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Professional Reference Shelf
C.  Molecular Dynamics

Overview

  

H + H2 æ Æ æ H2 + H

A + BC æ Æ æ AB + C
(1) Calculate potential energy surface, 

† 

˜ V RBC ,RAB,RAC( )
(2) Carry of Trajectory Calculations

The equations of motion used to calculate the trajectories in order to obtain the
internuclear distances RAB, RAC, and RBC are

† 

dQ j

dt
=

Pj

m

dPj

dt
= -

∂ ˜ V RBC,RAB( )
∂dQ j !!!!!!!!!!

C

A

b
  Q1,  Q2,  Q3

  Q4 ,  Q5 , Q6

B

where P is the momentum and 

† 

˜ V  (RAB, RBC, RAC) is the potential energy surface. We
now answer these questions by specifying some of the variables and letting the
computer randomly choose the value of the others.

Specified Variables Randomly Chosen Variables
n Vibration quantum number R Distance between B-C molecule
J Rotation quantum number q Polar coordinate of C wrt B
VR Velocity f Polar coordinate of C wrt B
B Impact parameters h Angular momentum

Nonreactive Trajectory
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(3) We now count all the trials, N, that we carried out and all the trajectories that
resulted in reaction, Nr. The probability of reaction
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† 

Pr = Lim
N T 0T Æ •

Nr u, J,UR ,b( )
NT 0T u, J,UR ,b( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ =

number of reactive trajectories
total number trajectories calculated

(4) Vary impact parameter b to obtain bmax

Pr(U, J, u)

0.4

0 b bmax 1.85 a.u.
This curve can be approximated by

† 

Pr = a cos pb
2bmax

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

(5) Calculate reaction cross section as a function of kinetic energy, velocity.

† 

Sr u, J,UR( ) =
0
•

Ú Pr u, J,UR( )pbdb = pbmax
2 Lim

N Æ •
Nr U,u, J( )
N U,u, J( )

=1.45abmax
2 a.u.( )2

(6) Find Sr as a function of UR for a given u and J
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UR (106 cm/sec) (ER)

Sr (U,J,v )

(a.u.)2

velocity/energy

ER
*= 5.69 kcal

v  = 0, J = 0
ER =       mU21

2

(7) Calculate reaction rate and k in vibration state u and rotation state J

  

† 

-rA u, J( ) = CACBCFBC u, J( ) ¥
0
•

Ú 0
•

Ú URSr u, J,UR( )fA VA( )dVAfBCdVBC

ku,J

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 

† 

-rA u, J[ ] = k u,JFBC u, J( )CACBC
In order to obtain the overall reaction, we sum over all vibrational and rotational
states.

† 

k =
all  J&u

Â k u,JFBC u, J( )

and obtain the overall rate of reaction

† 

-rA = kCACBC = Ae-E A RT CACBC
The frequency factor, A, and the activation energy, EA, calculated from molecular
dynamics are in excellent agreement with the experimental values.



3
CD/MolecularDynamicPRS.doc

I. INTRODUCTION
The objective of this Reference Shelf is to use molecule dynamics to provide insight
into how reactions occur. Here, we will calculate reaction probabilities, reaction
cross sections, and reaction rates. We will observe the effects of vibration, rotation,
and kinetic energies (velocity) on the colliding molecules. We will find that there is
a minimum kinetic energy necessary to react, that the reaction cross section
increases with increasing kinetic energy, and that there is a maximum value of the
impact parameter related to the offset of the molecular trajectories, above which
no reaction will occur.

We are going to study the molecular dynamics of the reaction of the
hydrogen exchange reaction

† 

H + H2 Æ H2 + H
written symbolically

A + BC Æ AB + C

where molecule i has a velocity Vi and is in rotational state J and vibrational state
u. [e.g., BC (VBC, J, u)].

A (VA) + BC (VBC, J, u) Æ AB (VAB, J, u) + C (VC)
We are going to consider the hydrogen exchange reaction discussed in an article
by Karplus, Porter, and Sharma.1

  

H + H2 æ Æ æ H2 + H

A + BC æ Æ æ AB + C
We begin with the A and BC molecules far apart and then calculate the trajectory
of the A molecule as it approaches the BC molecule. The A molecule will either
replace the C molecule to form AB or it will be deflected and not react.
A. No Reaction

A approaches the molecule BC and is deflected and does not react.

C

A

B RBC
B

C

A

RAB

b

Let R be the distances of separation for the appropriate species. The distances
of separation are shown as a function of time in Figure R3.C-1.

                                                
1 M. Karplus, R. N. Porter, and R. D. Sharma, J. of Chem. Phys., 43, 9 (1965) p. 3259.
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Figure R3.C-1 Trajectories when no reaction has taken place. Courtesy of M. Karplus
et al., J. of Chem. Phys., 43, 1965, p. 3259.

B. Reaction:
The A molecule approaches the BC molecule and reacts to form AB and C.

b

A

B

C

A

B

C

In Figure R3.C-2 one observes that at t1 the A molecule replaces the C
molecule, the RBC distance begins to increase, the RAB distance undergoes
oscillation, and we see that a reaction has taken place. The time it takes the
reaction to occur at t1 is about 10–14s.

Figure R3.C-2  Trajectories when a reaction occurs. Courtesy of M. Karplus et al., J. of
Chem. Phys., 43, 1965, p. 3259.
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II. HOW THE TRAJECTORIES ARE CALCULATED
A. Equations of Motion

We calculate the momentum P of the molecule at a given time and position and
then calculate a new position of the molecule using only the definition of force,
F, and the potential energy surface, 

† 

˜ V (x).

† 

F = ma = m dv
dt

=
d mv( )

dt
=

dP
dt

(R3.C-1)

  

† 

F = -
d ˜ V x( )

dx
(R3.C-2)

† 

P = mv = m dx
dt

(R3.C-3)

  

† 

dP
dt

= -
d ˜ V x( )

dx
(R3.C-4)

and

† 

dx
dt

=
P
m

(R3.C-5)

Equations (R3.C-4) and (R3.C-5) can be solved simultaneously to obtain x a
function of time. Also recall that the translational kinetic energy is

† 

E T =
1
2

 mv2 =
P2

2m
(R3.C-6)

To solve this set of equations [i.e., (R3.C-4) and (R3.C-5)], we need the potential
energy as a function of distance,     ̃  V x( ) . Similarly, for the reaction
(A!+!BC! æ Æ æ !AB!+!C), we need the potential energy surface,   

† 

˜ V  (RAB, RBC,
RAC).

B. Estimates of the Potential Energy Surface,  

† 

˜ V (R)
Three methods are commonly used to estimate the potential energy surface.
1) Lennard-Jones 6-12 potential

    

† 

˜ V r( ) = 4eLJ
ro
r

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

12

-
ro
r

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

6È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(R3.C-7)

2) Morse potential

    
˜ V r( ) = D 1 - e-b r- ro( )[ ]

2

where eLJ is the Lennard-Jones parameter, D is the dissociation energy, ro
the equilibrium internuclear distance, and b is the Morse potential constant.

For a 3-body system ABC2

                                                
2 J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics (Englewood Cliffs, NJ:

Prentice Hall, 1989).
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† 

˜ V rAB ,  rBC( ) = DAB 1- e-bAB rAB-ro( )[ ]
2

+ DBC 1- e-bBC rBC-ro( )[ ]
2

                       + DBC 1- tanh arAB + c( )[ ] exp -bBC rBC - rBC
0( )[ ]

                       + DAC exp -bAC rAC - rAC
0( )[ ]

†
(R3.C-8)

where Dij is the dissociation energy for molecules i and j.
3) The Potential Energy Surface can also be calculated by

a) Ab Initio [Cerius2] methods
b) Semiempirical methods, such as the London-Eyring-Polanyi-Sato Surface

(LEPS surface)

A schematic of the potential energy surface is shown in Figure R3.C-3.

Figure R3.C-3  Potential energy surface.

C. Method of Solution to Map Out Trajectories
C.1!Momentum as a function of time and position.

Consider the motion of molecule A. The x component of momentum for
species A is related to the potential energy by

    

† 

dPx
dt

= -
∂ ˜ V x, y, z( )

∂x
(R3.C-9)

Integrating we can find the x component of momentum as a function of time
and position

    
Px = Pxo + -

∂ ˜ V x,y,z( )
∂x

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ dt

0

t

Ú (R3.C-10)
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Similar expressions exist for y and z, e.g.,

    

† 

Py = Pyo +  -
∂ ˜ V x, y, z( )

∂y

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ dt

0
t

Ú (R3.C-11)

To illustrate the concept, we use the Euler method of integration

    

† 

Py = Pyo + -
∂ ˜ V x, y, z( )

∂y

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ Dt

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (R3.C-12)

C.2!Location of molecules (e.g. A) as a function of time.
The position of A, x, is related to the momentum, Px, by the equation

  
m Av = Px = mA

dx
dt

(R3.C-13)

Integrating, we find the location of A as a function of time

† 

x = xo +
1

m A
 Pxdt

0
t

Ú @ xo +
Px
m A

Dt (R3.C-14)

Because V(x) depends upon x, in practice we need to use a more sophisticated
method than the Euler method (R3.C-14) to solve these equations for Px and x
and, simultaneously, to obtain the trajectory of molecule A as a function of
time as shown in Table PRS.C-1.

Table R3.C-1  3-D Solution Technique to Calculate Trajectory of A

† 

Px = Pxo +  
0

t
Ú -

dV x,y,z( )
dx

Ê 

Ë 
Á 

ˆ 

¯ 
˜ dt

Py = Pyo +  
0

t
Ú -

dV x,y,z( )
dy

Ê 

Ë 
Á 

ˆ 

¯ 
˜ dt

Pz = Pzo +  
0

t
Ú -

dV x,y,z( )
dz

Ê 

Ë 
Á 

ˆ 

¯ 
˜ dt

† 

x = xo +
1

mA

 Px0

t
Ú dt Px = mAvx

y = yo +
1

mA

 Py0

t
Ú dt Py = mAvy

z = zo +
1

mA

 Pz0

t
Ú dt Pz = mAvz

z

y

x

A

Trajectory of A

Of course, the time interval for each interaction must be small as we carry out
each integration.

C.3!Calculating the trajectories of all the molecules using the Hamiltonian.
Because the Hamiltonian is used in classical mechanics to describe the

motion of particles, let’s see how it gives the same equation as those given in
Table R3.C-1. The Hamiltonian is the sum of the kinetic and potential energies

  

† 

HA =
1

2m A
Px

2 + Py
2 + Pz

2[ ] + ˜ V x,y,z( ) (R3.C-15)

Differentiating the Hamiltonian wrt momentum, Px, we find



8
CD/MolecularDynamicPRS.doc

† 

∂HA
∂Px

=
2Px
2m A

=
m Avx
m A

= vx =
dx
dt

(R3.C-16)

† 

∂HA
∂Px

=
2Px
2m A

=
dx
dt

Similarly,

† 

∂HA
∂x

= -
∂ ˜ V 
∂x

= Px

We see that by using the Hamiltonian and coupling these same six equations
we can trace out a trajectory for molecule A as shown in Table R3.C-1.
Change in Coordinate System

Now let’s return to the hydrogen exchange reactor
A!+!BC!Æ!AB!+!C

We are going to redesign our coordinate system because we are only
interested in the relative positions of the molecules to one another, not where
they are in a 3-D space. This redesign is called mass weighted coordinate system or
affine transformation.

Let
Q1, Q2, Q3 = Location of C with B as the origin
Q4, Q5, Q6 = Location of A wrt center of mass of BC
Q7, Q8, Q9 = Location of center of mass of the 3-particle system

C

A

b
  Q1,  Q2,  Q3

  Q4 ,  Q5 , Q6

B
RBC

RAC

Figure R3.C-4  New coordinate system.

For example, Q1, Q2, and Q3 could represent x1, y1, and z1 components of C,
with either B as the origin or the radial components r, f, and q with r!=!0 as the
origin. Similarly Q4, Q5, and Q6 could represent the x, y, z coordinates of A with
the center mass of BC as the origin or the radial coordinates r, f , and q.
Knowing the location of C and A with regard to their respective origins, the
distances between

A and B is RAB
B and C is RBC
A and C is RAC

can easily be found. See Figure R3.C-6).
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III. THE MONTE CARLO SIMULATION
In classical and statistical mechanics, the Hamiltonian (H) is used to express the
total energy. The Hamiltonian is the sum of the kinetic energy (KE)- 

† 

1
2 mv2- and

the potential energy (PE),     
˜ V RAB ,RAC ,RBC( ) .

H = KE + PE = KE +   

† 

˜ V RAB,RAC,RBC( )

† 

KE  of  A( ) =
1
2

m Avx
2 +

1
2

m Avy
2 +

1
2

m Avz
2 =

1
2

m A Px
2 + Py

2 + Pz
2( )

In our new coordinate systems, the KE of A is written as

† 

KE  of  A( ) =
1

2  m A
Px

2 +
1

2  m A
Py

2 +
1

2  m A
Pz

2 (R3.C-17)

with

† 

dP
dt

= -
∂ ˜ V RAB,  RBC ,  RAC( )

∂Q j
and

† 

dQ j

dt
=

1
m BC

Pj for i =1,  2,  or  3

For our two-body 3-molecule system, A + BC, we must use the reduced masses

    
H =

1
2mBC

Pj
2

1

3
Â +

1
2mA,BC

Pj
2

4

6
Â + ˜ V RAB ,RAC ,RBC( ) (R3.C-18)

    
˜ V RAB ,RAC ,RBC( )  is the potential energy surface. We only need to specify two

distances (RAB and RBC) because the other is then a fixed quantity.
The distances RAB and RBC are shown in the potential energy surface   

† 

˜ V 
(RAB, RBC), along with the trajectory of the reaction (Figure R3.C-5).

A + BC

RAB

RBC

AB + C

    ̃  V (RAB, RBC) Side!view
along the
trajectory

A, BC AB, C

Reaction Coordinate

V~
EBH=9.13 kcal

Figure R3.C-5  Reactant coordinates and the potential energy surface.

A summary of the equations above used to solve for the molecular trajectories is
shown in Table R3.C-3.
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Table R3.C-2!!Equations to Be Solved to Predict the Trajectories

  

dQj
dt

=
∂H
∂Pj

For j = 1, 2, 3

(A)
  

dQ j
dt

=
1

mBC
Pj

For j = 4, 5, 6

(B)

† 

dQ j

dt
=

1
m A,BC

Pj  ,

† 

Q j t( ) = Q jo +
1

m A,BC
 Pj0

t
Ú dt

(C)
    

† 

dPj

dt
= -

∂ ˜ V RAB ,RBC( )
∂Q j

 ,
  

† 

Pj t( ) = Pjo + -
∂ ˜ V 
∂Q j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ o

t
Ú  dt

(D)
    

† 

˜ V RAB ,RBC ,RAC( ) = DAB 1- e-bAB rAB-ro( )[ ]
2

+ DBC 1- e-bBC rBC-ro( )[ ]
2

† 

                       + DBC 1- tanh arAB + c( )[ ] exp -bBC RBC - RBC
0( )[ ]

† 

+DAC exp -bAC RAC - RAC
0( )[ ]

3

These equations are analogous to the Px and x,y,z equations shown on
pages 3 and 4.
The equations in Table R3.C-2 can be solved simultaneously (using a software
package) to predict the location Qi, from which one can determine the molecular
distances, RBC, RAB. However, before we begin to do this we need to specify the
parameter values and the initial conditions.

To map out the molecular trajectories to determine if a reaction has
occurred, we needs

1. The governing equations: These equations are given in Table R3.C-2.
2. The specified values of the variables: These values fall in two categories

and are shown in Table R3.C-3.
(a) Those variables to be studied to learn their effect on the reaction rate.

These are the specified variables.
(b) Those variables whose numerical values are specified by the Monte

Carlo Simulation.
3 .  The initial values to calculate the molecular trajectories. The initial

parameter values are given in Table R3.C-4 and corresponds to the
orientation of the A and BC molecules shown in Figure R3.C-6.

                                                
3 Steinfeld, loc. cit. for   

† 

˜ V  see p. 264.

[To get an idea where this
equation comes from, recall for
the A molecule 

  
dH
dP

=
P
m

=
dx
dt

]
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Table R3.C-3  Categories of Variable Parameter Values
(1)  Specified and Given a Numerical Value

(a) Initial Relative Velocity, UR
(b) Impact Parameter, b
(c) Vibrational Quantum Number, u
(d) Rotational Quantum Number, J

(2)  Chosen by the Monte Carlo Simulation
(a) Distance between the B and the C molecule, RBC (R–<RBC<R+)
(b) Orientation of BC relative to A specified by angles q (0<q<p) and f (0<f<2p) See

Figure R3.C-6.
(c) Internal angular momentum of H2 molecule specified by an angle h  (i.e., which

direction it is rotating).

We are going to choose our coordinate system such that molecule A and the
center of mass of B–C lie on the y-z plane and that A approaches B–C along the z
axis.

Table R3.C-4 Initial Conditions to Start the Trajectory
Initial Conditions
Specified Initial Conditions, ro, b, u, J
The following variables are chosen randomly: RBC, f, q, and h

Location of C wrt B Angular momentum of B–C

  

† 

Q1
o = RBC sinqcosf

Q2
o = RBC sinqsinf

Q3
o = RBC cosq

† 

P1 = P sinfcosh + cosfcosqsinh( )
P2 = -P cosfcosh - sinfcosqsinh( )
P3 = Psinfsinh

where4 

† 

P = J J +1( ) h 
R+

The center of mass lies in x–y plane. Location of A wrt center of mass of B–C

  

† 

Q4
o = 0

Q5
o = b

Q6
o = - ro

2 - b2( )1 2

† 

P4 = 0
P5 = 0
P6 = mA,BCUR

with ro the initial distance between A and the center of mass of BC

Here, 

† 

h  is Plank’s constant divided by 2p, and R+ is the turning point radius shown
in Figure R3.C-7. We choose the value of ro as small as possible to save computing
time but not so small as to experience any potential interactions between the A
and BC molecules. A schematic of the initial conditions and the orientation is
shown in Figure R3.C-6.

                                                
4 Steinfeld, Loc cit., p. 265.
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h

Figure R3.C-6 Reactive trajectory. Courtesy of Steinfeld et al., (Upper
Saddle River, NJ: Prentice Hall, 1989) p. 264, with v0 = U =
UR in our notation.

Comments on the Initial Conditions
A few comments about the Monte Carlo choice of the distance, RBC,

between the B and the C molecule.

B

B

C

C

C

B   Re

  R -

  R +

  R- < R < R+

Figure R3.C-7  Turning points of H–H vibration.
The distance R can only take on value between the maximum and minimum
points of the vibration, R±. That is

R– < R < R+

We calculate the values R– and R+ by knowing at the turning points where the
oscillation changes direction and R+ and R–, where all the vibration energy is
potential vibrational energy. That is, the molecules are in their most compressed
state, R–, or their most extended state, R+. The potential energy is given by a
Morse function DBC [1 – exp [–!bBC(R–Re)]

2 where bBC, DBC, and Re are the
appropriate values for H2. The quantum mechanical energy for the BC molecule in
the u and J quantum state is Equation 15 of article by Karplus et al.†

                                                
† Karplus, et al., loc. cit.
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† 

E u,J =
i=1

•

Â Gi u +
1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

i
+

i=1

•

Â Fij u +
1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

j-1
J J +1( )[ ] iÈ 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(R3.C-19)

The constants in this equation (e.g., G1, I11) are given for H2 in Table I in Karplus.
By equating equations (R3.C-19) and (R3.C-20) we can find the roots of the
equation for R to determine the turning points, R+ and R–. There is no angular
momentum along the bond direction.

† 

J J +1( )h 2

2m BCR2 + DBC 1- exp -bBC R - Re( )[ ][ ]
2

= E n,J (R3.C-20)

This calculation is tedious and difficult so we just need to accept that we can find
the roots and “move on.” Figures R3.C-8, and R3.C-9 show the results of the
calculations we just outlined.

RBC

RAB

RAC

RBC

RAC

RBC

RAB

RBC

RAB
RAC

RBC

RAC

RBC

RAB

RAC

RAB

Figure R3.C-8 Nonreactive
Trajectories

Figure R3.C-9 Reactive
trajectories

Figures R3.C-8 and R3.C-9, Courtesy of American Chemical Society, Karplus et al.,
loc. cit., p. 3259.
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Figure 8 Figure 9
(a) (b) (c) (a) (b) (c)

† 

U ¥10-6 cm s 1.32 1.96 1.18 1.32 1.96 1.18
J 0 2 5 0 2 5
u 0 0 0 0 0 0

One notes from Figures R3.C-8 (b) and (c) that the B-C molecule is rotating as
evidenced by the fact that the RAB and RAC trajectories cross. On the other hand,
for the case of no rotation, J!=!0 in Figure (a), they do not cross. By the two
crossings of RAB and RAC in Figure 8 (c) , one observes a faster rotation speed than
Figure 8(a) where J!=!2. In Figure R3.C-9 (a), we see that while B-C is not rotating
before reaction, the AC molecule is rotating after reaction, as evidenced by the
crossing of the RAC and RBC trajectories. The time of the trajectory calculation is
4–8!x!10–14s, the u!=!0 vibration period is 0.5!x!10–14s, the rotational period for J!=!1
is 20!x!10–14s and for any quantum number J is [27!x!10–14/J[(J+1)]1/2]s.

IV. CALCULATING THE REACTION CROSS SECTION
For a specified set of conditions, we now simply run a simulation and see whether
or not a reaction occurs. Then we repeat for the same specified conditions but
different Monte Carlo chosen values. A number of trajectories were calculated for
the specified parameters [VR, J, u, b] using Monte Carlo techniques to calculate
many trajectories similar to those shown in Figures R3.C-8 and R3.C-9. We keep
track of the number of trajectories (simulations) that react, NR, and those that
don’t react. We then take the ratio of those trajectories that resulted in reaction to
all the trajectories carried out, N, to calculate the reaction probability

† 

Pr U,u, J,b[ ] = Lim
N Æ •

Nr U,u, J,b( )
N U,u, J,b( )  

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (R3.C-21)

We sum the AB reactions and AC reaction to get Nr.
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No        reaction

C

B
B

C

A

A
R

t

RAB

RAC

RBC

!!!!
Reaction

A

B

C

B

CA

RAB
R RBC

RAB

time

Figure R3.C-10  Molecular Trajectories.
Now vary one of the specified parameters by running a number of Monte Carlo
simulations for each value of that parameter. First, b was varied while holding U,
u, and J constant. A number of simulations (trajectories) are carried out for each
value of b in order to calculate Pr at that value of b. Then b is increased and the
simulations repeated to again calculate Pr at another value of b. The results of the
calculation are shown in Figure R3.C-11. For two different velocities. One notes
that even for a head-on collision (b!=!0), the probability is not 1.0. Taking into
account orientation effects, and that the offset impact parameter, b, of A, relative
to the center of mass of BC is greater than 1.85 au, then no reaction will occur.

Pr(U, J, u)

0.4

0 b bmax 1.85 a.u.
Figure R3.C-11 Probability of reaction as a function of the impact parameter. [Note 1 a.u.

= 59.9 pm and 1 hartree (htr) = 627 kcal]. Courtesy of American
Chemical Society, Karplus et al., loc. cit., p. 3259.

The dashed lines represent the actual calculated values of Pr while the curve
represents the smoothed values. We note there is a maximum value of the impact
parameter, bmax, above which no reaction will take place.
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The Reaction Cross Section, Sr
The reaction cross section, Sr, is the probability of reaction, Pr and the cross

section pb2. In differential form Sr is a function of the relative velocity and the
rotational and vibrational quantum numbers u and J.

b

db

Area

† 

= pbmax
2

† 

dSr = Pr 2pbdb

where b goes between zero and bmax

† 

Sr U,J,u( ) = Pr U,J,u,b( )2pbdb
o
bmaxÚ (R3.C-22)

We are going to make an approximation to simplify the calculations. The
approximation is that the curve in Figure R3.C-11 can be approximated by a cosine
function, namely

† 

Pr = a cos pb
2bmax

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (R3.C-23)

Both a and bmax increase in velocity as shown in Table R3.C-5.

Table R3.C-5!!Effect of Approach Velocity on Probability Parameters
U

(cm/s¥106) a bmax (a.u.)
0.78 0 0
0.93 0.26 0.95
1.17 0.39 1.85
1.32 0.42 2.00
1.95 0.61 2.50

For the curve shown for UR!=!1.17!x!106 cm/s in Figure PRS.3-11

† 

Pr = 0.39sin pb
2( ) 1.85( )

È 

Î 
Í 

˘ 

˚ 
˙ 

Translational Energy
We now will vary the relative velocity U and again calculate a reaction

probability Pr as a function of b for each U. Using the cosine approximation,
Equation (R3.C-23) we can determine a and bmax for the chosen value of U. The
reaction smoothed probability is shown as a function b for two different relative
velocities in Figure R3.C-12
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Pr(U, J, u)

0.4

0 b

1.85 a.u. 2.5 a.u.

bmax

0.61 U=1.95x106 cm/s

U=1.17x106 cm/s
u=0, J=0

bmax

Figure R3.C-12 Reaction probability as a function of impact parameter for two different
relative velocities.

We need to specify the vibration and rotation energies, i.e., quantum number, u
and J, when carrying out these calculations.
From Figure R3.C-12, we see that as the velocity increases to 1.95 cm/s, both a and
bmax increase. Substituting for Pr using Equation (R3.C-23) into Equation (R3.C-22)
we

† 

Sr = 2p a cos
0
bmaxÚ pb

2bmax
bdb

Let 

† 

q =
pb

2bmax
,  then b =

2bmaxq
p

,  and db =
2bmax

p
dq

Substituting for b and for db

† 

Sr =
8abmax

2

p
qcos

0
p 2

Ú  qdq

Integrating by parts

† 

Sr =
8abmax

2

p
p
2

-1
È 

Î Í 
˘ 

˚ ˙ =1.45abmax
2 a.u.( )2 (R3.C-24)

Now the reaction cross section, Sr(U,J,u), can be found as a function of the relative
velocity for which one can determine the corresponding relative transition energy,
ER

† 

E R =
1

2m
U2

Equation (R3.C-24) can be used to calculate the reaction cross section at any
relative velocity. For example, when UR!=!1.17!x!106 cm/s, a!=!0.39, and b!=!1.85
a.u., then

† 

Sr = 1.45( ) 0.39( ) 1.85( )2
=1.94 a.u.( )2

when 

† 

U =1.91¥106 cm s, 

† 

a = 0.61 and 

† 

bmax = 2.5  a.u., then

† 

Sr = 5.45 a.u.( )2
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We continue in this manner to choose U, vary b, and find Pr as a function of b to
obtain a and bmax and arrive at Figure R3.C-12. One notes from this figure that
while the cross section at UR!=!1.17!x!106 cm/s for which Sr!=!1.94 (a.u.)2 agrees
with the simulation. The value at U!=!1.95!x!106 cm/s of Sr!=!4.4 (a.u.)2 is different
from the value of 5.45 (a.u.)2 just calculated. The reason for this discrepancy is that
we used the cosine function to approximate the Pr very b curve rather than, say,
fitting (Pr vs. b) with a polynomial or plotting the “data” as bPr as a function b and
multiplying the area under the curve by 2p to get Sr. This technique, while more
tedious and labor intensive, would give a more accurate value than the cosine
approximation.

† 

Sr = 2p Pr b( )0
bmaxÚ db

bPr

b bmax

Sr = Area x 2p

Figure R3.C-13  Determining the reaction cross section.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

UR (106 cm/sec) (ER)

Sr (U,J,v )

(a.u.)2

velocity/energy

ER
*= 5.69 kcal

v  = 0, J = 0
ER =       mU21

2

Figure R3.C-14 Reaction cross section as a function of relative velocity. Here 1 atomic
unit ≡  1 a.u. = 0.59 Å = 59 pm

† 

a0
2 = (1 a.u)2. Courtesy of American

Chemical Society, Karplus et al., loc. cit., p. 3259.
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We note Sr!≡!0 until we reach 

† 

E R
* = 5.69  kcal.5 This energy is threshold kinetic

energy necessary for the molecules A and BC to react. If the relative velocity U is
such that the threshold energy is not exceeded, no reaction will occur. Now let’s
look at the effect of some of the parameters, namely u and J, on the reaction cross
section.

Rotational Energy
A approaches the BC molecule and reacts to form A–B and C. The rotational

energy of the BC molecule is

  
Erot =

J J +1( ) h
2p

Ê 
Ë 

ˆ 
¯ 

2

2I
 ,  J = Rotational quantum number (R3.C-25)

We now carry out a number of realizations and mark down those runs that result
in reaction (e.g., Figure R3.C-9) and those that do not result in reaction (e.g.,
Figure R3.C-8) to arrive at Figure R3.C-11. Figure R3.C-14 shows the results of the
calculations that give the reaction cross section as a function of relative velocity
(kinetic energy 

† 

1
2m

U2( )) for the case J!=!0 and u!=!0.
Now let’s change J and vary U (i.e., ER) to calculate the reaction cross

section.

Sr

J=2
J=0

U(E)

ET (J=2) > ET (J=0)

Figure R3.C-15 Effect of rotation quantum number on reaction cross section.

We see that both the threshold kinetic energy, ET, and the limiting cross section at
high kinetic energies increase with increasing rotation quantum number
(frequency) For J!=!2, the rotation period is 11.1!x!10–14s compared with the
interaction time of 10–14s. At low kinetic energies the increased rotational energy
makes it more difficult to react (steric effects). Also at higher kinetic energies the
increased rotational energy increases the reaction cross section. However, the
rotational energy is not available for crossing the potential energy barrier, V(RAB,
RBC, RAC).

Vibrational Energy
The vibrational energy is†

                                                
5 Karplus, et al, loc. cit.
† See most any Physical Chemistry textbook, e.g., Atkins, P.A. Physical Chemistry 6th Ed. W. H.

Freemand & Co. NY (1997).

moment of inertia
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† 

E vib =
1
2

+ u
Ê 

Ë 
Á 

ˆ 

¯ 
˜ hvo

(R3.C-26)
u = vibrational quantum number, v0 is the frequency of vibration, and h is

Plank’s constant.
Zero point energy u!=!0

† 

E o =
1
2

hv0 = 6.2  kcal

The vibrational energy contributes to the kinetic to supply the energy to
pass over the barrier. However, not all the vibrational energy is available for
reaction. Now lets change u and vary U (ER) and calculate the reaction cross
section as shown in Figure R3.C-16

Sr

u=1
u=0

ER(U)U

Figure R3.C-16  Effect of vibrational quantum number on reaction cross section.

At higher vibrational states the threshold energy decreases while the limiting
value of Sr increases. However, Karplus notes that too few vibrational states were
simulated to reach a definitive conclusion.

Figure R3.C-17 shows the reaction cross as a function of kinetic energy for
the hard sphere and line of center models along with the results of molecular
dynamics calculations.

Sr

EEA

Rigid sphere SR = 
M. D. Trajector calculations E > ET

Line of centers E > EA

† 

pbmax
2 ,  E > E A

Figure R3.C-17 Comparison of models.
A discussion of the reaction cross section for the rigid sphere model and for line of
centers model is given in Professional Reference Shelf 3A. We see the molecular
dynamics (M.D.) trajectory for u!=!0 and J!=!0 gives a reaction cross section that
falls between these two models.
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V. RATE OF REACTION
Knowing the reaction cross section we can now proceed to calculate the overall
rate of reaction, –rA. The differential rate of reaction d[–rA(J,u)] of species A, which
has a velocity VA and a concentration d

† 

ˆ C A, with species BC, which has a
concentration of d

† 

ˆ C BC that has velocity VB and is the u vibrational state and the J
rotational state, is

  

† 

d -rA J,u( )[ ] = dSr

Pr 2pbdb}
NAvoU  d ˆ C A VA( )[ ]  d ˆ C BC J,u,VBC( )[ ] (R3.C-27)
(mole A/s/dm3)

where
–rA(J, u) = Rate of reaction of A with BC molecules in the J rotational state and u

vibrational state (mol A/dm3/s)
U = Relative velocity   VA - VBC( )  (dm/s)

d

† 

ˆ C A = Concentration of A molecules with velocities between VA and
  VA + dVA( )

=

† 

CAf VA( )dVA  (mol/dm3)
CA = The total concentration of A molecules  (mol A/dm3)

f(VA) = Distribution of molecular velocities of molecule A, similar for BC
molecules BC (c.f. Equation (R3.C-27)).

d

† 

ˆ C BC = Concentration of BC molecules with rotational state J, vibrational state
u, and velocities between VBC and   VBC + dVBC( )  (mol/dm3)

d

† 

ˆ C BC =

† 

CBC J,u( )fBC VBC( )dVBC   (mol/dm3)

† 

CBC J,u( ) =

† 

CBCFBC J,u( )  (mol/dm3) = concentration of BC molecules in J
rotational state and u vibrational state
(mol BC/dm3)

CBC = The total concentration of all B–C molecules (mol/dm3), and
FBC(J, u) = The fraction of B–C molecules in the J rotational state and the u

vibrational state

The distribution functions in the above equations are for velocity

† 

fidvi =
m i

2pk BT
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

3 2

exp 
-m ivi

2k BT
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

dvi (R3.C-28)

for rotation and vibration

† 

FBC = fJ
2J +1( )  e- E u,J kBT( )

QJ,u
(R3.C-29)

where 

† 

QJ,v  is the rotational-vibrational partition function, fJ is the statistical
weight, and

† 

E u,J = Gi u +
1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ + Fi

i=1

•

Â u +
1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

j-1 J
J +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

iÈ 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ i=1

•

Â (R3.C-30)
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and the values of Gi and Fi are given in the article by Karplus et al.6

Calculating the Total Rate
First we integrate Equation (R3.C-27) over all velocities so that velocity is

incorporated in the rate and it is now only a function u and J.

    

-rA u, J( ) = CACBCFBC u, J( )
0
•

Ú 0
•

Ú USr u, J ,VR( )fAdVAfBCdVBC

ku, J

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
(R3.C-31)

  -rA u, J( ) = k u ,JFBC u ,J( )CACB !!!!!!!!!!  U ≡ VR[ ] (R3.C-32)

The rate, 

† 

-rA u, J( )  in Equation (R3.C-32), is only for those reactions with
vibrational u and rotation states J. The total rate of reaction is found by summing
overall vibrational and rotational states

  
-rA = -rA u, J( )[ ]

u ,J
Â (R3.C-33)

† 

-rA = Â FBC u, J( )k u,JCACBC = k T( )CACBC (R3.C-34)

† 

k = Â FBC u, J( )k u,J (R3.C-35)

A comparison of the theoretical and calculated values of the specific reaction rate is
shown in Table R3.C-6.

† 

k T( ) =
J,u
Â k J,uFBC J,u( ) = QJ,u

-1

J,u
Â fJ 2J +1( )exp

E J,u

kT
Ê 

Ë 
Á 

ˆ 

¯ 
˜ ¥ NAvo

2
p

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1
2 m A,BC

kT
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1
2

È 

Î 

Í 
Í 
Í 

           ¥  Sr0
•

Ú UB,J,u( ) ¥ exp -
m A,BCUR

2

kT

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ UR

3dUR

˘ 

˚ 

˙ 
˙ 

   

(R3.C-36)

Equation (R3.C-36) is Equation 41 in the article by Karplus et al.7 NAvo is
Avogadro’s number.

After carrying out the Monte Carlo Simulations for all specified variables b,
U (i.e., EAC), J, and u at a given temperature we use Equation (R3.C-36) to calculate
the specific rate k(T) next. The temperature was changed (e.g., from 300 to 500K)
and the specific reaction rate recalculated. The results of some of these of the
calculations are shown in Table R3.C-6.

                                                
6Karplus, et al., loc. cit.; also see K. J. Laidler Chemical Kinetics, 3rd ed. (New York: Harper Collins,

1987) p. 449-558.
7 Karplus, et al., loc. cit.
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Table R3.C-6 k(T) Values from M.D. Calculations and Experiment.a,h

T(K)

k(T) ¥ 10–11

from least-squares fitb

† 

cc
mole • s

k(T) ¥ 10–11

from calculated pointsc

† 

cc
mole • s

k(T) ¥ 10–11

from experiment

† 

cc
mole • s

300 0.0018 0.002008 0.0014–0.0020 d

500 0.225 0.23 .!.!.
700 2.01 2.04 2.49–4.99 e,g

900 7.3 7.38 7.6–15.2 f,g

1000 11.69 11.78 11.0–22.0 f,g

a!All values of k(T) is units of cubic centimeters per mole•second.
b!Calculated by Eq. (41) with Sr given by Eq. (43) and Table II of Karplus’ paper
c!Calculated by Eq. (C-36) with computed values of Sr.
d!K. Geib and P. Harteck, Z. Physik Chem. Bodenstein Fastband 849 (1931).
e!M. van Meersche, Bull. Soc. Chim. Belges 60, 99 (1951).
f!A. Farkas and L. Farkas, Proc. Roy. Soc. (London) A152, 124 (1935).
g!G. Boato, G. Careri, A. Cimino, E. Molinari, and G. G. Volpi, J. Cl. Phys. 24, (1956), p.

783, have suggested that the values of van Meersche and Farkas and Farkas should
be multiplied by 0.5 to correct for the present oxygen in the reaction mixture. Since
this point has not been settled unequivocally, we list the range corresponding to 0.5
times the measured value to measured value.

h!Table R3.C-6 Courtesy of ACS, Karplus, et al., loc. cit.

Looking at the specific reaction rates k in Table R3.C-6 we see
Theory Experiment

T = 300 k = 0.00185 cm3/s•mol 0.0017–006 cm3/s•mol
T = 1000 k = 11.5 cm3/s•mol 11–22 cm3/s•mol

We can use the theoretical values of k(T) predicted in Table R3.C-2 to
determine the activation energy. A plot of ln k vs. 1/T is shown in Figure
R3.C-17.

Figure R3.C-18 Using molecular dynamics to predict activation energy. Courtesy of
Karplus et al., J. Chem. Phys. 43, 1965, p. 3259.
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From the slope, we find EA = 7.4 kcal/mole

† 

k = Ae-E A RT

with

† 

A = 4.3¥1013 cm3

mol•s
= 4.3¥1010 dm 3

mol•s
which is in excellent agreement with the experimental values.

A plot of the values in Table PRS.C3-5 in the form of ln k(T) versus 1/T will
yield an activation energy of 7.4 kcal/mol, which is very close to the experimental
value of 7.5 kcal/mol. We see there is excellent agreement of both the frequency
factor, A, and the activation energy, EA, between the theory and experiment. We
also note the differences in the values of the following energies.

A summary of all the energies obtained from the literature or by calculation
is given in Figure R3.C-19.

Classical Ground State H + H2!Æ!H2 + H 

ET = 5.69 kcal Threshold Kinetic Energy
Ev = 6.2 kcal Vibrational Zero Point Energy

EBH = 9.13 kcal Barrier Height (BH)

(Ev + ET) = 6.2 + 5.69 = 11.89 kcal

E0 

Energy, E
EA = 7.435 kcal = Activation Energy

ER (J=5) = 5.24 kcal, Rotational Energy J=5

† 

kcal
mol

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

ER (J=1) = 0.35 kcal, Rotational Energy

Figure R3.C-19! Comparison of energies.

The barrier height = 9.2 kcal
The minimum kinetic energy (MKE) = 5.7 kcal
The ground state vibrational energy (GSV) = 6.2 kcal
The ground state vibration energy + MKE = 6.2 + 5.89 = 11.89 kcal
The activation energy = 7.5 kcal

One notes that the activation energy is less than the barrier height, which is a
result of quantum mechanical tunneling. One also notes that not all the ground
state vibrational energy is available to be added to the translational energy to
cross the energy barrier.
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CLOSURE
The equation of motion for molecules A and BC were coupled with potential

energy surface to calculate trajectories of the A and BC molecules. The reaction
probability was calculated by counting up the number of trajectories that resulted in
reaction and dividing by all the trajectory trials. Below a threshold value of the
translational kinetic energy no reaction occurs. There is also a maximum value of the
impact parameter above which no reaction will occur, owing to steric effects. The
reaction probability only reaches a value of 0.6, even for head-on collisions (b-0) and
very large translational kinetic energies. The reaction cross can be calculated from the
impact parameter and relative velocity for given values of the vibrational and rotational
quantum numbers. It was found to have a sigmodal shape, increasing as the kinetic
energy (velocity) increased. The threshold kinetic energy decreased with increasing
vibration quantum numbers and increased with increasing rotational quantum
numbers.

The characteristic times are the rotational vibrational period for J!=!1 (19!x!10–4s)
and for J!=!5 (4.9!x!10–14s) the vibration period (0.5!x!10–14s) the time of interaction is
(10–14s) and the time of the trajectory calculation (between 4 and 8!x!10–14s). We note
that the rotational period is an order of magnitude greater than the interaction time,
while the vibrational period is the same order as the interaction time.

The minimum kinetic energy 5.69 kcal is not sufficient to cross the potential
energy barrier of 9.13 kcal and requires some of the vibrational energy from the BC
molecules. The sum of the threshold (i.e., minimum energy necessary for reaction) of
5.69 kcal and the u!=!0 vibrational state energy of 6.2 kcal gives a total energy of 11.89
kcal, which is greater than barrier height of 9.13 kcal. The difference between 11.89 and
9.13 indicates that not all the vibational energy is available for reaction. None of the
rotational energy is available for reaction.

The rate constants k(T) were calculated as a function of temperature from first
principles with no adjustable parameters. When the ln k was plotted as a function of
1/T, the activation energy was found to be 7.4 kcal/mol, which is in excellent
agreement with the experimental value of 7.5 kcal/mol. The fact that the activation
energy is smaller than barrier is a consequence of quantum mechanical tunneling.
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