Oxygen is necessary for all aerobic fermentation (by definition) [cf. Equation (7-98)]. Maintaining the appropriate concentration of dissolved oxygen in fermentation is important for the efficient operation of a fermentor. For oxygen-limited systems, it is necessary to design a fermentor to maximize the oxygen transfer between the injected air bubble and the cell. Typically, a fermentor contains a gas sparger, heat transfer surfaces, and an impeller, such as the one shown in Text Figure 7-18 for a batch reactor. A chemostat has a similar configuration, with the addition of inlet and outlet streams. |
|||||||||||||||||||||||||||||||
(R7.2-1) |
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
Analogous to slurry reactor steps |
Figure R7.2-1 |
||||||||||||||||||||||||||||||
|
(R7.2-3) |
||||||||||||||||||||||||||||||
where: |
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
Combining Equations (R7.2-2) through (R7.2-4) and rearranging, we obtain |
|||||||||||||||||||||||||||||||
Yeast |
|
(R7.2-5) |
|||||||||||||||||||||||||||||
For many yeast cells, diffusion across the cell membrane can be neglected. |
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
The rate law for oxygen consumption (uptake) generally follows either Michealis-Menten or first-order kinetics. In many systems it depends on the particular growth phase of the bacteria cell. Typical respiration rates for single-cell yeast and bacteria are on the order of 100 to 600 mg O2/g cellh. For first-order kinetics we have |
|||||||||||||||||||||||||||||||
(R7.2-6) |
|||||||||||||||||||||||||||||||
where kr is the specific reaction rate for oxygen uptake, s-1, and h is the effectiveness factor for diffusion and reaction of oxygen inside the cell. Combining equations (R7.2-6), (R7.2-2), and (R7.2-3) gives |
|||||||||||||||||||||||||||||||
Bacteria |
|
(R7.2-7) |
|||||||||||||||||||||||||||||
We can observe from Equations (R7.2-5) and (R7.2-7) that at low cell
concentrations, transport steps C, D, and E (mass transfer of oxygen to and within
the cell) become rate limiting. |
|||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
where the Reynolds number for this system is defined as |
|||||||||||||||||||||||||||||||
|
(R7.2-8) |
||||||||||||||||||||||||||||||
When gas is present, the power input, Pg is reduced for a given propeller speed 8 and is a function of gas flow rate, impeller speed and diameter, and the Reynolds number. The ration of the power input with gas present, Pg, to that without gas present () is |
|||||||||||||||||||||||||||||||
|
(R7.2-9) |
||||||||||||||||||||||||||||||
Table R7.2-1. Mass Transfer Coefficients In Fermentor 1. Low-viscosity broths Van't Reit (1): |
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
2. Non-Newtonian correlations |
|||||||||||||||||||||||||||||||
Perez and Sandall (2): |
(R7.2-10) |
||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
Yagi and Yoshida (3): |
(R7.2-11) |
||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
Ranade and Ulbrecht (4): | |||||||||||||||||||||||||||||||
(R7.2-12) |
|||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||
[Comment: These correlations were obtained in tanks having a volume of 12 dm3 or less (5).] | |||||||||||||||||||||||||||||||
|
Other parameters in the correlations are:
|
||||||||||||||||||||||||||||||
|
3. Effect of solids (6):
(1) K. Van't Reit, Fund. Eng. Chem. Proc. Des. Dev., 18, 357 (1979) |
The functions F1 and F2 are generally given graphically
for different types of fluids and different geometric configurations. 9,10