foo() {

blah;
blah;
}

};

definition inside

template <typename T> class Thing {
void foo();
};

void Thing<T>::foo() {
blah;
blah;
}

definition outside:

Simple example:

Defining class template member functions

template <typename T>
 class Thing {

T data_var;
list<T> data_list

};

How about class templates that use other class templates : no problem:

template <typename T>
 class Thing {

Thing (SomeType initial_value = Gizmo<T>) // as long as SomeType can be initialized with a Gizmo
};

How about default parameters for class member functions that are templated types? Can do:

// define inside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot)
{

blah;
blah;

}
};

// define outside the class declaration:
template <typename T>
 class Thing {

template <typename OT>
void foo(OT ot);

};
template <typename T>
template <typename OT>
void Thing<DT>::foo(OT ot)
{

blah;
blah;

}

Looks odd, but it is correct

How about member functions that have an additional template type parameter? Can do, just a nested
sort of template declaration:

template <typename T1, typename T2>
class Thing {
public:

Thing (T1 x_, T2 y_) : x(x_), y(y_) {}
private:

T1 x;
T2 y;

};

Suppose we have

foo(Thing<int, double> (42, 3.14));

We want to instantiate it as an unnamed object with int, double and initialize it, say to give it to another
function. Have to write:

template <typename T1, typename T2>
Thing<T1, T2> make_Thing(T1 t1, T2 t2)
{

return Thing<T1, T2> t(t1, t2);
}

Writing out the class instantiation parameters can be inconvenient, but can't be avoided with class
template - we have to specify the types. However, suppose we write the following function template:

foo(make_Thing(42, 3.14));

Now we can create and initialize our template class object and let the compiler deduce what T1 and T2 are
from the function arguments:

Common pattern in the Standard Library: a function template that uses type deduction of parameters to
instantiate and return a class template object - many facilities come in pairs of templates: the instantiating
function and the class object.

std::make_pair<int_var, my_string> creates and returns std::pair<int, std::string> initialized with int_var
and my_string.

e.g.

Template Magic Trick #1 Using a function template to infer types in creating a class template

template <typename T>
class Thing {

T x;
static int counter;
void defrangulate() {/* incredibly complex code */}
};

template<typename T>
int Thing<T>::counter = 0; // initialize it

Yes, you can have them, but …

There is a different static int counter for each instantiation of T ! - Shared with the same T Things, but not
shared between different T Things.

What about static member variables?

Class templates

Compiler must see the complete template definition for every translation unit that makes use of the
template.

Both classes and member functions of those classes

Compiler/linker work together to avoid/handle duplicated definitions with templates

E.g. to use Ordered_list<> template, #include Ordered_list.h

Standard practice: put the complete template definition in a header file.

Standard Library - iostream is actually a monster set of templates - almost all of the I/O library is
actually being read in, in near source form

Not of a lot of use to us, though!

Why - makes it easy for the same code to be used for both normal and wide characters!

for example, put declaration in .h, function definitions in .cpp followed by explicit instantiations,
compile the .cpp along with all other .cpp.

I’ve done this: Is only a good solution when you know the possible instantiations in advance:

It is possible to separate code into .h and .cpp files, but is not done very often, and is not as flexible -
see Stroustrup p.696 ff

But actually, export is not as good an idea as everybody was expecting!

Future compilers may make it better - "export" keyword was supposed to help

Potentially very awkward - header files can get very long.

The point of instantiation is where your code requires an template to be instantiated.

However, compiler processes all of the code in the translation unit, then instantiates the templates, then
compiles those.

It usually reports errors at the point of instantiation, but it is happening after the non-template code has
been compiled.

Allows for use of incomplete types at the point of instantiation if they become complete types later in
the translation unit.

Basic distinction: point of instantiation versus when instantiated.

Major Practical Issue: How the compiler processes templates

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template

*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Typedef and type aliases with templates

template <typename T>

Suppose you are writing a template with T as the type parameter

T::foo

and somewhere in the middle of it you refer to "foo" that is in the type given by T

the type of foo depends on T - it is a dependent type.

What is foo? Compiler can't tell just from T::foo because it doesn't know what T is yet.

On certain occasions, the compiler will complain because of the ambiguity. Usually foo should be the
name of a type embedded in T (like a nested class or a typedef). Compilers used to just assume it, bu it
could be something else - like a static variable or a member function.

typename T::foo

"foo" is the name of a type declared within the scope of T

If the compiler is confused, and foo is the name of a type, you need to tell the compiler with the typename
keyword:

Dependent types - occasional issue

Code bloat: every template instantiation is a complete copy of the code, differing only in the type
declarations.

E.g. Linked_list<Thing>, LInked_list<int>, Linked_list<char*> - 3 “copies” of the same code

Can’t do anything about this, but there is a special case for pointer types:

E.g. Linked_list<Thing*>, LInked_list<int*>, Linked_list<char*>

Instead of 3 copies differing only by pointer type, implement in terms of void*, with casts to/form the actual
type

template<typename T>
class Linked_list {
void insert(const T& datum);

class Iterator {

T& Iterator::operator* ()
{return node->datum;}
};

private:
class Node {

T datum;
};

};

First, provide the complete base template - the normal template

Then specialize the whole template for void* - compiler picks this for Linked_list<void*> instead of the
base template

template<>
class Linked_list<void*> {

void insert(void* datum);

class Iterator {
void*& operator* ()

{return node->datum;}
};

private:
class Node {

void* datum
};

};

Then partially specialize for prointer types, and implement in terms of the void* instantiation. with casts
to/from the T* type and void*

template<T*>
class Linked_list {
public:
void insert(T* datum)

{vplist.insert (static_cast<void*>(datum));

class Iterator {
T*& operator* ()

{ …
return static_cast<T*>the_datum // very sketched
}

private:
Linked_list<void*> vplist;

};

Note: If member functions are inline, the “delegation” of calls to vplist takes no run-time.

All Linked_lists of pointer type share the same run-time code (the Linked_list<void*>).

Less code bloat if you have a lot of containers of different pointer types.

Advantages:

Lots of code near-duplication (more or less whole template for void* specialization)

the casting to/from void* can get very complex when taking into account: const interators, const
containers, and that T might be a const type (e.g. T* is const char *).

Definitely a job for professional library writers!!!

Disadvantages:

How its done (sketch - many details and members left out) - provide these three templates in this order to
the compiler

Library implementers: Preventing code bloat for template classes containing pointers

Important issues about Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 19

Compiler must see the complete template definition for every translation unit that makes use of the
template.

Both classes and member functions of those classes

Compiler/linker work together to avoid/handle duplicated definitions with templates

E.g. to use Ordered_list<> template, #include Ordered_list.h

Standard practice: put the complete template definition in a header file.

Standard Library - iostream is actually a monster set of templates - almost all of the I/O library is
actually being read in, in near source form

Not of a lot of use to us, though!

Why - makes it easy for the same code to be used for both normal and wide characters!

for example, put declaration in .h, function definitions in .cpp followed by explicit instantiations,
compile the .cpp along with all other .cpp.

I’ve done this: Is only a good solution when you know the possible instantiations in advance:

It is possible to separate code into .h and .cpp files, but is not done very often, and is not as flexible -
see Stroustrup p.696 ff

But actually, export is not as good an idea as everybody was expecting!

Future compilers may make it better - "export" keyword was supposed to help

Potentially very awkward - header files can get very long.

The point of instantiation is where your code requires an template to be instantiated.

However, compiler processes all of the code in the translation unit, then instantiates the templates, then
compiles those.

It usually reports errors at the point of instantiation, but it is happening after the non-template code has
been compiled.

Allows for use of incomplete types at the point of instantiation if they become complete types later in
the translation unit.

Basic distinction: point of instantiation versus when instantiated.

Major Practical Issue: How the compiler processes templates

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template

*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Typedef and type aliases with templates

template <typename T>

Suppose you are writing a template with T as the type parameter

T::foo

and somewhere in the middle of it you refer to "foo" that is in the type given by T

the type of foo depends on T - it is a dependent type.

What is foo? Compiler can't tell just from T::foo because it doesn't know what T is yet.

On certain occasions, the compiler will complain because of the ambiguity. Usually foo should be the
name of a type embedded in T (like a nested class or a typedef). Compilers used to just assume it, bu it
could be something else - like a static variable or a member function.

typename T::foo

"foo" is the name of a type declared within the scope of T

If the compiler is confused, and foo is the name of a type, you need to tell the compiler with the typename
keyword:

Dependent types - occasional issue

Code bloat: every template instantiation is a complete copy of the code, differing only in the type
declarations.

E.g. Linked_list<Thing>, LInked_list<int>, Linked_list<char*> - 3 “copies” of the same code

Can’t do anything about this, but there is a special case for pointer types:

E.g. Linked_list<Thing*>, LInked_list<int*>, Linked_list<char*>

Instead of 3 copies differing only by pointer type, implement in terms of void*, with casts to/form the actual
type

template<typename T>
class Linked_list {
void insert(const T& datum);

class Iterator {

T& Iterator::operator* ()
{return node->datum;}
};

private:
class Node {

T datum;
};

};

First, provide the complete base template - the normal template

Then specialize the whole template for void* - compiler picks this for Linked_list<void*> instead of the
base template

template<>
class Linked_list<void*> {

void insert(void* datum);

class Iterator {
void*& operator* ()

{return node->datum;}
};

private:
class Node {

void* datum
};

};

Then partially specialize for prointer types, and implement in terms of the void* instantiation. with casts
to/from the T* type and void*

template<T*>
class Linked_list {
public:
void insert(T* datum)

{vplist.insert (static_cast<void*>(datum));

class Iterator {
T*& operator* ()

{ …
return static_cast<T*>the_datum // very sketched
}

private:
Linked_list<void*> vplist;

};

Note: If member functions are inline, the “delegation” of calls to vplist takes no run-time.

All Linked_lists of pointer type share the same run-time code (the Linked_list<void*>).

Less code bloat if you have a lot of containers of different pointer types.

Advantages:

Lots of code near-duplication (more or less whole template for void* specialization)

the casting to/from void* can get very complex when taking into account: const interators, const
containers, and that T might be a const type (e.g. T* is const char *).

Definitely a job for professional library writers!!!

Disadvantages:

How its done (sketch - many details and members left out) - provide these three templates in this order to
the compiler

Library implementers: Preventing code bloat for template classes containing pointers

Important issues about Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 20

Compiler must see the complete template definition for every translation unit that makes use of the
template.

Both classes and member functions of those classes

Compiler/linker work together to avoid/handle duplicated definitions with templates

E.g. to use Ordered_list<> template, #include Ordered_list.h

Standard practice: put the complete template definition in a header file.

Standard Library - iostream is actually a monster set of templates - almost all of the I/O library is
actually being read in, in near source form

Not of a lot of use to us, though!

Why - makes it easy for the same code to be used for both normal and wide characters!

for example, put declaration in .h, function definitions in .cpp followed by explicit instantiations,
compile the .cpp along with all other .cpp.

I’ve done this: Is only a good solution when you know the possible instantiations in advance:

It is possible to separate code into .h and .cpp files, but is not done very often, and is not as flexible -
see Stroustrup p.696 ff

But actually, export is not as good an idea as everybody was expecting!

Future compilers may make it better - "export" keyword was supposed to help

Potentially very awkward - header files can get very long.

The point of instantiation is where your code requires an template to be instantiated.

However, compiler processes all of the code in the translation unit, then instantiates the templates, then
compiles those.

It usually reports errors at the point of instantiation, but it is happening after the non-template code has
been compiled.

Allows for use of incomplete types at the point of instantiation if they become complete types later in
the translation unit.

Basic distinction: point of instantiation versus when instantiated.

Major Practical Issue: How the compiler processes templates

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template

*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Typedef and type aliases with templates

template <typename T>

Suppose you are writing a template with T as the type parameter

T::foo

and somewhere in the middle of it you refer to "foo" that is in the type given by T

the type of foo depends on T - it is a dependent type.

What is foo? Compiler can't tell just from T::foo because it doesn't know what T is yet.

On certain occasions, the compiler will complain because of the ambiguity. Usually foo should be the
name of a type embedded in T (like a nested class or a typedef). Compilers used to just assume it, bu it
could be something else - like a static variable or a member function.

typename T::foo

"foo" is the name of a type declared within the scope of T

If the compiler is confused, and foo is the name of a type, you need to tell the compiler with the typename
keyword:

Dependent types - occasional issue

Code bloat: every template instantiation is a complete copy of the code, differing only in the type
declarations.

E.g. Linked_list<Thing>, LInked_list<int>, Linked_list<char*> - 3 “copies” of the same code

Can’t do anything about this, but there is a special case for pointer types:

E.g. Linked_list<Thing*>, LInked_list<int*>, Linked_list<char*>

Instead of 3 copies differing only by pointer type, implement in terms of void*, with casts to/form the actual
type

template<typename T>
class Linked_list {
void insert(const T& datum);

class Iterator {

T& Iterator::operator* ()
{return node->datum;}
};

private:
class Node {

T datum;
};

};

First, provide the complete base template - the normal template

Then specialize the whole template for void* - compiler picks this for Linked_list<void*> instead of the
base template

template<>
class Linked_list<void*> {

void insert(void* datum);

class Iterator {
void*& operator* ()

{return node->datum;}
};

private:
class Node {

void* datum
};

};

Then partially specialize for prointer types, and implement in terms of the void* instantiation. with casts
to/from the T* type and void*

template<T*>
class Linked_list {
public:
void insert(T* datum)

{vplist.insert (static_cast<void*>(datum));

class Iterator {
T*& operator* ()

{ …
return static_cast<T*>the_datum // very sketched
}

private:
Linked_list<void*> vplist;

};

Note: If member functions are inline, the “delegation” of calls to vplist takes no run-time.

All Linked_lists of pointer type share the same run-time code (the Linked_list<void*>).

Less code bloat if you have a lot of containers of different pointer types.

Advantages:

Lots of code near-duplication (more or less whole template for void* specialization)

the casting to/from void* can get very complex when taking into account: const interators, const
containers, and that T might be a const type (e.g. T* is const char *).

Definitely a job for professional library writers!!!

Disadvantages:

How its done (sketch - many details and members left out) - provide these three templates in this order to
the compiler

Library implementers: Preventing code bloat for template classes containing pointers

Important issues about Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 21

Compiler must see the complete template definition for every translation unit that makes use of the
template.

Both classes and member functions of those classes

Compiler/linker work together to avoid/handle duplicated definitions with templates

E.g. to use Ordered_list<> template, #include Ordered_list.h

Standard practice: put the complete template definition in a header file.

Standard Library - iostream is actually a monster set of templates - almost all of the I/O library is
actually being read in, in near source form

Not of a lot of use to us, though!

Why - makes it easy for the same code to be used for both normal and wide characters!

for example, put declaration in .h, function definitions in .cpp followed by explicit instantiations,
compile the .cpp along with all other .cpp.

I’ve done this: Is only a good solution when you know the possible instantiations in advance:

It is possible to separate code into .h and .cpp files, but is not done very often, and is not as flexible -
see Stroustrup p.696 ff

But actually, export is not as good an idea as everybody was expecting!

Future compilers may make it better - "export" keyword was supposed to help

Potentially very awkward - header files can get very long.

The point of instantiation is where your code requires an template to be instantiated.

However, compiler processes all of the code in the translation unit, then instantiates the templates, then
compiles those.

It usually reports errors at the point of instantiation, but it is happening after the non-template code has
been compiled.

Allows for use of incomplete types at the point of instantiation if they become complete types later in
the translation unit.

Basic distinction: point of instantiation versus when instantiated.

Major Practical Issue: How the compiler processes templates

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template

*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Typedef and type aliases with templates

template <typename T>

Suppose you are writing a template with T as the type parameter

T::foo

and somewhere in the middle of it you refer to "foo" that is in the type given by T

the type of foo depends on T - it is a dependent type.

What is foo? Compiler can't tell just from T::foo because it doesn't know what T is yet.

On certain occasions, the compiler will complain because of the ambiguity. Usually foo should be the
name of a type embedded in T (like a nested class or a typedef). Compilers used to just assume it, bu it
could be something else - like a static variable or a member function.

typename T::foo

"foo" is the name of a type declared within the scope of T

If the compiler is confused, and foo is the name of a type, you need to tell the compiler with the typename
keyword:

Dependent types - occasional issue

Code bloat: every template instantiation is a complete copy of the code, differing only in the type
declarations.

E.g. Linked_list<Thing>, LInked_list<int>, Linked_list<char*> - 3 “copies” of the same code

Can’t do anything about this, but there is a special case for pointer types:

E.g. Linked_list<Thing*>, LInked_list<int*>, Linked_list<char*>

Instead of 3 copies differing only by pointer type, implement in terms of void*, with casts to/form the actual
type

template<typename T>
class Linked_list {
void insert(const T& datum);

class Iterator {

T& Iterator::operator* ()
{return node->datum;}
};

private:
class Node {

T datum;
};

};

First, provide the complete base template - the normal template

Then specialize the whole template for void* - compiler picks this for Linked_list<void*> instead of the
base template

template<>
class Linked_list<void*> {

void insert(void* datum);

class Iterator {
void*& operator* ()

{return node->datum;}
};

private:
class Node {

void* datum
};

};

Then partially specialize for prointer types, and implement in terms of the void* instantiation. with casts
to/from the T* type and void*

template<T*>
class Linked_list {
public:
void insert(T* datum)

{vplist.insert (static_cast<void*>(datum));

class Iterator {
T*& operator* ()

{ …
return static_cast<T*>the_datum // very sketched
}

private:
Linked_list<void*> vplist;

};

Note: If member functions are inline, the “delegation” of calls to vplist takes no run-time.

All Linked_lists of pointer type share the same run-time code (the Linked_list<void*>).

Less code bloat if you have a lot of containers of different pointer types.

Advantages:

Lots of code near-duplication (more or less whole template for void* specialization)

the casting to/from void* can get very complex when taking into account: const interators, const
containers, and that T might be a const type (e.g. T* is const char *).

Definitely a job for professional library writers!!!

Disadvantages:

How its done (sketch - many details and members left out) - provide these three templates in this order to
the compiler

Library implementers: Preventing code bloat for template classes containing pointers

Important issues about Class templates

OperatorOverloading&Templates 2/4/16, 6:02:26 PM 22

Compiler must see the complete template definition for every translation unit that makes use of the
template.

Both classes and member functions of those classes

Compiler/linker work together to avoid/handle duplicated definitions with templates

E.g. to use Ordered_list<> template, #include Ordered_list.h

Standard practice: put the complete template definition in a header file.

Standard Library - iostream is actually a monster set of templates - almost all of the I/O library is
actually being read in, in near source form

Not of a lot of use to us, though!

Why - makes it easy for the same code to be used for both normal and wide characters!

for example, put declaration in .h, function definitions in .cpp followed by explicit instantiations,
compile the .cpp along with all other .cpp.

I’ve done this: Is only a good solution when you know the possible instantiations in advance:

It is possible to separate code into .h and .cpp files, but is not done very often, and is not as flexible -
see Stroustrup p.696 ff

But actually, export is not as good an idea as everybody was expecting!

Future compilers may make it better - "export" keyword was supposed to help

Potentially very awkward - header files can get very long.

The point of instantiation is where your code requires an template to be instantiated.

However, compiler processes all of the code in the translation unit, then instantiates the templates, then
compiles those.

It usually reports errors at the point of instantiation, but it is happening after the non-template code has
been compiled.

Allows for use of incomplete types at the point of instantiation if they become complete types later in
the translation unit.

Basic distinction: point of instantiation versus when instantiated.

Major Practical Issue: How the compiler processes templates

using mytype = existing_type;

tempplate<typename T>
using Vector = std::vector<T>;

/* template <typename T>
 typedef Ordered_list<T> myOL; // error typedef can't be a template

*/
 template <typename T>
 using myOL = Ordered_list<T>;

 template <typename T>
 myOL<T> foo(myOL<T> x)
 {return x;};

usually equivalent to a typedef, but more flexible with templates:

Typedef and type aliases with templates

template <typename T>

Suppose you are writing a template with T as the type parameter

T::foo

and somewhere in the middle of it you refer to "foo" that is in the type given by T

the type of foo depends on T - it is a dependent type.

What is foo? Compiler can't tell just from T::foo because it doesn't know what T is yet.

On certain occasions, the compiler will complain because of the ambiguity. Usually foo should be the
name of a type embedded in T (like a nested class or a typedef). Compilers used to just assume it, bu it
could be something else - like a static variable or a member function.

typename T::foo

"foo" is the name of a type declared within the scope of T

If the compiler is confused, and foo is the name of a type, you need to tell the compiler with the typename
keyword:

Dependent types - occasional issue

Code bloat: every template instantiation is a complete copy of the code, differing only in the type
declarations.

E.g. Linked_list<Thing>, LInked_list<int>, Linked_list<char*> - 3 “copies” of the same code

Can’t do anything about this, but there is a special case for pointer types:

E.g. Linked_list<Thing*>, LInked_list<int*>, Linked_list<char*>

Instead of 3 copies differing only by pointer type, implement in terms of void*, with casts to/form the actual
type

template<typename T>
class Linked_list {
void insert(const T& datum);

class Iterator {

T& Iterator::operator* ()
{return node->datum;}
};

private:
class Node {

T datum;
};

};

First, provide the complete base template - the normal template

Then specialize the whole template for void* - compiler picks this for Linked_list<void*> instead of the
base template

template<>
class Linked_list<void*> {

void insert(void* datum);

class Iterator {
void*& operator* ()

{return node->datum;}
};

private:
class Node {

void* datum
};

};

Then partially specialize for prointer types, and implement in terms of the void* instantiation. with casts
to/from the T* type and void*

template<T*>
class Linked_list {
public:
void insert(T* datum)

{vplist.insert (static_cast<void*>(datum));

class Iterator {
T*& operator* ()

{ …
return static_cast<T*>the_datum // very sketched
}

private:
Linked_list<void*> vplist;

};

Note: If member functions are inline, the “delegation” of calls to vplist takes no run-time.

All Linked_lists of pointer type share the same run-time code (the Linked_list<void*>).

Less code bloat if you have a lot of containers of different pointer types.

Advantages:

Lots of code near-duplication (more or less whole template for void* specialization)

the casting to/from void* can get very complex when taking into account: const interators, const
containers, and that T might be a const type (e.g. T* is const char *).

Definitely a job for professional library writers!!!

Disadvantages:

How its done (sketch - many details and members left out) - provide these three templates in this order to
the compiler

Library implementers: Preventing code bloat for template classes containing pointers

Important issues about Class templates

