
1Strings&Streams.oo3 10/3/13 12:02:12

Strings and streams
Stroustrup Chs. 36, 38 - highlights

string class
Stroustrup 36
can get c_str() char * pointer, but note limitations

use it just long enough to copy it out to somewhere else,
once string has been changed, or ceases to exist, then the pointer is undefined

positions in the string are given with index, like array subscript
first position is 0, last position is string::length() - 1

“past the end/not there” is a special value, named string::npos
string::npos also means "all of the characters -
npos is larger than the largest possible character position
length() < npos by definition

positions, string::length() (the same as string::size()) , returns a type for the size:
string::size_type

which is probably the same type as std::size_t
be careful! string::size_type is an unsigned type! watch out for unsigned arithmetic!
best policy - use string::size_type for all variables in which you store string positions.

functions like substr, find_first_not_of, are handy for parsing
see examples in Stroustrup

Note also complete iterator interface for string
can use it like a container, apply the algorithms to it
sometimes handy to use both: e.g. turn a string to uppercase with (transform ...) then take out a
substring of it

note line oriented input function:
getline(istream&, string_var);

not a member because iostream library doesn’t depend on string
consumes the newline character in the stream at the end of a line,
but doesn't store it in the string.

So end of string corresponds to end of line.

File streams
Stroustrup 38
see handouts on basic streams, file streams
use just like cin/cout

#include <fstream>
ifstream infile;
ofstream outfile;
if give file name/path in ctor, will open

otherwise, use open function
ifstream infile(“data_in.txt”);

2Strings&Streams.oo3 10/3/13 12:02:12

File streams

use just like cin/cout

if give file name/path in ctor, will open

ifstream infile;
...
infile.open(“data_in.txt”);
infile.close();
good etiquette: close file streams when you are done with them.
can reuse the same stream object by closing and re-opening with same or different file

in C++98, iostreams didn't know about std::string, open has to have a C-string!!
in C++11, open will take a std::string argument directly, so do it that way!

string filename;
cout << “enter file name: “;
cin >> filename;
ifstream infile(filename);

test for open success before proceeding
if(infile.is_open())
if(infile)
if(infile.good())

use idiomatic form for reading the file:
while (infile >> datum) {

/* use datum */
}

// here because input didn’t work - why?
if(infile.eof())

// hit the end of file - do what it appropriate
else if(infile.fail())

// couldn’t read the datum type because it didn’t look right
else if (infile.bad())

// some horrible I/O error
else

can’t get here ...
Simple case often applies:

if you can assume that the data is always readable, (or you can’t do anything useful if it isn’t),
then usually you just read until the stream fails, which would be at end of file.
If so, then this is all you need:
while(infile >> datum) {

// use it
}

// finished with input - go on

NOTE: if you get end-of-file, stream object is in the fail state,
and you have to clear it with .clear() to use it again.

e.g. if you want to recycle the stream object and open it on the same or different file

stringstreams
Stroustrup 38.2
a stream based on a string

most programming languages allow you do I/O operations on a string in addition to an I/O device
use together with strings to provide ways to read and write strings using standard i/o operators

#include <sstream>

3Strings&Streams.oo3 10/3/13 12:02:12

stringstreams

use together with strings to provide ways to read and write strings using standard i/o operators

ostringstream // write to it with output operators
istringstream // read from it with input operators

test for fail/eof like for regular stream - eof is trying to read past the end of the string
E.g. suppose you need to prepare a string containing values from numbers?

C alternative is sprintf into a char array - have to be sure the array is big enough no matter what!
e.g. idiomatic way to put a number into a string - heavyweight but won’t crash

string int_to_string(int i)
{

ostringstream ss;
ss << i;
return ss.str();

}
can get fancy:

ostringstream ss;
ss << "The value of i is " << i << " in the case named " << setw(8) << label_string
<< " with parameter " << setprecision(3) << setw(8) << theta
<< "\nNote that these results have an error of +/- " << error;

example - you get a string and need to extract some numbers and a string from it
string str = get_input();
istringstream iss(str); // construct a streamstring from the string
int i;
double x;
string s;
if(iss >> i >> x >> s)

cout << "we got " << i << ' ' << x << ' ' << s;
example - read a whole line, then decide how to parse it based on first character

file format is a series of lines, each starts with a code character.
if code character is 'a' data consists of two integers
otherwise data consists of a double value followed by a string value.
string line;
getline(in_file, line);
istringstream iss(line); // construct a streamstring from the line
iss >> code;
if(code == ‘a’)

iss >> int_var1 >> int_var2;
else

iss >> double_var1 >> string_var2;

