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B. Transition State Theory

Overview

Transition state theory provides an approach to explain the temperature and
concentration dependence of the rate law. For example, for the elementary reaction

A+BC — AB+C
The rate law is
—I‘A = kCACBC = Ae_EA/RTCACBC

For simple reactions, transition state theory can predict E and A in concert with
computational chemistry. In transition state theory (TST), an activated molecule is
formed during the reaction at the transition state between products from reactants.

A+BC _ A-B-C" - AB+C

The rate of reaction is equal to the product of the frequency, v, of the activated
complex crossing the barrier and the concentration of the transition state complex

The transition state molecule (A—-B—-C”)and the reactants are in pseudo equilibrium at
the top of the energy barrier.

_ CABC#

K¢ =
CaCre
Combining gives

#
—1p = ViKcCACpe

We will now use statistical and quantum mechanics to evaluate Ké to arrive at the
equation

AEO !
kgT) 7 9apc?
—Ta =( > )e kT ,AB? CaCpre
dadBc
where q' is overall the partition function per unit volume and is the product of
translational, vibration, rotational, and electric partition functions, that is,
q4'=919vdRJE

The individual partition functions to be evaluated are
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Translation

(2umk 5 T) V2 (9.84x1029)( M g )3/2( T )3/2

TS m® 1 amu) |300 K
Vibration
1
qv =
1- exp(—)
BT
hv  hev 3 v 300 K
——=—=48x10 -
Rotation
2
qR=8n IkBT=12.4( T ) g 1
Syh2 300K \1eamu*A? Sy
Ip=2 miriz
I,z =1 ABd2 for diatomic molecules
The Eyring Equation
AS*/R _-AH*/RT
Liquids k=(kBT)e ©
h K.,Cro
AS’ /R _-AH? /RT
Gases k= M (g) © ©
h P K,
2
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I. INTRODUCTION

While the idea of an activated complex has been postulated for years, the first real
definitive observation was made by Nobel Prize Laureate, Ahmed Zewail. He
used femtosecond spectroscopy to study the formation of ethylene from
cyclobutane.' The reaction is shown schematically in Figure R3.B-1.

H,C CH,
| |
H,C= CH,
Energy Hzci CH,
H,C= CH, H,Ci=CH,
I |
H,C= CH,

Reaction Coordinate

Figure R3.B-1 Evidence of active intermediate.

The active intermediate is shown in transition state at the top of the energy
barrier. A class of reactions that also goes through a transition state is the Sy,
reaction.

A. The Transition State
We shall first consider Sy2 reactions [Substitution, Nucleophilic, 2nd order]
because many of these reactions can be described by transition state theory. A
Nucleophileis a substance (species) with an unshared electron. It is a species
that seeks a positive center.

An example is the exchange of Cl for OH, that is,
OH™ + CH;Cl——HOCH; + ClI”

3 -

"’fd

The nucleophile seeks the carbon atom that contains the halogen. The
nucleophile always approaches from the backside, directly opposite the leaving
group. As the nucleophile approaches the orbital that contains the nucleophile
electron pairs, it begins to overlazp the empty antibonding orbital of the carbon
atom bearing the leaving group.

! Science News, Vol. 156, p. 247.

2T. W. G. Solomon, Organic Chemistry, 6" ed. (New York: Wiley, 1996) p.233.
4
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OHED]&LD?GZHCI—> HO——l --Cl|—HO-C+Cl'

. —
Transition state CH3 inverted

from CH;Cl
rate =k [CH3CIIOH_]

Figure R3.B-1 shows the energy of the molecules along the reaction coordinate
which measures the progress of the reaction. One measure of this progress

might be the distance between the CH; group and the Cl atom.

o 9
HO--C--Cl A-B-C*
' T
E e
Energy nergy
OH"
CH,Cl A +BC
CH,;OH, CI"

Reaction Coordinate Reaction Coordinate

Figure R3.B-2[Reaction coordinate for (a) Sy, reaction, and (b) generalized reaction.

We now generalize
A+BC— ABC" = AB+C

with the reaction coordinate given in terms of the distance between the B and
C molecules. The reaction coordinate for this reaction was discussed in R.3-A
Collision Theory-D Polyani Equations when discussing the Polanyi equation.

The energy barrier shown in Figure R3.B-2 is the shallowest barrier
along the reaction coordinate. The entire energy diagram for the A-B-C
system is shown in three dimensions in Figure R3.B-3. To obtain Figure R3.B-2
from Figure R3.B-3, we start from the initial state (A+BC) and move through
the valley up over the barrier, E; (which is also in a valley), over to the valley
on the other side of the barrier to the final state (A+BC). If we plot the energy
along the dashed line pathway through the valley of Figure R3.B-3, we arrive
at Figure R3.B-2.
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Energy

Potential Energy

BC” Activated
Reaction Path

BC

A AB

+
eactants v B-C A-B
S~ distance .
Products _ Initial state ~ distance
Final state A+B-C
i i A-B+C
Reaction Coordinate Completely dissociated
state A+B+C

Figure R3.B-3 3-D energy surface for generalized reaction.

The rate of reaction for the general reaction’ is the rate of crossing the energy
barrier

A+BC "A-B-C* —2 5 AB+C

We consider the dissociation of the activated complex A -B - C* as a loose
vibration of frequency vy, (s™'). The rate of crossing the energy barrier is just
the vibrational frequency, v, times the concentration of the activated complex,

CABC#:

ABC*
We assume the activated complex ABC" is in virtual equilibrium with the
reactants A and BC. Consequently, we can use the equilibrium concentration
constant Ké to relate these concentrations, that is,

(ABC#) C

K# = = ABC’ R3.B-2
T (A)B) " CaCac 52

Combining Equations (A) and (B), we obtain

The procedure to evaluate vy and Ké is shown in Table R.3B-1.

3 K. J. Laidler, Chemical Kinetics, 3 ed. (New York: Harper Collins, 1987) p. 90.

6
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B. Procedure to Calculate the Frequency Factor

Table R3.B-1ransition State Procedure to Calculate v, and K&

Step1. Molecular partition function. The number of ways, W, of arranging
N molecules in m energy states, with n; molecules in the ¢; energy
state is

N!

n;!n,! ... n_!
The distribution that gives a maximum in W is the Boltzmann

distribution from which we obtain the molecular partition function,

q.

W=

e_ﬁgi

0y _ vePei __L

N p Q=2 P

Step2.  Relating S, n;, and N. The entropy or the system is given by the
fundamental postulate

- '
S=kInW=klIn N

n,!'n,! ... n!
Next we manipulate the Boltzmann equation for N molecules
distributed in m energy states using Stirling’s approximation to

arrive at

~ n:
S =—k[2ni]nﬁl

Step3. Relate S and q. Starting with the total energy of the system
E=UZU=In;e;, relative to the ground state, substitute for the
number of molecules, n;, in energy state, g, using the Boltzmann
distribution in the last equation of Step 3

ln%=—ﬁei —-Ingq

and then sum to arrive at
U- 0

+kNlIngq

for noninteracting molecules. Uy, is the ground state energy.

Step4. Canonical partition function for interacting molecules. We need to
consider interacting molecules. To do this, we have to use the
canonical partition function

k
Q= E e PiEi
i=1

The probability of finding a system with energy, E,, is
P _ e BiEi

1
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These relationships are developed with the same procedure as that
used for the molecular partition function. For indistinguishable
molecules, the canonical and molecular partition functions are related
by
qN
TN

Using the preceding equation, we can arrive at
-~ U-=-U, q
S= +kNlIn| —
T N!

Step5. Thermodynamic relationship to relate G, U and q;, the molecular
partition function. We begin by combining the Maxwell relationship,
that is,

G=U-TS+PV )

with the last equation in Step 4 where the tilde (e.g., G) represents
the symbols are in units of kcal or k] without the tilde is in units per
mole (e.g., kJ/mol). We first use the last equation for S in Step 4 to
substitute in the Maxwell equation. We next use the relationship
between Q and g, that is,

_4

RSN

to relate G to q, the molecular partition function. For N
indistinguishable molecules of an ideal gas,

N

G=U, -nRT In 4
N

Step 6.  Relate G to the molar partition function q,,. We define q,as

dm -4 , where N=n Ny,

n
and then substitute in the last equation in Step 5.

Am

NAvo
(Note: The tilde’s have been removed.)

where n = Number of moles, N4, = Avogadro’s number, and G and

U, are on a per mole basis (e.g., kJ/mole).
Step7. Relate the dimensionless equilibrium constant K and the molar
partition function q,,;. For the reaction

aA+bB_ cC+dD
the change in the Gibb’s free energies is related to K by
EUiGi = AG = —RT ln K

G; =U;y —~RTInq,; /Ny,
Combining the last equation in Step 6 and the preceding equations
give

G=UO—RT ln
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c d
K = e 2Eo/RT  9mc9mpD \j-0

Avo
q ?nAq E)nB
where
0=d+c-b-a

Step 8.  Relate the partition function on a per unit volume basis, q’, and the
equilibrium constant, K.

! V !
n n
Where V,, is the molar volume

(dm®/mol). Substituting for q,; in the equation for K in Step 7, we
obtain

' r \d
K=e_AffTO (qc)c(qD) V6 N—6
b m

Avo
(9)"(a5)
Step9.  Recall the relationship between K and K. from Appendix C.
RT

o

)
b}
K =KYKC( ) KKV

Equate the equilibrium constant K given in the last equation of Step 8
to the thermodynamic K for an ideal gas, (KY =1) to obtain K¢ in
terms the partition functions. In other words, for the transition state
A —B-C? with =11,

1#
# _ _-AE,/RT qABC
KC =€ ° NAVO

we also know

CaChe

Equating the two equations and solving for C, | ot

1#
-AE/RT 4 ABC
CABC# =¢ ro NAVOCACBC
da9Bc
The prime (e.g., q') denotes the partition functions are per unit

volume.
Step10. The loose vibration. The rate of reaction is the frequency, v;, of
crossing the barrier times the concentration of the activated complex

CABC#'

Tape = Vi€, ot

This frequency of crossing is referred to as a loose (imaginary)
vibration. Expand the vibrational partition function to factor out the
partition function for the crossing frequency:

kgT

# _ __B
qv qv# qu hVI qv#

9
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Step11.

Note that # has moved from a superscript to a subscript to denote
the imaginary frequency of crossing the barrier has been factored

out of both the vibrational, qf,, and overall partition functions, q#, of
the activated complex.
1 # # # # 1 #
dasc =9 9r 9v dr
kgT

hv,
Combine with rate equation, —rpc = v{C

1 # '
qaBc =YaBC#

Apct hoting that vy cancels
out, we obtain
kT

b Navo q,Aﬂ oK €, Cye
da9BC
A

where A is the frequency factor.

Evaluate the partition functions (qy, qy, qg). Evaluate the

molecular partition functions using the Schrodenger equation
2
W _2M g vlp=0
dx h
we can solve for the partition function for a particle in a box, a
harmonic oscillator and a rigid rotator to obtain the following
partition functions:

Translation
3/2
. (2mmkg 1) (9.84x10% (mAB )2/3( T )3/2
At h3 m3 1 amu) 300K
Vibration
1
qv =
Y
l—exp(—)
B
hv _ hev =48x10_3( v )(3001()
kgT kg lem™ N\ T
Rotation

L]
Sy

2
4 87 n?T:m( T )( Lag 2)
Syh 300K \1eamu A

2
Iog =2 M1

The end result is to evaluate the rate constant and the activation energy
in the equation

KT

Ny q,AB’C# e—AEo/RT C
h da9sc
A

—Ip = ACgc

We can use computational software packages such as Cerius’ or Spartan to
calculate the partition functions of the transition state and to get the vibrational

10
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frequencies of the reactant and product molecules. To calculate the activation
energy one can either use the barrier height as E, or use the Polyani equation.

Example R3.B-1: Calculating the Frequency Factor Using Transition State Theory

Use transition state theory to calculate the frequency factor A at 300K for the
reaction

H + HBr — H, + Br

Additional Information. Literature values.* (Note: Most of this information can be

obtained from computational chemistry software packages such as Cerius?, Spartan,
or Cache.)

Reactants — H, HBr
H atom (mass) 1 amu
HBr (mass) 80.9 amu

HBr vibration wave number 2650 cm™"
H=Br separation distance 142 pm

Transition State Complex — H-H-Br
Vibration wave numbers

2340 cm™ !

460 cm™ ! (degenerate)
Separation distances

H lSOEmI H l142me]3r

Solution
The reaction is
H + HBr _ H-H-Br — H, + Br

The specific reaction rate is

[ )
h A
A
Reactants

Hydrogen
Translation

o (umk,T) (9.88x10%) my, \7( T )\ 9.88x10” (1 amu)"*(300 K
r = h’ - m’ (1 amu) (300 K) - m’ (1 amu) (300 K)

Qry =9.88x10%m™

Hydrogen Bromide
Translation

* K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987).
11
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o (2mmk,T)"” (9.88x1029)( My, )3/2( T " 9.84x1029(80.9 amu)3/2(300 K)
qr = = =

h’ m’ 1 amu 300 K m’ 1 amu 300 K

Qr e = 7189 x10%m™

Vibration

SV 300 K 5[ 2650 em™ (300 K
= =48x10 — =4.8x10 ~
kT kgT 1 cm T 1 cm 300 K

A%
=4.8x1072650=12.7

B

I
v = exp(-12.7))

83‘[?21kBT T I
g = —=124 ~
Syh 300 K/\1eamue* A

2 2
Lig, = 2mr =Uyp dip,

79.9)(1)
1=y d2p, = (199))
MHBr HBr 799 + 1

S, =1

on 2
qr=12-4(3OOK) 1.99 amu A
300K\ 1 amu A2

q, =24.6

Rotation

1)
SY

(1.42%)2 ~1.99 amu A’

The total partition function is

7189 x10%

Qe = 974y, = (T)(l)(%‘ﬁ)

Qg = 1.76 x10* /m’
Transition State Complex

Translation
o amk,T)” (9.88x10% \my e Vo T )7 9.88x10%(81.9 amu)’’(300 K
dr = h’ - m’ 1 amu 300 K - m’ 1 amu 300 K
q?l =7322x10"m™
Vibration
qff = quqzlz
12
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kB
hv L 7 (300K
= =4.8x10 :
kBT kB cmo T
1. 9=2,340 cm ™!
hv
112
T
1
Qv = l—e 12 =1.0
2. v=1460 cm?
hv
=22
k,T
1
qQv, = 1- 6_2‘2 =1.235
qhquad, = (1)(1.1235)* =1.26
Rotation
8’k T T I 1
g = S 124 L
S/h 300 K \1eamu*A” S,
IAB = Emiriz

#
Calculate the rotational partition function, 9r, for the following transition

H 150]2mI H 142 pm Br
<]

X

state.

First, we find the center of mass at x.
mg ®X= (292 - x)rnH + (142 - x)mH
79.9x = (292 - x)(l) + (142 - x)(l)
x=5.34 pm=0.0534 A

The moment of inertia
2 2 2
I=myr" +my,r, +mgr;

r, =292 -5.34 = 286.6pm = 2.866 A
r, =142 -5.34 =136.6pm =1.366 A
r, =0.0534 A

I=(1 amu)(2.866 A) + (1 amu)(1.366 A) +(79.9 amu)(0.0534 A)’

1=821 amu A”*+1.866 amu A*+0.228 amu A>

I1=10.3 amu A’
13
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The rotational partition function is
q) =(12.4)(10.3) =127.8
The total partition function for the transition state is
Qi =a7qlal =(7322x10%)(1.26)(127.8)

=1.17x10%/m’
We now calculate the frequency factoring A.

)
h ) quQus: e

1.17 x10% /m’

1.38 x10kg m’/s* /molecule/K 300 K N
= X
h=6.626x10"kg —m?/s (9.88x107/m*)(1.76 x10* /m*) =
[ 6.78x107m’ ,, molecules
A=(62.5x10"/s)| ——————[6.02x 10" ————
molecule mol
, m 1000 dm’ o dm’
=253x10 X 3 =2.53x10" ———
moles m moles
0 dm’
A=2.53x10" ——
mol®s

Data From Computational Chemistry

Now let’s calculate A and E using the parameters from cache.
For the reaction:
H+ HBr — H, + Br
The three dimensional potential energy surfaces of the reacting particles along the
reaction coordinates was calculated using the MOPAC PM3 method:

energy
9.70 to
18515 keal /mole

H-Br
H—H 1.00 1o
200 to 3.00 angstrom

(.50 angstrom
Figure R3.B-4 Potential energy surface.

The transition state structure was found at the saddle point, refined by using the
DFT/B88-PW91 method as

14
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.
o

J

Figure R3.B-5 H-H-Br transition state.

In the transition state, the three atoms are linear, and the H-Br distance is 1.48 A while
the H-H distance is 1.55 A.

The transition state was further proved by vibrational analysis (PM3 FORCE),
showing one and only one negative vibration (imaginary frequency of crossing the
barrier). Moreover, the negative vibration corresponds to the movement of the atoms
on the two reaction coordinates.

Transmittance (%)

a0

40

4000 2000 1]

Wavenumber (cm-1)

Figure R3.B-6

15
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Example R3.B-2: Summary of Information from Cache Software
Reactants — H, HBr

H atom (mass) 1 amu
HBr (mass) 80.9 amu
HBr vibration wave number 2,122 em” !
H=Br separation distance 147 pm

Transition State Complex — H-H-Br
Vibration wave numbers

1,736 cm™!
289 cm™!
Separation distances

H 155]:)1rr1I H .1489m.Br

The translational partition functions remain the same:
qy =9.88x10%m™

Qg = 7189 x10*m™
Quus, = 7322 %107 m™

HBr
Vibration
hov
=10.19
oT
q, =1
Rotation
(79.9)1) ;. \2 o2
HB: =m(l.47A) =2.13 amu A
q, = (12.4)(2.13) = 26.46
Qe = (7189 x107)(1)(26.46) =1.90 x 10* /m’
HHBr

Vibration

1. =(1736)(4.8 x107") =8.33

B
q,; =1.0002
ho 5
2. = (289)(4.8x107) =1.387
B

qu = 1.33

Rotation

Calculate the rotational partition function, qf, for the followingtransition
state.

16
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H 1559111I H '148Fm|]3r
X

First, we find the center of mass at x:

m,, * x = (303 - x)m,, + (148 - x)m,,

79.9x = (303 - x)(1) + (148 - x)(1)
x=5.51 pm=0.0551 A

r =303-5.51=2.97 pm=2.97 A

r, =148 -5.51=142.5 pm=1.425 A

r, =0.0551 A
1=(1)(2.97) + (1)(1.425)" + (79.9)(0.0551)
1=8.82+2.03+0.24=11.1
q, = 137.5
Qi = (7322 x107)(1.0002)(1.33)(137.5) /m’

Qe =1.339x10°m™

1.339x10*m’
(1.9 x10* )(9.88 x 10”) (

A=(62.5x10"/s) 6.02x10™)

=(62.5x10"/s)(7.13x10™'m’)(6.02 x 10**)

3

dm
A=266x10"—

moles
Chemical Heat of formation at 298 K (kcal /mol) Energy of zero point level (au)
emica
MOPAC PM3 method Experiments DFT/B88-PW91 method
HBr 5.3 -8.71 -2574.451933
H 52.1 52.1 -0.502437858
H-H-Br
Transition 59.6 N/A -2574.953345
state

Therefore, the standard enthalpy of activation is:
AHig98 =59.6-5.3-52.1=2.2 kcal/mol = 9.2 k] /mol

The intrinsic Arrhenius activation energy is

EMie - AHE . +298R = 2.8 kcal/mol = 11.7 kJ /mol

17
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Barrier height E, (difference between zero-point levels of activated complexes and
reactants) (because the conversion between the au and the kcal/mol units is very
large, we need to maintain a high number of decimal points):

E, = 627.5%((~2574.953345) — (~2574.451933) - (~0.502437858)) = 0.64 kcal/mol = 2.7
kJ/mol

18
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II. BACKGROUND

A. Molecular Partition Function
In this section, we will develop and discuss the molecular partition function for
N molecules with a fixed total energy E in which molecules can occupy
different energy states, ¢;.
Total Energy of System
Total number of molecules, N, is

w35
where n; = Number of molecules with energy &;.

The total energy, E, is

E = E IliSi (RSB'S)
The number of ways, W, arranging N molecules among m energy states
(1,8, 111, ) is
!
We— N (R3.B-6)

nq{n,! ... n!

For example, if we have N(=20 molecules shared in four energy levels (g, ¢,,
€3, €4) as shown here

N! 20!

W= - '
n,!n,in;ln,! 684121

W =1.75x%10°

there are 1.75x10° ways to arrange the 20 molecules among the four energy
levels shown. There are better ways to put the 20 molecules in the four energy
states to arrive at a number of arrangements greater than 1.75x10°. What are
they?

Y For a constant total energy, E, there will be a maximum in W, the
number of possible arrangements, and this arrangement will overwhelm the
rest. Consequently, the system will almost always be found in that
arrangement. Differentiating Equation (R3.B-3) and setting dW(=(0, we find the
distribution that gives this maximum.” The fraction of molecules in energy

state, ¢;, is

> See P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 571.
19
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Boltzmann
distribution

Total energy

—Pe; e—ﬁﬁi

S ° B=1/k,T (R3.B-7)
N_Ee'ﬁsi_ q =1/Kp .

q=Ye P (R3.B-8)

The molecular partition function, q, measures how the molecules are
distributed (i.e., partitioned) over the available energy states.

Equation (R3.B-7) is the Boltzmann distribution. It is the most probable
distribution of N molecules among all energy states ¢; from i=[0 to i’=[] subject
to the constraints that the total number of molecules, N, and the total energy,
E, are constant.

= Y n;g; (R3.B-5)

This energy, E=2 n;g;, is relative to the lowest energy, U, (the ground state)
the value at T'=(0. To this internal energy, E, we must add the energy at zero
degrees Kelvin, UO,6 to obtain the total internal energy

The tildes, U, represent that this is the total energy not the energy per mole.

Comments on the Partition Function q

The molecular partition function gives an indication of the average number of
states that are thermally accessible to a molecule at the temperature of the
system. At low temperatures, only the ground state is accessible. Consider
what happens as we go to the extremes of temperature.

(a) Athigh temperatures (kT >= ¢), almost all states are accessible.

—Be; -¢;/kT -£0/kT -g1/kT —£, kT —-£5/kT
q=3 eﬁ81=2 e Ci/KT _ o=eo/KT | -er/kT | —ep/KT , -e3/KT |

Now as T— , e /KT 51 are q— because » — , that is,

q=1+1+1 +1+1+ ..., and we see the partition function goes to infinity as
all energy states are accessible.

(b) At the other extreme, very very low temperatures (kT << g;),
as T—0and ¢/ -0
then q—g
and we see that none of the states are accessible with one exception,
namely degeneracy in the ground state (i.e.,, q — g, for g, =0).

. Relating S, n;, and N

W is the number of ways of realizing a distribution for N particles distributed
on g; levels for a total energy E

E=81n1 +82n2+83n3+

®P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 579.
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Stirling’s
approximation

N!
W =

n,!'n,! ... n;!

Boltzmann formula for entropy

(R3.B-6)

(R3.B-10)

Ludwig Boltzmann 1896
Recall n; = number of particles in energy level ¢;. The Basic Postulate is
~ N!
S=kInW=klIn
n,!'n,! ... n;!

Next we relate S and q through W

InW=InN!-Inn,!n,!

=InN! - [Inng!+Inn;! + ...]

INW=mInN! - SIn(n;!)

Stirling’s approximation for the natural lag of factorials is
Xt1= (2n)"* xXH/2 X
or approximately
InX! = XInX-X

For our system this approximation becomes

In W=N In N-N-
N

2n; In n; _Eni)
——

N=>Yn,
Recall substituting Equation (R3.B-4) in Equation (R3.B-13). We find
InW=NInN - Y¥n;In n;
=yn;InN - Yn;Inn;
In W=-3(n;In n; -n; In N)
Further rearrangement gives

n.
In W=-3n;In-2%
2ming

combining Equations (R3.B-10) and (R3.B-14)

S=-k¥n;In—=+
znl N
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C. Relate S and q
Recall that the fraction of molecules in the i energy state is

e_BEi

n;
N q

(R3.B-8)

Taking the natural log of Equation (R3.B-5) gives
n.
In—+=-f¢;, —In
N - PEi—lIng

Substituting for ln(%) in Equation (R3.B-13) gives

S= —kzni[—ﬁsi - lnq]
Rearranging gives

=kpfYn.e +kYn;Ing
S=¥+kNlnq

Recall from Equation (R3.B-9) for In;e; = E = U — Uy, where U, is the ground
state energy in kcal.

. U-U
3 0

+kNlIngq (R3.B-16)

This result is for noninteracting molecules. We now must extend/generalize
our conclusion to include systems of interacting molecules. The molecular
partition function, q, is based on the assumption the molecules are independent
and don’t interact. To account for interacting molecules distributed in different
energy state, we must consider the canonical partition function, Q.

D. Canonical Partition Function for Interacting Molecules
Canonical Ensemble (Collection)”
We now will consider interacting molecules. To do this, we must use the
canonical ensemble, which is a collection of systems at the same temperature,
T, volume, V; and number of molecules, N. These systems can exchange
energy with each other.

7 P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 583.
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1T N 2N |3 N_|—— System of specified volume, temperature,
T T T and composition (number of molecules),
1 - * - which we will “replicate” N times.
> |
Energy exchange between ensembles
15 replications
15

Let
E,; = Energy of ensemble i

E = Total energy of all the systems Y 1,E; = a constant

;= Number of members of the ensemble with energy E,
N = Total number of ensembles

[J=H

Let P; be the probability of occurrence that a member of the ensemble has an

energy, E;. The fraction of members of the ensemble with energy E; can be
derived in a manner similar to the molecular partition function.

N Q
Q=3 ™

(R3.B-17)
Q is the canonical partition function.

We now rate the canonical partition function the molecular partition

function.® The energy of ensemble i, E;, is the sum of the energies of each of the
molecules in the ensembles

E;=¢;(1)+ex(2)+ ... +ey(N)

4 Eneregy of Energy of molecule
gy gy
molecule 1 when N when itisin
it is in statell state N

—BE; -Be;(1) - Bei(2)- ... -Be;(N)
Q= Ee PEi _ Ee
i=1
Expanding the i=(1 and i=2 terms,

Q= e Pull) = Pa(2) L omPeall) ooPea2) E e P
i=3

Each molecule (e.g., molecule 1) is likely to occupy all the states available to it

Consequently, instead of summing over the states i of the system, we can sum
over the states i of molecule 1, molecule 2, and so on.

8 P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 858

23
CD/TransitionStatePRS.doc



E e_BEi E e_BSi . N
Q= ...=(Eeﬁs‘)
molecule 1 || molecule 2

Q=q"
This result (Equation (R3.B-17)) is for distinguishable molecules. However, for

indistinguishable molecules, it doesn’t matter which molecule is in which state,
that is, whether molecule 1 is in state (a) or (b) or (c)°

(1)=={(a) (1) == (b) (1) =>((c)
(2)==>((b)1(2) =>(c) I(2) =>(a) E=g, +8, +e&
(3)=> () 1B) =>(a) I(B)=>(b)  (etc.)

Consequently, we have to divide by N!

N

g
Q= N (R3.B-18)

The molecular partition function is just the product of the partition functions
for translational (qg), vibrational (qy), rotational (qr), and electronic energy
(qg) partition functions.

q=9'q"q"q" (R3.B-19)

This molecular partition function, q, describes molecules that are not
interacting. For interacting particles, we have to use the canonical ensemble.
We can do a similar analysis on the canonical ensemble [collection] to obtain™

U-U
2 +kInQ (R3.B-20)

52

Combining Equations (R3.B-17) and (R3.B-20) thus gives

Which is a result we -~ U-0, qN
have been looking for. 5= T k ]I{W (R3.B-22)

E. Thermodynamic Relationships to Relate G, S, and q
We now are going to use the various thermodynamic relationships to relate
the molecular partition function to change in free energy AG. Then we can
finally relate the molecular partition function to the equilibrium constant K.
From thermodynamic relationships, we know that the Gibbs free energy, G,
can be written as

G=U-TS+PV (R3.B-23)

For an ideal gas with n total moles,

* P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994) p. 605. P. W. Atkins, Physical
Chemistry, 6th ed. (New York: Freeman, 1998) p. 585.
" P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994) p. 684.
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G=U-TS +nRT (R3.B-24)

Again we note the dimensions of G are energy (e.g., kcal or kJ) and not
energy/mol (e.g. kcal/mol). Combining Equations (R3.B-20) and (R3.B-24) for
S and G, we obtain

G=U,-kT InQ+nRT (R3.B-25)

Recalling the relationship of Q to the molecular partition function
Q=q"/N! (R3.B-18)
G=U,-NkTInq+kTInN! + nRT (R3.B-26)

We use Avogadro’s number to relate the number of molecules N and moles n
(i.e., N=nN,,,) along with the Stirling approximation to obtain

G=U,-N,on kTInq+kT(NInN-N)+nRT (R3.B-27)
Now kTN =kTN,_,n=RTn
=U,-nRTInq+nRTInN - nRT+nRT
G=U, -nRT ln% (R3.B-28)

N=nN,,, where N, =6.032x 10 molecules/mole.

F. Relate G and the Molar Partition Function, q,,
We divide by the number of moles, n, to get

Q=1 (R3.B-29)
n
9__9 _ 9m
N nN avo NaVO
Substituting for (q/N) in Equation (R3.B-28) gives
& =0, -nRTIn 1\?“’ (R3.B-30)

avo

To put our thermodynamic variables on a per-mole basis (i.e., the Gibbs free
energy and the internal energy), we divide by n, the number of moles.

G U,
—=G and —=U,
n n
This is a result we q
have been looking for. G=U,-RT In—= (R3.B-31)
avo

where G and U, are on a per-mole basis and are in units such as kJ/mol or
kcal /mol.
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G. Relating the Dimensionless Equilibrium constant K and the Molar Partition
Function q,,
Applying Equation (R3.B-31) to species i gives

G,=U,-RTIn q&)
Avo
For the reaction

aA+bB_ cC+dD
the change in Gibbs free energy is
AG =cG +dG -bGy —aG (R3.B-32)

Combining Equations (R3.B-31) and (R3.B-32) gives
AG = CUCO + dUDO - bUBO - aUAO

~|cRT In| dem_ |, dRT ln( dim | _pRT ln( dbm | _aRT In| Jam )
Avo Avo Avo Avo
ACmdT
AG =AE, -RT In| =2 « N> (R3.B-33)
9 AmY9Bm
where again
d=c+d-b-a
From thermodynamics and Appendix C, we know
AG =-RT InK
Dividing by RT and taking the antilog, we get
_AEO c d
K=¢ RT WN;@O (R3.B-34)
9 AamYBm

H. Relate the Molecular Partition Function on a Basis of Per-Unit Volume, q’,
and the Equilibrium Constant, K
The molecular partition function, g, is just the product of the electronic (qg)
translational (qr) vibrational (qy) and rotational (qg) partition functions

q= Ee—ﬁsi - Ee-ﬁ[egi +e, +ey, +8Ri] — Ee-ﬁsgi Ee-BETi Ee_BSVi Ee_ﬁeRi
qd=9edr9vqr (R3.B-19)

Equations for each of these partition functions (qE, qr, ...)will be given later.

We now want to put the molecular partition function on a per-unit volume
basis. We will do this by putting the translational partition function on a per-
unit volume basis. This result comes naturally when we write the equation for

qr
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qr =qrV (R3.B-35)

therefore,
q=97Vqegqyvqg =q' V (R3.B-36)
and
dn=3=qY=q'V, (R3.B-37)
n n

By putting gt on a per-unit volume basis, we put the product q'=qTqgqrqy

on a per-unit volume basis. The prime again denotes the fact that the
transitional partition function, and hence the overall molecular partition
function, is on per-unit volume.
The molar volume is
RT
V °=

m=fo 4

where f° is the fugacity of the standard state of a gas and is equal to 1 atm.
AE, 1\ \d o
K = e_ RT (qC) (qD) ( RT )
1 \a( b
(qA) (qB) 1 atm

(See Appendix TS2 page 29 of Transition State Theory notes for derivation.)

(R3.B-38)

I. Recall the Relationship Between K and K¢ from Appendix C
The equilibrium constant and free energy are related by

AG=-RTInK
(f_)(f_)
K = acca% _ fco/ \po

~ a_b a b
4A%B (A) (fi)
fAO fBO

The standard state is f;; = 1 atm. The fugacity is given by f, = ypP5 (See

(R3.B-39)

Appendix C of text.)
c.d c.d cpd 0 =0
K -2 _yarp  Felp (1 £ ) Cd=d+c-a-b (R3.B-40)
a_b a b ab i0
apag  YaYs PaPp
K, K, K,
RT \° scecd (RT)
K=KYKC( ) =K, (1 atm)  —=—R|— (R3.B-41)
1 CACg\ fio

For an ideal gas K, =1

d
Equating Equations (R3.B-40) and (R3.B-41) and canceling (RT/ ff) on both
sides gives
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_AEO r \C/7 s \d
K. =¢ RT % N2 (R3.B-42)
(ax) (95)

Now back to our transition state reaction

A+BC_, T _ABC"——AB+C

0=1-1-1=-1
_rA = VICABC# = VIKfCACB (C)
C _ABo
! =M —e RT Q,'A%C N, (R3.B-43)
[CA][CBc] qadsc

where q'Jzc is the molecular partition function per unit volume for the
activated complex.

qasc =qbabakal (R3.B-44)

Rearranging Equation (R3.B-43), we solve for the concentration of the activated
complex Cpcy

AE0 1#
T 9 aBcNavo

Capcy =ViCpCpe R (R3.B-45)
q'AqBC

J. The Loose Vibration, v;
We consider the dissociation of A-B-C” as a loose vibration with frequency vy

in that the transition state molecule A-B-C* dissociates when it crosses the
barrier. Therefore the rate of dissociation is just the vibrational frequency at
which it dissociates times the concentration of ABC*!

ABC?
Substituting Equation (R3.B-45) into Equation (R3.B-46) yields

1#
-AE,/RT Y9ABC N
i ' Avo
qadBc
Where q' is the partition function per unit volume. Where v; is the “imaginary”
dissociation frequency of crossing the barrier.

—rapc =ViCACp ¢

The vibrational partition, q%, function is the product of the partition
function for all vibrations

q\#/ =qvi9vi9w (R3.B-47)

Factoring out q,; for the frequency of crossing the barrier gives

" K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 208.
28
CD/TransitionStatePRS.doc



qv #

# ‘ \
9v =9vi9wvi9v2
qiil =19 vt (R3B'48)
' # # 1 #
daBc# =99 v9dv#9rdT (R3.B-49)

Note that we have moved the # from a superscript to subscript to denote that
q. is the vibrational partition function less the imaginary mode v;. q’, is the

vibrational partition function for all modes of vibration, including the
imaginary dissociation frequency."

This is the result
we have been
looking for!

Q= — == el (R3.B-50)

_ vy hv;) hy,

T
4 , kT
9ABC =9 apc? h - (R3.B-51)
Substituting for q’sgc in Equation (R3.B-45) and canceling v
AE
kT =220 g’ N,
h 9a9sc

where q)pcs is the partition function per unit volume with the partition
function for the vibration frequency for crossing removed.

Nomenclature Notes:
q = molecular partition function = qgqrqyvqgr
q' = molecular partition function per unit volume

q=q'V
qm = a_ q 'V, molar partition function
n

q'* = Partition function (per unit volume) of activated complex that includes
partition function of the vibration frequency v;, the frequency of
crossing

q's = Partition function (per unit volume) of the activated complex but does not

include the partition function of the loose vibration for crossing the
barrier

What Are the Equations for q'y, qy, qp and qg?

2 K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 96.
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K. Evaluating the Partition Functions
Schrodinger Wave Equation
We will use the Schrodinger wave equation to obtain the molecular partition
functions. The energy of the molecule can be obtained from solutions to the
Schrédinger wave equation'

Y =Ey(x,y,2) (R3.B-53)

-h® _,
-, \Y +V(X,y,z)

This equation describes the wave function, 1, for a particle (molecule) of mass,
m, and energy, E, traveling in a potential energy surface V(x,y,z). “h” is
Planck’s constant. The one-dimensional form is

d*y 2m
R ey [E-V(x)]w=0 (R3.B-54)
h=h/2n=1.05x10"*J s

The probability of finding a particle in a region between x and x[+/dx is
Probability = 2dx
y? is the probability density."

Molecular Partition Function

We shall use this equation to obtain the translational, vibrational, and rotational
energies, (g, €y, and eg) used in the partition function q. The equation is solved
for three special cases

1.[Translational energy, ¢,. Particle in a Box.

2.[[Vibrational energy, ¢y,. Harmonic Oscillator.

3.[Rotational Energy, eg. Rigid Rotator.

4.Electronic Energy, ¢g.

Recall|q' = qpqvqrqT|
The electronic partition functions qg, is most always close to one.

¥ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 370.
" P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 373.
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Table R3.B-20Dverview of Q'

Parameter Values

1 atomic mass unit = 1 amu = 1.67x10™%’ kg, h = 6.626x10* kgomz/s,
kg = 1.38x107% kgem/s?/K/molecule

1.[MTransitional Partition Function(q’

(2mmk, 7)Y

qr = h—3 = F —the order of 10*° m™ (R3.B-55)
A = Thermal wavelength = h 7 (Derive)
(2mmk 5 T)
3/2 3/2

, 2nk g 32(1 amu 32 300

qr = (m)" | ——| T x—

h? 1 amu 300

(2mky #3001 amu)"? (my, \P T\
h? 1 amu 300
Substituting for kg, 1 amu and Plank’s constant h

 (9.84x10% ) m up 3/2( T )3/2
= R3.B-56
ar m> )(1 amu) {300 ( :

for H, at 25°C A=7.12x10""m

2.[Vibrational Partition Function q,
1
q, = le_w (R3B'57)
Expanding in a Taylor series
q, = ! = skIfT=the order of 1 to 10 (Derive)
- v
1—e k8T
v _ hev =4.8x10‘3( hd )(@) (R3.B-58)
3.[Electronic Partition Function

dg =qg (g =D (Derive)
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4.Rotational Partition Function qp

For linear molecules,
_8n°Iky T kyT

= = R3.B-59

AR =02 TS heB ( )
y y

B =Rotational constant = 5
8mcl

For nonlinear molecules,

1 (kT = ,
qr — = = the order of 10 to 1,000 (Derive)
Sy hc ABC

where ABC are the rotational constants for a nonlinear molecule about the three axes at
right angles to one another

=3 Mir12
For a linear molecule,
T 1 1
=12.4 AB — R3.B-60
qR (300)(1 amu.oAZ) Sy ) ( )

Sy = symmetry number of different but equivalent arrangements that can be
made by rotating the molecule."”

For the water and hydrogen molecule, S, =2,
1 2 2 1
H\/H H\/H , H—H, H'—H,
@) @)

For HCl1 Sy =1

Estimate A from Transition State Theory

Let’s do an order of magnitude calculation to find the frequency factor A.
kT ’

B N ave q’ABIC# e—AE/RTCACB

h 9a98C

A (m3/m01-s)

_rA=

T = Ae'AE/RTCACB

Let’s first calculate the quantity

" K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 99.
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at 300K

At 300 K

kT 1.38x107> J/K - molecule- 300 K

h

=6.25x10" s'l/molecule

h 6.62x10—34J-s
KpT 10 - / molecule
-1y =KC,Cpc
_ (k T) (qABC# JN
avo
h qa9Bc
L
Units [k] = 1 dm? N molecules
s molecule ( )( ) mole
3
[k]= dm
mol-s
N 4o = 6.02 x 102 MOlccules
Ave mole
%=1013 s"'molecule ™
q{]" 510321’1’1_3
q, =
qR EIOO
A=%NAVO q,AB,C#
qa9Bc
1y = Ae AE/RTCACB
A BC ABC

qr 6x10%m™>  6x10°? 6 x 10°2

qv 5 5

qr 20 200

q 6x102m® 600x10°?m™ 6000x10°* m™

(R3.B-61)
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Qapct _ 6000x107
Qaqpc  6x10% x600x10°>

qIABC# o(N .(kBT)
q’Aq’Bc) (Nawo) h

=1.7107%2m™3

A=

A= (1.7 x1072 m? )(6 %102 M)(m” ;)
mole molecule®s

A=10x10* m3/mole°s =10® de/mole s
which compares with A predicted by collision theory.

Derivation of the equation for q't, qy, qg, and qg

CLICK BACKS

1. Translational Partition Function, qy

(Click Back 1)
HOT BUTTON
To show
3/2
qr =|—=— m (T1)
T ( h 2 ( )

Translational Energy

We solve the Schrodinger equation for the energy of a molecule trapped in an
infinite potential well. This situation is called “a particle in a box.” For a particle in a
box of length a,

V(X)

X=0 X=a
The potential energy is zero everywhere except at the walls where it is infinite so
that the particle cannot escape the box. Inside the box
h dy_
2m dx*
The box is a square well potential where the potential is zero between x =0 and x[= a
but infinite at x=0 and x=@."® The solution to the Equation (T2) is

Y=A sin(kx) +B cos(kx) (T3)

(T2)

' P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 392.
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k’h?

where E = (T4)
2m
(from k= 2mE )
h2
We now use the boundary conditions
At x=0LIAp[=(0, sin 0 = 0, and cos 01=(1
. B=0
The wave equation is now
P=[A sinlkx
At x=(a, =0, "
1 will be zero provided
. kalZ=mn
where n is an integer, 1, 2, 3
L 0 a (T5)
a
Substituting (T5) into (T4), we see that only certain energy states are allowed
21,2
n‘h
E,=— (Te6)
8ma
For particle in a three-dimensional box of sides a, b, and ¢
h? [n2 n? n?
E ——|—1,22,23
n Sm[az"’bz"'cz}
Back to one dimension
2h2
E,=—s
8m a
Therefore relative to the lowest energy level ni=(1, the energy is
2
e, =(E, —E1)=(n2—1) e, where €= h 5 (T7)
8ma
Then
~(n%-1 Pe
qrx = Ee ( ) (T8)
n=1
2nkT -
ar, = (222 [Berive] ()
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: (Click Back within a Click Back) — Hot Button within a Hot Button

We will assume that the energy states are sufficiently close together, such that |
there is a continuous distribution of energies. Replace E by f '

qTx =f1 e_(

Let: x> =n’Be, dn = dx/(Be)ll2

_(1 ]/zf Seax (1 P
qrx = Oe - x 2

n2_1)|3£dnsﬁ) e_HZB‘c’dn

Be Be
12 12
=[i_;mﬁ] a=(2”}1:2Tm) a (T10)

For Three Dimensions

The translation partition function for y and z directions are similar to that

for qry
3
2nkTm) Y2
Q1xyz= 9rx9Tyqd 712 = 12 ‘al?_,c
This is the \%
result we have .
been looking =qrV (T11)
or!
i ) 2umkT)
qr = h2
We define A as thermal wave length
2 "
A= (kaT) (m) (T12)
) 1
TN

Order of Magnitude and Representative Values

For O, @25°C ¢ =2x10%m™

at 25°C for H, : A=71 pm, for O, : A =18 pm (pm = picometer)

2. Vibration Partition Function q, (Click Back 2)

To show

a1 [Gerive] (12
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(Click Back)

Again we solve the wave equation for two molecules undergoing oscillation about
an equilibrium position x = 0. The potential energy is shown here as a function of the
displacement from the equilibrium position x = 0"/

O D

x
o
The uncertainty principle says that we cannot know exactly where the particle is
located. Therefore, zero frequency of vibration in the ground state (i.e., v = 0 is not

an option.'®* When v, is the frequency of vibration, the ground state energy is

1

Harmonic oscillator'?

Spring Force F = -kx , potential energy from equilibrium position x = 0
s

dt?

the solution is of the form for t=[0 then x=0

= kx

Xx=A sin wt

\/f
w=1—
m

Spring contant
- Mass

where

)=(k/m)l/2, w=27v

Classical vibration
The potential energy is

V= %kxz (V2)

We now want to show

v

E, = (U + %)hv (V3)

and solve the wave equation

7 P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 402.
'8 P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 22, 402.
¥ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 402.
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h? d® 1,
-——Y+—kx"¢p=E V4
o di Y > p=Eyp (V4)
to find the allowable energies, .
5\ V4
Lety=§,8=li,where a=(h—) ,m=£,and W =2m0.
o Ehm mk m

With these changes of variables Equation (A15) becomes

d*y 2
F+(s-y Jw =0 (V5)
The solutions to this equation® will go to infinity unless

el=20+1

v=0,1,23,...

E | - [ d of light]"
=|v+—| hvy, v=—=— ¢ = speed of li
Y 2 2n A P &
-1
v 1 s 1
Wave number=0=—=— D= =
c A cm/s  cm

A = wave length
1 1)
E,=|v+=|hv=|v+—|hcD (Vo)
2 2

Measuring energy relative to the zero point vibration frequency (i.e., v/=0) gives

1 1
Ev=hvlv+—|-—hv
2) 2

hvo
E,=—
kT

Substituting for E, in the partition function summation EC_BE” yields

[

q, = Ee—ﬁhvv _ E(e—ﬁhv)

* P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 22, Appendix 8.
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This is the result we 1 V7
have been looking for! v =7 P (V7)

For Bhct <<1, then [(1 - e_X) =1- (1 - X)] = X. We can make the approximation

L _kT_¥T
" hv_ hcd

For m multiple frequencies of vibration
dv = 9vi9v2 -+ 9wm

Order of Magnitude and Representative Values

(V8)

For H,O we have three vibrational frequencies with corresponding wave numbers,
0;, U, and 7;.

9, =3656 cm™' . q,,=1.03

9, =1594.8 cm™ .. q,,=1.27
and
9, =3755.8 ecm™ . q,,=1.028

q. =(1.03)(1.27)(1.028) = 1.353

. Electronic Partition Function?? (Click Back 3)

From the ground state, electronic energy separation is very large.

qe=8E

where gy, is the degeneracy of the ground state.

For most cases, qg =01 (E1)

. Rotational Partition Function (Click Back 4)

kgT
v = ohcB
Rigid Rotation®
To show
" s &)
where

* P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 541.
# P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 701.
» P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 409, 413, 557, A24.
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B = Rotational constant

- 8m’cl

(R2)

Consider a particle of mass m rotating about the z-axis a distance r from the origin.

o
Jz=pr
X
4 m P=mr
0
This time we convert the wave equation to spherical coordinate to obtain’
dy__2E
do>  h?
Classical energy of a rigid rotator is
2
=—w’l

where w is the an%ular velocity (rod/s) and I is the
moment of inertia®
I= E m; 1’12

where m; is the mass located and distance r; from the center of mass.

4

(R3)

(R4)

(R5)

(R6)

Quantum mechanics solutions to the wave equation gives two quantum numbers, ¢

and m.

Magnitude of angular momentum = [E(E + 1)]1/211

z/domponent of angular momentum = mh

2

k
E= (0 +1)=
(¢ +1)=

m=0. ¢/ with +/ clockwise rotation
> —¢ counter clockwise rotation

(R7)26

* P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 410.

» P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 555.

% P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 408, 413.
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Let] =/
For a linear rigid rotator

J(T+1)R?
Where B is the rotation constant:
k h
B = = R2)*
4rlc  8u’cl (R2)

with
¢ = Speed of light

I = Moment of inertia about the center of mass = E miri2

The rotational partition function is

dr = 3 (2] +1) e BN (ROY™
j=0

Replacing the E by an integral from 0 to and integrating, we obtain the
j=0

rotational partition function qg for a linear molecule™

This is the result we _ kT _ 8’ Ik T
have been looking for! dr S;heB S h2
y

(R10)

where S, is the symmetry number, which is the number of different but equivalent
arrangements that can be made by rotating the molecules.
For HCl S, =1

For H,0O Sy =2

Hl H2 H2 1
NN
O O

For a nonlinear molecule,

_L(k_T)yz( T )1/2
& 7S, \ne) (aBC

h h h
o2 ) Beomg—, C=7
8mclp 8n-clp 8rcl¢

where

7 P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 557.
# P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 414, 563, 671.
# P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 694.
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Sy[=lsymmetry number.”” For a hetronuclear molecule, /=1 and for a

homonuclear diatomic molecule or a symmetrical linear molecule (e.g., H,), then
oZ2.

Order of Magnitude and Representative Values

For HCl@25°C,*' B=10.591(6m™ " then qr/#19.9 and at 0°C qp/=18.26.

For ethylene at 25°C, then qg/[=661.

III. THE EYRING EQUATION

For the reaction

A+BC— AB+C
The rate law is
k = Ae Ea/RT (R3.B-63)
Ink=AIn-E, /RT (R3.B-64)
dink _E, (R3.B-65)
dT RT?

Now let’s compare this with transition state theory.
The rate of reaction is the rate at which the activated complex crosses the
barrier

A+BC— ABC? - AB+C

15 =9,C,, s (R3.B-1)
#
K = [aBC )E C apcr (R3.B-2)
(A)B)  CaCac
—1ry =0, K4C L, Cpe (R3.B-3)

Factoring out partition function for the loose vibration frequency, v, from the

vibrational partition function, qﬁ, gives

qy qvy (R3.B-66)

- hv, "
Then from Equation (R3.B-43), we can obtain

hv,

Kf =Ky (R3.B-67)

% For discussion of o, see K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987),
p-99.
' P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998), p. 695.
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kT

which is referred to as the Eyring equation.
From thermodynamics
AG =AH -TAS (R3.B-69)

# # #
K" = e~AG /RT _ohs /Re—AHRX/RT (R3.B-70)

The overall dimensionless terms of mole fraction x ; and the activity coefficients y;

K’ =K K&V =K KEC, (R3.B-71)
# K”
Kf = (R3.B-72)
K.Cr
K e—AG#/RT eAS# /R o~ AH/RT
K ot = = = (R3.B-73)
K.Cr K,Cr K,Cr

AS* will be negative because we are going from a less ordered system of A, BC
moving independently as reactants to a more ordered system of A, B and C being
connected in the transition state. The entropy can be thought of as the number of
configurations/orientations available for reactions; that is,

Number of configurations leading to reaction  ,¢#
=e

Total number of configurations

AH - (HABC# —H, _HBC)

will be positive because the energy of the transition state is greater than that of the
reactant state.

CaseI Liquid
For liquid Cy=(a constant=Cy. Recall for water that C,, [=(55.5 mol/dm?’

. (kBT). e—AS#/R o-AH/RT
h K.Crg

(R3.B-74)

AS" = (S, v —=Sa —Sac) (R3.B-75)

Here we see the temperature dependence as
K(T)~T e 8H7/RT
Case II Gases

For gases
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. (kBR) TzeAS#/Re—AH#/RT

hP K,

Here we see the temperature dependence as
k(T) ~ T2 e—AH#/RT
As with liquids, AS" is negative, and AH Ry I8 positive.

Relating E, and AHg,

Now let's compare the temperature-dependent terms. The heat of reaction
will be positive because the activated state is at a higher energy level than the
reactants. See Figure R3.B-2.

k= (k—B)(%)Tze AS" /R o ~AH R /RT (R3.B-76)
# #
Ink = ln( k}?;{) +InT? + AST A;I—TRX (R3.B-77)
d(ink) _ 2, AHg, By (R3.B-78)
dT T RT? RT? '

Comparing Equations (R3.B-1) and (R3.B-16), the activation energy the Erying
equation is

E, =2RT+AH%, (R3.B-79)
with the frequency factor
A=[ks (B)e As"/R (R3.B-80)
h \P
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Some Generalizations May Be Eliminated

Table R3.B-3[Equations for Reaction Rate Constant Using Partition Functions

For reactants where there are N atoms*

Atoms
3
q=d9r
Linear polyatomic molecules
3 2 3N-5
q=9r9rdv
Nonlinear polyatomic molecules
3 3 3N-6
q9=919Rr4v

Let qrl= 107% em™! for each degree of transitional freedom, qg = 10, q, = 1 and
(kT/h)[zleOl3 s~ with N, = 6.02 x 10*° molecules/mol.
Casel Atom + Atom . Diatomic Activated Complex

A cale

32
kzNavo(k_T)m o883 [RT

h/qiq:

Assuming all translational partition functions are approximately the same

2
kg = NA(k_hT)(%) o-AEG[RT

|
Al =6x 101 cm3/mol/s

Case 2 Atom + Linear Molecule ___~ Linear Complex

( KT\ q%q§Q3(N+l)_6 -AE(JRT
\ T ) 2 x q2q2qoN-5 e
qr X q19r9v

k=N,

_ o (KT\(qR)  -aBg/Rr
= NA\h/(q%) °

A ca1c=6x10"2 m [mols

Case 3 Atom + Nonlinear Molecule

Same results as for a linear molecule

Case 4 Linear Molecule + Linear Molecule . Linear Complex

% K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 108.
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(KT v ~AE(/RT
k= N,/=1dv_ 0
M qdgd

A ca1c=6x10'% cm®/mol's

Case 5 Linear Molecule + Nonlinear Molecule .~ Nonlinear Complex

(KT\ 4o _aBj/rr
k= Npi— =% 0
Mg

A ca1c=6x10" cm 3/mol- s
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Appendix

For the general reaction

M
AG=3v,G, = S U, v, -RTS v, In 2

i=1 A

Eai Inb; =Y Inb{" =Inb{' +Inb3? +Inb3* ...
i=1

N
=Inb{" b3> b¥ =In] b

i=1

M q; Vi
AG=AEO—RTlnH( ““)

i=1 A

—RTInK =AE, —RTlnn( Ami ]

i=1\ " avg

v, ln%=v1 [ I +V, mam2, =nRTJ]

A A A

S v.nRTIn o™ - nRT
NA

Sv.G, =>U,v; -nRTIn H(qmi )
N4

+ byn G/n=G U/n=0U,

AG=-RTInK =3U, v, -RTH( Ami )

Avo
A+BC ABC
C !
o =—ABC o o~AEo/RT _ ?AB’C NR.
CaCse dadsc

§=1-1-1=-1

K. - q’Al?Cl\’IAvo o~AEo/RT _ Casc
9a9Bc CaChge

mol mol 2
dm’? dm’
[K ] _ dm3 [qlABCNAVOI

mol | qAqsc

!
N
_ -AEy/RT 9ABCHN Avo
Capc =CACpc € PEr—
qda9Bc
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4 kT
daBc =9aBC# T

h
kT "\gcN
ry =vCape o~AEo/RT qA]?C , Avo /OK
h da9Bc
Molar partition function
A = =(q/mol)
n
3
q .,V q,, | dm
=—=(q —= — = 1/mol
Im h d n (dm3)(mol) A (1/mol)
d=c+d-b-a
fe fp
g _acap _f¢ £ =(fo)-6 fEfh _vérp PEPS ()
ajap fi fp fifs vivs PAPg
fa fp

K=K, Kp(f)", P, =C,RT

cpd c ~d c+d-a-b c+d-a-b
KK, Kp =K, ED(F)° K, €D (g) =KYKc(RT)
ciCh\ f° fo

/RT\c+d—a—b
\ )
AE, =3 v;Uj,

K=K, Kc

Vi
_RTInK = AE, - RTIn [[—m
Avo

q mi
N Avo

InK =5 4 I i 1™
nK=-——+In = mo
RT A

d
_ qéqD - r
= PRI 20 NG, gV =g
qads
\%

9m =q’m_=q’Vm =
n

I} e rd c+d-a—-d
RT _aE,RT 9cdp (V -5
K =KY(_0) KC =€ of KT =22 | _ NAvo

ra_1b
gagp \ 1
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However,

V RT

n
rc rd
K . = ~AEo/RT dcdp
c=¢ ra_rb
dads
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Avo
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