
Review&Preview 1/23/15, 4:08:07 PM 1

• Stroustrup: All four prefaces, Ch. 1. Then read "Tour" chapters 2, 3, 4 and 5 but skip 5.3
Concurrency. Watch for new C++11 usage.

• H: Using using.

Note emphasis on enjoyment of programming

4th edition - lots of changes both in the format and coverage, with C++11 features added, and much of the
design coverage removed.

3rd edition - standardized, and standard library allows programmer to start from a higher level

safe means type-safe interface

efficient means comparable to hand-written C code

pre-standard library

2nd edition - language supports safe and efficient libraries

first page of preface defines a lot of what the language is about

1st edition -

Prefaces

auto i = 42; // i is an int

C++98:
map<int, string, my_int_cmp>::iterator it = container.begin();

C++11;
auto it = container.begin();

Example: auto keyword - obsolete in original use, now can be used to mean declare this variable to
have the same type as its initializer.

Convenience features for the programmer that make code easier to write.

enable move semantics: high-speed versions of copy constructors and assignment operators
means with no change to your code, code that uses library containers like string and vector now run
significantly faster.

enable perfect forwarding: extremely useful things like std::bind now work in all reasonable
scenarios - didn't before.

Example: rvalue references

New capabilities for library writers to improve performance and generality

Most of C++11 changes fit into two categories:

Will limit to what works according to the C++11 Standard in gcc 4.8.2

Will have to be ready for work-arounds in other platforms.

Xcode 4.4.1 or later working under OS 10.8 or later is pretty good, using the LLVM Clang compiler

MSVS 2012 has many C++11 features, but surprisingly is missing some. May have to workaround. State of
MSVS 2013?

Will introduce these in lecture notes and handouts as we go along.

Stroustrup Introduction: Prefaces, 1-3

Review&Preview 1/23/15, 4:08:07 PM 2

Note emphasis on enjoyment of programming

4th edition - lots of changes both in the format and coverage, with C++11 features added, and much of the
design coverage removed.

3rd edition - standardized, and standard library allows programmer to start from a higher level

safe means type-safe interface

efficient means comparable to hand-written C code

pre-standard library

2nd edition - language supports safe and efficient libraries

first page of preface defines a lot of what the language is about

1st edition -

Prefaces

auto i = 42; // i is an int

C++98:
map<int, string, my_int_cmp>::iterator it = container.begin();

C++11;
auto it = container.begin();

Example: auto keyword - obsolete in original use, now can be used to mean declare this variable to
have the same type as its initializer.

Convenience features for the programmer that make code easier to write.

enable move semantics: high-speed versions of copy constructors and assignment operators
means with no change to your code, code that uses library containers like string and vector now run
significantly faster.

enable perfect forwarding: extremely useful things like std::bind now work in all reasonable
scenarios - didn't before.

Example: rvalue references

New capabilities for library writers to improve performance and generality

Most of C++11 changes fit into two categories:

Will limit to what works according to the C++11 Standard in gcc 4.8.2

Will have to be ready for work-arounds in other platforms.

Xcode 4.4.1 or later working under OS 10.8 or later is pretty good, using the LLVM Clang compiler

MSVS 2012 has many C++11 features, but surprisingly is missing some. May have to workaround. State of
MSVS 2013?

Will introduce these in lecture notes and handouts as we go along.

Stroustrup Introduction: Prefaces, 1-3

Review&Preview 1/23/15, 4:08:07 PM 3

object-based - better abstraction, encapsulation

object-oriented - inheritance & polymorphism

assumes you know ordinary programming concepts, but not necessarily OOP concepts

based on C for ubiquity

like C, emphasis on run time efficiency

like C, do as much at compile time as possible, as little extra at run time as possible

better than C, more static (compile-time) type checking and safety

Basic orientation

remark about little or no run-time overhead ... cf LISP

static typing - do checks at compile time - can get safer language without run-time or memory overheads -
c.f. LISP again

enable larger programs to be structured ... so that ... a single person to cope with far larger amounts of
code

a language also provides a tool for thinking about problems - not a good idea to be too restrictive to save
programmer from errors ...

basic flavor

As programs get large, need help to work with them - style of how you write the code becomes
critical

Approaches to programming that attempt to make programs easier to design, write, debug, and
maintain - making their structure more clear - helping to deal with complexity

messy, arbitrary coding - what a mess!

languages made subroutines clumsy or inefficient to use, so only used for "libraries" like math sqrt,
cos, etc.

e.g. FORTRAN II had only arithmetic IF, DO statement.

constructs for expressing conditions or iterations very limited

machines small, slow, limited memory, so premium on keeping programs small

example

so tendency to write spaghetti code, with lots of branches and gotos

early programming - write the code any way you want, trying to minimize some property, and try to get
it to work, and hope you don't have to modify it

Programming paradigms

use functions to organize the code for clarity and re-usability

use functions/subroutines so that code is highly organized, and can be read from the top down

no use of goto ... what is goto?

use of iteration constructs like for, while, do-while, where the scope of the loop is clearly marked
syntactically.

other ideas - like the one-point-of-return policy - probably excessive if functions are kept short - can
get code too convoluted

notion of "structured" programming - code should be well structured - what's this mean?

your main module for Project 1 should do these things - should not be one big ugly function

procedural - decide what procedures you want, use the best algorithms you can find

data-hiding principle

OO approaches just do this better.

key idea: manage complexity by breaking a complex program down into simpler parts that can be
designed, coded, tested, maintained, modified independently of each other.

organize the code into groups, modules, try to hide details and data within the module so that it can be
used without accidents or confusion, and provide an interface to it

"convention" - a treaty, an agreement

low-level example: "style" things like all caps for #define macros

all functions that work on C-strings have names starting with "str"

everybody working on the system, or the community of programmers, will write the code in a
certain way, following certain practices.

higher level: C file routines work with a struct that keeps all the information about the stream
state. has typedef'd name of FILE, and is always referred to by a pointer, FILE *. Programmer
using the I/O library will NEVER, EVER, modify the contients of the struct - always call I/O
library functions.

Conventions have to be documented, passed along, and followed by everybody.

malice is another matter.

Compiler doesn't know about them, and so can't help enforce them - means people can break
the system either through ignorance or by accident

Programming by convention - common notion

Instead of conventions, express key ideas directly in the language - then compiler can detect
and point out where not being followed.

e.g. make the FILE contents "private"

Other approach: get the language and the compiler to help you.

c.f. Project 1's container module

note how structure of internal data is not visible outside, internally linked functions (static) so
that not callable from elsewhere

main module doesn't need to know where and how the data is there

but module-defined types don't behave like "real"types in the language

use of indirection to hide the details means that everything done through a pointer, not like built-
in types

In C, can use separate compilation and internal linkage to help with modularization

How to do it? Can either do it by "convention" - rules, or get language to help you

namespaces in C++ can be used to "fence off" code and definitions so that their names are in a
separate space, and so can't be confused or used accidently.

Exceptions support modularization because they make it easier to separate responsibilities. A flexible
way to allow code in a module to report a problem without code outside the module having to know
everything that is going on. Can do this with "return codes" but exceptions are better.

modular - decide what modules you want; partition the program so that data is hidden within the modules

e.g. complex numbers

add a vector to a point, you get a translated point

geometrical/trigonometric types

e.g. string object acts for all practical purposes just like it was a primitive type in the language.

being able to overload operators is a critical part of this;

reference type is needed to make it syntactically sensible

a big goal of C++ is to allow user-defined types to be just as convenient and have almost the same
status as built-in types

e.g. simple classes with clear and complete set of operations defined on them

the implementation is not accessible, but is present

very useful, don't underrate them.

Stroustrup calls these concrete types

user-defined types - decide which types you want, provide a full set of operations on each type.

important point - not always useful, depends on the domain - e.g. graphics vs numerical work

most people would include use of virtual functions - polymorphism here

base class describes interface, derived classes have specific implementation

other ways to achieve decoupling - more later

abstract types - help decouple interface and implementation

if the main-part of the code is decoupled from the details of the rest of the code, then the rest of the
code can be modified, or extended, with little or no impact on the main part

add features by adding code, not by modifying code

decoupling is a key notion in extensibility

object-oriented programming - decide which classes you want, provide a full set of operations, make
commonality explicit by using inheritance

note - templates make sense for a strongly typed language only

note - templates are done at compile time, not run time

iterators used with containers and algorithms to abstract from details of container implementations

use an object to say that the different kinds of thing are - e.g. a function object

write a template that represents the common structure of the code

instantiate the template with different objects to achieve the results without writing duplicate code

if you find yourself writing the same code repeatedly except for some small part of it, consider re-doing
it with generic techniques

generic programming - decide which algorithms you want; parameterize them so that they work for a
variety of suitable types and data structures

Programming Style

code has a structure and organization more closely resembling the real world

makes design more reliable for complex programs - can depend on the nature of the world for some
of the organizational ideas

classes = concepts in the problem domain, objects = the objects in the domain

easier to work with

can give much more compartmentalized code

concept: add more features by ADDING code, not by changing code.

previous code stays in place, doesn't have to be tinkered with

can give code that is much easier to extend

virtues of using classes and objects

section 1.7 overview of programming in C++

Ch. 1. Intro

Review&Preview 1/23/15, 4:08:07 PM 4

object-based - better abstraction, encapsulation

object-oriented - inheritance & polymorphism

assumes you know ordinary programming concepts, but not necessarily OOP concepts

based on C for ubiquity

like C, emphasis on run time efficiency

like C, do as much at compile time as possible, as little extra at run time as possible

better than C, more static (compile-time) type checking and safety

Basic orientation

remark about little or no run-time overhead ... cf LISP

static typing - do checks at compile time - can get safer language without run-time or memory overheads -
c.f. LISP again

enable larger programs to be structured ... so that ... a single person to cope with far larger amounts of
code

a language also provides a tool for thinking about problems - not a good idea to be too restrictive to save
programmer from errors ...

basic flavor

As programs get large, need help to work with them - style of how you write the code becomes
critical

Approaches to programming that attempt to make programs easier to design, write, debug, and
maintain - making their structure more clear - helping to deal with complexity

messy, arbitrary coding - what a mess!

languages made subroutines clumsy or inefficient to use, so only used for "libraries" like math sqrt,
cos, etc.

e.g. FORTRAN II had only arithmetic IF, DO statement.

constructs for expressing conditions or iterations very limited

machines small, slow, limited memory, so premium on keeping programs small

example

so tendency to write spaghetti code, with lots of branches and gotos

early programming - write the code any way you want, trying to minimize some property, and try to get
it to work, and hope you don't have to modify it

Programming paradigms

use functions to organize the code for clarity and re-usability

use functions/subroutines so that code is highly organized, and can be read from the top down

no use of goto ... what is goto?

use of iteration constructs like for, while, do-while, where the scope of the loop is clearly marked
syntactically.

other ideas - like the one-point-of-return policy - probably excessive if functions are kept short - can
get code too convoluted

notion of "structured" programming - code should be well structured - what's this mean?

your main module for Project 1 should do these things - should not be one big ugly function

procedural - decide what procedures you want, use the best algorithms you can find

data-hiding principle

OO approaches just do this better.

key idea: manage complexity by breaking a complex program down into simpler parts that can be
designed, coded, tested, maintained, modified independently of each other.

organize the code into groups, modules, try to hide details and data within the module so that it can be
used without accidents or confusion, and provide an interface to it

"convention" - a treaty, an agreement

low-level example: "style" things like all caps for #define macros

all functions that work on C-strings have names starting with "str"

everybody working on the system, or the community of programmers, will write the code in a
certain way, following certain practices.

higher level: C file routines work with a struct that keeps all the information about the stream
state. has typedef'd name of FILE, and is always referred to by a pointer, FILE *. Programmer
using the I/O library will NEVER, EVER, modify the contients of the struct - always call I/O
library functions.

Conventions have to be documented, passed along, and followed by everybody.

malice is another matter.

Compiler doesn't know about them, and so can't help enforce them - means people can break
the system either through ignorance or by accident

Programming by convention - common notion

Instead of conventions, express key ideas directly in the language - then compiler can detect
and point out where not being followed.

e.g. make the FILE contents "private"

Other approach: get the language and the compiler to help you.

c.f. Project 1's container module

note how structure of internal data is not visible outside, internally linked functions (static) so
that not callable from elsewhere

main module doesn't need to know where and how the data is there

but module-defined types don't behave like "real"types in the language

use of indirection to hide the details means that everything done through a pointer, not like built-
in types

In C, can use separate compilation and internal linkage to help with modularization

How to do it? Can either do it by "convention" - rules, or get language to help you

namespaces in C++ can be used to "fence off" code and definitions so that their names are in a
separate space, and so can't be confused or used accidently.

Exceptions support modularization because they make it easier to separate responsibilities. A flexible
way to allow code in a module to report a problem without code outside the module having to know
everything that is going on. Can do this with "return codes" but exceptions are better.

modular - decide what modules you want; partition the program so that data is hidden within the modules

e.g. complex numbers

add a vector to a point, you get a translated point

geometrical/trigonometric types

e.g. string object acts for all practical purposes just like it was a primitive type in the language.

being able to overload operators is a critical part of this;

reference type is needed to make it syntactically sensible

a big goal of C++ is to allow user-defined types to be just as convenient and have almost the same
status as built-in types

e.g. simple classes with clear and complete set of operations defined on them

the implementation is not accessible, but is present

very useful, don't underrate them.

Stroustrup calls these concrete types

user-defined types - decide which types you want, provide a full set of operations on each type.

important point - not always useful, depends on the domain - e.g. graphics vs numerical work

most people would include use of virtual functions - polymorphism here

base class describes interface, derived classes have specific implementation

other ways to achieve decoupling - more later

abstract types - help decouple interface and implementation

if the main-part of the code is decoupled from the details of the rest of the code, then the rest of the
code can be modified, or extended, with little or no impact on the main part

add features by adding code, not by modifying code

decoupling is a key notion in extensibility

object-oriented programming - decide which classes you want, provide a full set of operations, make
commonality explicit by using inheritance

note - templates make sense for a strongly typed language only

note - templates are done at compile time, not run time

iterators used with containers and algorithms to abstract from details of container implementations

use an object to say that the different kinds of thing are - e.g. a function object

write a template that represents the common structure of the code

instantiate the template with different objects to achieve the results without writing duplicate code

if you find yourself writing the same code repeatedly except for some small part of it, consider re-doing
it with generic techniques

generic programming - decide which algorithms you want; parameterize them so that they work for a
variety of suitable types and data structures

Programming Style

code has a structure and organization more closely resembling the real world

makes design more reliable for complex programs - can depend on the nature of the world for some
of the organizational ideas

classes = concepts in the problem domain, objects = the objects in the domain

easier to work with

can give much more compartmentalized code

concept: add more features by ADDING code, not by changing code.

previous code stays in place, doesn't have to be tinkered with

can give code that is much easier to extend

virtues of using classes and objects

section 1.7 overview of programming in C++

Ch. 1. Intro

Review&Preview 1/23/15, 4:08:07 PM 5

object-based - better abstraction, encapsulation

object-oriented - inheritance & polymorphism

assumes you know ordinary programming concepts, but not necessarily OOP concepts

based on C for ubiquity

like C, emphasis on run time efficiency

like C, do as much at compile time as possible, as little extra at run time as possible

better than C, more static (compile-time) type checking and safety

Basic orientation

remark about little or no run-time overhead ... cf LISP

static typing - do checks at compile time - can get safer language without run-time or memory overheads -
c.f. LISP again

enable larger programs to be structured ... so that ... a single person to cope with far larger amounts of
code

a language also provides a tool for thinking about problems - not a good idea to be too restrictive to save
programmer from errors ...

basic flavor

As programs get large, need help to work with them - style of how you write the code becomes
critical

Approaches to programming that attempt to make programs easier to design, write, debug, and
maintain - making their structure more clear - helping to deal with complexity

messy, arbitrary coding - what a mess!

languages made subroutines clumsy or inefficient to use, so only used for "libraries" like math sqrt,
cos, etc.

e.g. FORTRAN II had only arithmetic IF, DO statement.

constructs for expressing conditions or iterations very limited

machines small, slow, limited memory, so premium on keeping programs small

example

so tendency to write spaghetti code, with lots of branches and gotos

early programming - write the code any way you want, trying to minimize some property, and try to get
it to work, and hope you don't have to modify it

Programming paradigms

use functions to organize the code for clarity and re-usability

use functions/subroutines so that code is highly organized, and can be read from the top down

no use of goto ... what is goto?

use of iteration constructs like for, while, do-while, where the scope of the loop is clearly marked
syntactically.

other ideas - like the one-point-of-return policy - probably excessive if functions are kept short - can
get code too convoluted

notion of "structured" programming - code should be well structured - what's this mean?

your main module for Project 1 should do these things - should not be one big ugly function

procedural - decide what procedures you want, use the best algorithms you can find

data-hiding principle

OO approaches just do this better.

key idea: manage complexity by breaking a complex program down into simpler parts that can be
designed, coded, tested, maintained, modified independently of each other.

organize the code into groups, modules, try to hide details and data within the module so that it can be
used without accidents or confusion, and provide an interface to it

"convention" - a treaty, an agreement

low-level example: "style" things like all caps for #define macros

all functions that work on C-strings have names starting with "str"

everybody working on the system, or the community of programmers, will write the code in a
certain way, following certain practices.

higher level: C file routines work with a struct that keeps all the information about the stream
state. has typedef'd name of FILE, and is always referred to by a pointer, FILE *. Programmer
using the I/O library will NEVER, EVER, modify the contients of the struct - always call I/O
library functions.

Conventions have to be documented, passed along, and followed by everybody.

malice is another matter.

Compiler doesn't know about them, and so can't help enforce them - means people can break
the system either through ignorance or by accident

Programming by convention - common notion

Instead of conventions, express key ideas directly in the language - then compiler can detect
and point out where not being followed.

e.g. make the FILE contents "private"

Other approach: get the language and the compiler to help you.

c.f. Project 1's container module

note how structure of internal data is not visible outside, internally linked functions (static) so
that not callable from elsewhere

main module doesn't need to know where and how the data is there

but module-defined types don't behave like "real"types in the language

use of indirection to hide the details means that everything done through a pointer, not like built-
in types

In C, can use separate compilation and internal linkage to help with modularization

How to do it? Can either do it by "convention" - rules, or get language to help you

namespaces in C++ can be used to "fence off" code and definitions so that their names are in a
separate space, and so can't be confused or used accidently.

Exceptions support modularization because they make it easier to separate responsibilities. A flexible
way to allow code in a module to report a problem without code outside the module having to know
everything that is going on. Can do this with "return codes" but exceptions are better.

modular - decide what modules you want; partition the program so that data is hidden within the modules

e.g. complex numbers

add a vector to a point, you get a translated point

geometrical/trigonometric types

e.g. string object acts for all practical purposes just like it was a primitive type in the language.

being able to overload operators is a critical part of this;

reference type is needed to make it syntactically sensible

a big goal of C++ is to allow user-defined types to be just as convenient and have almost the same
status as built-in types

e.g. simple classes with clear and complete set of operations defined on them

the implementation is not accessible, but is present

very useful, don't underrate them.

Stroustrup calls these concrete types

user-defined types - decide which types you want, provide a full set of operations on each type.

important point - not always useful, depends on the domain - e.g. graphics vs numerical work

most people would include use of virtual functions - polymorphism here

base class describes interface, derived classes have specific implementation

other ways to achieve decoupling - more later

abstract types - help decouple interface and implementation

if the main-part of the code is decoupled from the details of the rest of the code, then the rest of the
code can be modified, or extended, with little or no impact on the main part

add features by adding code, not by modifying code

decoupling is a key notion in extensibility

object-oriented programming - decide which classes you want, provide a full set of operations, make
commonality explicit by using inheritance

note - templates make sense for a strongly typed language only

note - templates are done at compile time, not run time

iterators used with containers and algorithms to abstract from details of container implementations

use an object to say that the different kinds of thing are - e.g. a function object

write a template that represents the common structure of the code

instantiate the template with different objects to achieve the results without writing duplicate code

if you find yourself writing the same code repeatedly except for some small part of it, consider re-doing
it with generic techniques

generic programming - decide which algorithms you want; parameterize them so that they work for a
variety of suitable types and data structures

Programming Style

code has a structure and organization more closely resembling the real world

makes design more reliable for complex programs - can depend on the nature of the world for some
of the organizational ideas

classes = concepts in the problem domain, objects = the objects in the domain

easier to work with

can give much more compartmentalized code

concept: add more features by ADDING code, not by changing code.

previous code stays in place, doesn't have to be tinkered with

can give code that is much easier to extend

virtues of using classes and objects

section 1.7 overview of programming in C++

Ch. 1. Intro

Review&Preview 1/23/15, 4:08:07 PM 6

object-based - better abstraction, encapsulation

object-oriented - inheritance & polymorphism

assumes you know ordinary programming concepts, but not necessarily OOP concepts

based on C for ubiquity

like C, emphasis on run time efficiency

like C, do as much at compile time as possible, as little extra at run time as possible

better than C, more static (compile-time) type checking and safety

Basic orientation

remark about little or no run-time overhead ... cf LISP

static typing - do checks at compile time - can get safer language without run-time or memory overheads -
c.f. LISP again

enable larger programs to be structured ... so that ... a single person to cope with far larger amounts of
code

a language also provides a tool for thinking about problems - not a good idea to be too restrictive to save
programmer from errors ...

basic flavor

As programs get large, need help to work with them - style of how you write the code becomes
critical

Approaches to programming that attempt to make programs easier to design, write, debug, and
maintain - making their structure more clear - helping to deal with complexity

messy, arbitrary coding - what a mess!

languages made subroutines clumsy or inefficient to use, so only used for "libraries" like math sqrt,
cos, etc.

e.g. FORTRAN II had only arithmetic IF, DO statement.

constructs for expressing conditions or iterations very limited

machines small, slow, limited memory, so premium on keeping programs small

example

so tendency to write spaghetti code, with lots of branches and gotos

early programming - write the code any way you want, trying to minimize some property, and try to get
it to work, and hope you don't have to modify it

Programming paradigms

use functions to organize the code for clarity and re-usability

use functions/subroutines so that code is highly organized, and can be read from the top down

no use of goto ... what is goto?

use of iteration constructs like for, while, do-while, where the scope of the loop is clearly marked
syntactically.

other ideas - like the one-point-of-return policy - probably excessive if functions are kept short - can
get code too convoluted

notion of "structured" programming - code should be well structured - what's this mean?

your main module for Project 1 should do these things - should not be one big ugly function

procedural - decide what procedures you want, use the best algorithms you can find

data-hiding principle

OO approaches just do this better.

key idea: manage complexity by breaking a complex program down into simpler parts that can be
designed, coded, tested, maintained, modified independently of each other.

organize the code into groups, modules, try to hide details and data within the module so that it can be
used without accidents or confusion, and provide an interface to it

"convention" - a treaty, an agreement

low-level example: "style" things like all caps for #define macros

all functions that work on C-strings have names starting with "str"

everybody working on the system, or the community of programmers, will write the code in a
certain way, following certain practices.

higher level: C file routines work with a struct that keeps all the information about the stream
state. has typedef'd name of FILE, and is always referred to by a pointer, FILE *. Programmer
using the I/O library will NEVER, EVER, modify the contients of the struct - always call I/O
library functions.

Conventions have to be documented, passed along, and followed by everybody.

malice is another matter.

Compiler doesn't know about them, and so can't help enforce them - means people can break
the system either through ignorance or by accident

Programming by convention - common notion

Instead of conventions, express key ideas directly in the language - then compiler can detect
and point out where not being followed.

e.g. make the FILE contents "private"

Other approach: get the language and the compiler to help you.

c.f. Project 1's container module

note how structure of internal data is not visible outside, internally linked functions (static) so
that not callable from elsewhere

main module doesn't need to know where and how the data is there

but module-defined types don't behave like "real"types in the language

use of indirection to hide the details means that everything done through a pointer, not like built-
in types

In C, can use separate compilation and internal linkage to help with modularization

How to do it? Can either do it by "convention" - rules, or get language to help you

namespaces in C++ can be used to "fence off" code and definitions so that their names are in a
separate space, and so can't be confused or used accidently.

Exceptions support modularization because they make it easier to separate responsibilities. A flexible
way to allow code in a module to report a problem without code outside the module having to know
everything that is going on. Can do this with "return codes" but exceptions are better.

modular - decide what modules you want; partition the program so that data is hidden within the modules

e.g. complex numbers

add a vector to a point, you get a translated point

geometrical/trigonometric types

e.g. string object acts for all practical purposes just like it was a primitive type in the language.

being able to overload operators is a critical part of this;

reference type is needed to make it syntactically sensible

a big goal of C++ is to allow user-defined types to be just as convenient and have almost the same
status as built-in types

e.g. simple classes with clear and complete set of operations defined on them

the implementation is not accessible, but is present

very useful, don't underrate them.

Stroustrup calls these concrete types

user-defined types - decide which types you want, provide a full set of operations on each type.

important point - not always useful, depends on the domain - e.g. graphics vs numerical work

most people would include use of virtual functions - polymorphism here

base class describes interface, derived classes have specific implementation

other ways to achieve decoupling - more later

abstract types - help decouple interface and implementation

if the main-part of the code is decoupled from the details of the rest of the code, then the rest of the
code can be modified, or extended, with little or no impact on the main part

add features by adding code, not by modifying code

decoupling is a key notion in extensibility

object-oriented programming - decide which classes you want, provide a full set of operations, make
commonality explicit by using inheritance

note - templates make sense for a strongly typed language only

note - templates are done at compile time, not run time

iterators used with containers and algorithms to abstract from details of container implementations

use an object to say that the different kinds of thing are - e.g. a function object

write a template that represents the common structure of the code

instantiate the template with different objects to achieve the results without writing duplicate code

if you find yourself writing the same code repeatedly except for some small part of it, consider re-doing
it with generic techniques

generic programming - decide which algorithms you want; parameterize them so that they work for a
variety of suitable types and data structures

Programming Style

code has a structure and organization more closely resembling the real world

makes design more reliable for complex programs - can depend on the nature of the world for some
of the organizational ideas

classes = concepts in the problem domain, objects = the objects in the domain

easier to work with

can give much more compartmentalized code

concept: add more features by ADDING code, not by changing code.

previous code stays in place, doesn't have to be tinkered with

can give code that is much easier to extend

virtues of using classes and objects

section 1.7 overview of programming in C++

Ch. 1. Intro

Review&Preview 1/23/15, 4:08:07 PM 7

Ch. 2 A tour of C++: The Basics

Review&Preview 1/23/15, 4:08:07 PM 8

#include <iostream>

using namespace std;

Easiest, least enlightened, brute force way to use

always be explicit

std::cout << "Hello" << std::endl;

Ugliest way to use

#include <iostream>

using std::cout; using std::endl;

std:: string firstname;

never put a using in a header file, always be explicit:

Best tight rules

The std namespace

this forces your using decision on whoever includes the header - not good

use explicit qualification for all std lib names in the header file

std::ostream operator<< (std::ostream& Mytype m);

std::string;

Only possible exception: if nested within an inline function body or a class declaration.

no "using" statements in header files, ever!

#include ... all includes first

your choice:

using namespace std; - not the best, but OK - doesn't avoid name collisions

using std::cout; using std::endl; - my personal favorite

std::cout << x << std::endl; - you gotta be kidding!

in implementation (.cpp) files,

Guidelines

std namespace - usage? - handout will be read

for the usual efficiency reasons

main wart: while type-safe, are not necessary safe in other ways - undefined behavior is still present in
many cases with iterators

iostream

string - concatenation with +, +=

C <math.h> is C++ <cmath>

C <string.h> is C++ <cstring>

Note Standard Library header names for C++

in general, C Std. Lib. <x.h> is for C++ <cx>

the C standard library is included

complex, valarray

math

Ch. 3 A tour of C++: Abstraction Mechanisms

Review&Preview 1/23/15, 4:08:07 PM 9

#include <iostream>

using namespace std;

Easiest, least enlightened, brute force way to use

always be explicit

std::cout << "Hello" << std::endl;

Ugliest way to use

#include <iostream>

using std::cout; using std::endl;

std:: string firstname;

never put a using in a header file, always be explicit:

Best tight rules

The std namespace

this forces your using decision on whoever includes the header - not good

use explicit qualification for all std lib names in the header file

std::ostream operator<< (std::ostream& Mytype m);

std::string;

Only possible exception: if nested within an inline function body or a class declaration.

no "using" statements in header files, ever!

#include ... all includes first

your choice:

using namespace std; - not the best, but OK - doesn't avoid name collisions

using std::cout; using std::endl; - my personal favorite

std::cout << x << std::endl; - you gotta be kidding!

in implementation (.cpp) files,

Guidelines

std namespace - usage? - handout will be read

for the usual efficiency reasons

main wart: while type-safe, are not necessary safe in other ways - undefined behavior is still present in
many cases with iterators

iostream

string - concatenation with +, +=

C <math.h> is C++ <cmath>

C <string.h> is C++ <cstring>

Note Standard Library header names for C++

in general, C Std. Lib. <x.h> is for C++ <cx>

the C standard library is included

complex, valarray

math

Ch. 3 A tour of C++: Abstraction Mechanisms

Review&Preview 1/23/15, 4:08:07 PM 10

vector - note range checking policy - his Vec class overloads operator[] and is safe because throws an
out-of-range exception

list

map, set - a self-balancing binary tree (red-black tree)

containers

"generalized pointers"

operations defined on iterators make them behave with same concepts as pointers

iterator++ -> next cell in vector, next node in list, next node in tree

but behave appropriately depending on what kind of sequence they are pointing into

can define algorithms in terms of iterator operations relatively independently of the details of the
container data structure.

a key idea - using iterators to designate a place in a sequence

end of a container specified as an iterator one past the end

use * dereference to get the item specified by the iterator

use ++ to change the iterator to point to the next item.

algorithms operate on sequences specified by two iterators; start with first, go up to but not including the
last

algorithms can also use an iterator for where to put their output

iterator adapters like back inserter can be used to append to the end of a container

can have iterators associated with input and output streams, which allow algorithms to read or write
directly - see example p. 61

algorthms can take function pointers or function objects and either apply them or use them as predicates
(p 62). special adapater neede for member functions due to the this pointer.

e.g. find, count

see table 3.8.6

algorithms & iterators

Ch. 4 A tour of C++: Containers & Algorithms

Review&Preview 1/23/15, 4:08:07 PM 11

Ch. 5 A tour of C++: Concurrency & Utilities

