
David E. Kieras!

University of Michigan

Non-Technical Issues in
Software Development

1

Question: Why isn't software of higher quality?!
• More useful, more usable, more reliable?!
• Many large software projects fail (~50+%).!

• Over budget, behind schedule, abandoned, unusable, or simply don't
work when delivered.!

Answer: There are problems in how software is developed.!
• Organizational and social rather than technical.!
• Frequently a disconnect between the developers and the users.!

• Developers don't build what users actually want.!
• How software is typically developed makes the situation worse, not better.!

Players:!
• Users - people who actually interact with the software.!
• Customers - people who choose to buy the software.!
• Developers - people who design and write the software.!
• Managers, administrators - people who make decisions about what will be

developed or purchased.!

Describe in terms of two aspects of software development:!

Processes - how to organize the development process.!

Contexts - the kind of organization developing the software.

Introduction

2

Topic in Software Engineering:!
• Standard stage or waterfall model.!
• Evolutionary model.!
• Spiral model.!
• Agile development and other newer ideas.!

If a software development organization doesn't have some kind of
process in place, it is either:!
• Very small - developers keep it all in the heads;!
• Likely to fail, probably sooner rather than later, due to the 50+% failure rate.

Software Development Processes
- how development is organized

3

Contract development organization!
• Customer specifies the system, contractors design and build it in response

to contract specifications.!

Product development organization!
• Products developed for discretionary purchase in a large market.!

In-house development organization!
• One group in an organization develops software for another group in the

organization.!

The processes originally developed in the contract organization.!
• Present this organization first and summarize how processes developed,

then on to the other forms of organization.

Software Development Contexts
 - the kind of organization

4

Until relatively recently, most software was custom-developed for the
needs of a single customer.!
• Today's "applications" did not exist - everything was one-of-a kind.!
• While machines were expensive, so was programmer time!!
• Software was written under contract - deliver a program for specified cost.!

Earliest software development process was code-and-fix. !
• Hack some stuff out and then try to make it work - nothing formalized.!

Better process developed in response to government (especially military)
procurement of very large systems.!
• U.S. Government is the original large computer purchaser and user.!
• Accountability required to counter tendency toward corruption.!

Customer specifies the system, then contractors design and build it in
response to contract specifications.!

Users known initially, developers identified when contract awarded.!

Driven from specification documents.!

Emphasis on controlling development process.!
• Problems are much more expensive to fix after the code has been written.!
• So try to figure everything out beforehand.!

Developer's success depends on adherence to specifications.

Contract Software Development

5

Need for accountability led to a well-defined development and
procurement process.!

Administrative Process:!
• Customer prepares specifications!

• e.g. Naval Bureau of Personnel wants a new personnel records system.!
• Navy officials write specifications for the system.!

• Government solicits bids for design, coding, other phases of project.!
• Contractors bid for each phase.!

• Not necessarily the same contractor for different phases.!
• Information available to contractors is normally restricted to paper

documents.!
• May have in-house or consultant experts, but often no access to actual

users - might even be illegal to talk with them.!
• Big premium on the products of each phase being documented.!

• Enables "throwing it over the wall" to the next phase, which might be a
different contractor.!

• Helps customer avoid getting "locked in" to a single contractor.

Contract Development Led to Defined
Processes for Software Development

6

User organization:!
• Establish feasibility.!
• Specify requirements - usually in terms of functional capabilities.!

• Usefulness and usability might be mentioned, but only in general terms.!
• E.g. "The system shall be easy to operate efficiently."!
• Contractors can't really adhere to such vague specifications, so tend to

be ignored in favor of hardware/software specifications.!

Contractor or Contractors:!
• Design system.!
• Do detailed design.!
• Write code.!
• Test system.!
• Integrate & Install system.!
• Operation.!
• Maintenance.!

Emphasis is on doing complete design before coding.!
• Prevent costly errors from having to change design during coding.!
• Stage & waterfall models of software development.!

• Stage model - 1956!
• Waterfall model - about 1970 - current industry standard.!

• A major advance over earlier hacking-it-out, code-and-fix approach.

Overall Contract Process

7

A series of stages, with limited feedback back to previous stage.

The Waterfall Model for Software Development
System

feasibility

Validation

Requirements

Validation

Product design

Verification

Detailed design

Verification

Code

Unit test

Integration

Product verification

Implementation

System test

Operations and

maintenance

Revalidation

8

Design must be "signed off" on before any coding is done, so no testing
of design concepts is possible prior to completion!!

Whole point is to avoid design iteration, so there is no test-modify loop
for the choice of functionality and user interface testing.!

If usability and functionality is not adequately captured in system
specifications, then not likely to be designed into the system!!
• Little opportunity for contact between developers and users.!
• Anything specified about the interface or system, no matter how bad, has to

be supplied!
• "Green suit" principle.!

Quote from Boehm (one of the gods of software engineering):!
• "[The waterfall model] does not work well for many classes of software,

particularly interactive end-user applications. Document-driven standards
have pushed many projects to write elaborate specifications of poorly
understood user interfaces and decision-support functions, followed by the
design and development of large quantities of unusable code."!

Change coming only very slowly.!
• It would help if the specifications included even a little user task information.!

• "Concepts of use" document - or use cases - still not normally supplied!!
• Need different model of software development!

Why Contract Development Often Fails

9

Driven by repeated identification and resolution of risks: A cycle of!
• Determine objectives, alternatives, constraints.!
• Evaluate alternatives, identify, resolve risks.!

• Analyze risks, construct prototypes, models, etc to resolve risks.!
• Develop, verify products at each level, depending on cycle.!

• Includes waterfall model stages at the end.!
• Plan next phase.!

Risks and resolution approaches - descending priorities:!
• Personnel shortfalls.!

• Staffing with top talent, pre-scheduling key people, etc.!
• Unrealistic schedules & budgets.!

• Detailed cost & time estimation, design to cost, incremental development,
etc.!

• Developing the wrong software functions.!
• Organization analysis, mission analysis, operations-concept formulation,

user surveys, prototyping, early users' manuals.!
• Developing the wrong user interface.!

• Task analysis, prototyping,scenarios,user characterization.!
• Gold plating.!
• Continuing stream of requirement changes.!
• Real-time performance shortfalls.!
• Straining computer-science capabilities.

Concept of Boehms's "Spiral" Model

10

Risk identification/resolution at beginning, waterfall at end.

Boehms's "Spiral" Model

Risk

Analysis

Prototype

Operational

Prototype

Simulations, models, benchmarks

Concept of

operation

Software

requirements

Requirements

validation

Risk

Analysis

Risk

Analysis

Risk

Analysis

Prototype Prototype

Software

product

design

Design validation

and verification

Detailed

design

Code

Unit

test

Integration

and test

Acceptance

test

Implementation

Requirements plan

life-cycle plan

Development

plan

Integration

and test plan

Determine

objectives,

alternatives,

constraints

Cumulative

Cost

Progress

through

steps Evaluate alternatives,

identify, resolve risks

Develop, verify

next-level product

Plan next phases

Review

Commitment

partition

11

Agile Development Process

A relatively new and still-developing approach.!
• Began to develop in the late 1990s, announced in the 2000's.!
• A variety of techniques and ideas, but no single overall process description.

12

Manifesto for Agile Software Development

We are uncovering better ways of developing  
software by doing it and helping others do it.  
Through this work we have come to value:

Individuals and interactions over processes and tools  
Working software over comprehensive documentation  
Customer collaboration over contract negotiation  

Responding to change over following a plan

That is, while there is value in the items on  
the right, we value the items on the left more.

2001!

http://www.agilemanifesto.org/!
 

13

Agile Development Process
Basic concept: Requirements change frequently, so adapt to changes
rapidly instead of wasting time planning everything in advance.!
• Deprecate role of written design and planning documents.!

• Requirements change too rapidly - you could be revising code instead of
the documents!!

• Emphasize role of getting software written, tested, and revised rapidly.!
• Frequent, fast iterations each creating small pieces of functionality.!
• OOP techniques make it possible.!

• Rely on small teams of expert programmers in direct contact with customers
and each other - a craft workshop, not a factory.!
• Means excellent programmers are more important, but need more skills

than just programming - e.g. able to understand domains & users.!

Example techniques - good ideas!!
• Pair programming - review and fix the code as it is written.!
• Test-driven development - the tests are the specifications.!
• Frequent refactoring to maintain high code quality.

14

Agile Development Process - Current Status
Controversial, concepts and practices still in flux, still under debate.!

Some tendency for Agile Development to become:!
• A set of buzzwords.!
• Another programming “religion”.!
• A business for consultants to sell training and advice to clueless managers.!
• Another set of rigid processes for clueless managers to impose.!

Appears to work very well for smaller low-risk projects with highly
capable programmers in charge.!
• Let’s just get this built!!

Does not work well for large, complex, long-lived mission-critical projects.!
• Example: Accounting software for a large corporation that must meet

government regulatory standards.!
• Example: Affordable Care Act websites.!
• Can’t just hack this up and expect it to work or be sustainable.!

• Must be carefully planned to meet complex, detailed requirements.!
• Must have documentation to support future modification, transparency.!

• Must be built and maintained with “ordinary” programming talent. !
• A non-genius developer must be able to learn about a huge code base so

he or she can work on it.!

Combination of plan-based and agile methods can work well.

15

Evolution of Software Development Process

From Boehm (2006)

16

Contract development organization!
• Customer specifies the system, contractors design and build it in response

to contract specifications.!

The processes originally developed in the contract organization.!
• Present this organization first and summarize how processes developed,

then on to the other forms of organization.!

On to other forms of organization! !

Product development organization!
• Products developed for discretionary purchase in a large market.!

In-house development organization!
• One group in an organization develops software for another group in the

organization.!

Pop Up: Software Development Contexts
 - the kind of organization

17

Products developed for discretionary purchase in a large market.!
• Organization identifies potential products, develops and markets them.!
• E.g., almost all personal computer software vendors.!

Developers known immediately, users identified at time of purchase.!

Driven by perception of market:!
• Historical shift in emphasis from functionality-only to quality user experience.!

Success depends on whether there are enough users "out there" who buy
the product.

Product Development Organization Context

18

Product development organizations adopted the waterfall model, although
situation was actually quite different from Contract Development.!
• Management need to control, routinize, development process.!
• No preexisting specifications.!
• Actual users of product are not really known until they buy the product.!
• Developers have to guess who the users will be, and must develop their own

product specifications.!

Have all of the disadvantages of contract development, with none of the
advantages.!
• Can't just play it safe by writing to customer's specification, and own

specifications might be wrong or poor choices.!
• Many failed products because there were not enough customers.!
• Constant competitive pressures from other companies - no bid winners!!

Slow feedback from the market. !
• Often distorted because feedback is through customer (e.g. administrator)

who actually makes purchase, but is not the user.!

Situation is changing in product development organizations.!
• Typically are continually revising and improving products, so have an

iterative process already.!
• Tend to be market driven, so quality can get considered at least somewhat.

Problems in the Product Development
Organization Context

19

One group in an organization develops software for another group in the
same organization.!
• Characteristic of many information-intensive organizations.!

• E.g. manufacturers, banking, University of Michigan.!
• Both developers and users known from the beginning.!
• Driven by needs of user group.!
• Success depends on whether the user group accepts the software.!

Advantages and Problems for Usability in In-House Development!
• Since users & developers are under the same roof, user contact is easiest.!

• Users often participate in the design.!
• Also, developers often "paid" by the users, so users often have to be

consulted and satisfied.!
• Schedules are usually more flexible.!

• But conflicts can arise over roles and jurisdiction:!
• Software development group may have its own agenda.!

E.g. really interested in Unix, wants to use a particular web techniology, etc.!

• Customer may not be the same as the user:!
Users may not be empowered to insist that developers meet their needs.!
E.g. UM administrative software - we don't get to choose.!

• Management can default to inappropriate process like waterfall model.!
• Administrative advantages.!
• Relieves some conflict situations, temporarily.

In-house Development Context

20

Software development is difficult!!
• For both technical and non-technical reasons.!
• Possibly the most difficult activity the human species has created for itself.!
• We don't really know how to do it well!!

What kind of organization are you in?!
• What control does it have over what gets built?!

What kind of development process is being followed?!
• Do you know what it is?!
• If things are going well, or going poorly, why is that? !

• Could the process be inappropriate for the job or the organization?!

It might help if you understand what's going on.!
• What constraints apply in your professional situation?!
• Should you keep your resume up to date?

Concluding Remarks

21

Boehm, B. W. (1988). A spiral model of software development and
enhancement. IEEE Computer, 21 , 5, 61-72.!

Boehm, B.W. (2006). A view of 20th and 21st century software engineering.
ICSE’06 Proceedings, May 20-28, 2006, Shanghai, China.!

Grudin, J. (1991). Interactive systems: Bridging the gaps between
developers and users. IEEE Computer, 24, 59-69!

Grudin, J. (1991). Systematic sources of suboptimal interface design in
large product development organizations. Human-Computer Interaction,
6, 147-196.

Selected References

22

